
J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 98–109, 2003.
© IFIP International Federation for Information Processing 2003

Jironde: A Flexible Framework
for Making Components Transactional

Marek Prochazka

INRIA Rhône-Alpes
665, avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex, France

Marek.Prochazka@inrialpes.fr

Abstract. It is generally agreed that one of the key services of component-
based systems are transactions. However, an agreement on how components
should be involved in transactions is still missing. In this paper, we discuss
some of the key issues of combining components with transactions, and differ-
ent approaches to achieve an appropriate level of transactional functionality in
components. We distinguish between the explicit and implicit component par-
ticipation approaches that differ by whether a component implements a part of
transactional functionality or not. We discuss the influence of both approaches
to concurrency control, recovery, and transaction context propagation. Then, we
introduce our approach based on the use of several component controllers that
manage transactional functionality on behalf of components. For a component,
to be transactional, the only requirement is to fulfill a component contract
which is specific to different transactional controller implementations. We pro-
vide an overview of a prototype implementation of our approach in the Fractal
component model. Thanks to the flexibility and reflective nature of Fractal, it is
possible to achieve different levels of component transactional functionality by
combining different transactional controllers, with only taking their component
contracts into account. Our work proves that with an appropriate component
framework that supports reflection and flexible component management with
clearly defined notions of component composition, lifecycle, and binding, we
can make components transactional in an elegant and flexible way.

1 Introduction

During last years, a range of different component models has been proposed in both
academia [1, 5, 8, 15, 17] and software industry [9, 10, 13, 24]. It is generally be-
lieved that transactions belong to key services of component-based systems. How-
ever, there is no agreement on how the transaction service should look like and how
components should be involved in transactions. The goal of the paper is twofold:

− We discuss some of the key issues of combining components with transactions, as
well as different approaches to achieve transactional components. We distinguish
between the explicit and implicit component participation approaches that differ by
whether a component implements a part of transactional functionality or not. We
discuss the influence of both approaches to concurrency control, recovery, and
transaction context propagation.

Jironde: A Flexible Framework for Making Components Transactional 99

− Then, we introduce Jironde, a flexible framework for making components transac-
tional. Jironde uses several component controllers that manage transactional func-
tionality on behalf of a component. We identify several parts of transactional func-
tionality that are implemented by different transactional controllers. For
a component, to be transactional, the only requirement is to fulfill a component
contract which is specific to different transactional controller implementations. We
present an overview of the Jironde prototype implemented using the Fractal Com-
position Framework [15].

The main contribution of Jironde is its flexibility. Combining different transactional
controllers makes it possible to achieve different levels of component’s transactional
functionality, as well as to employ different transactional standards. The only obliga-
tion for components is to take component contracts of used transactional controllers
into account. We show that with an appropriate component framework that supports
reflection as well as flexible component management with well defined notions of
component composition, lifecycle, and binding, it is possible to add transactions to
components in an elegant and flexible way.

The rest of the paper is organized as follows. In Section 2, we identify several is-
sues and different approaches for combining components and transactions. In Sec-
tion 3, we introduce our Jironde framework for making components transactional.
Section 4 gives details of the Jironde prototype implementation in the Fractal envi-
ronment. An evaluation and overview of related work is provided in Section 5 and we
conclude with Section 6, where we also present our plans for the future.

2 Combining Components and Transactions

The issue of adding transactions to components might seem to be an easy task. At
least, there are several standards and architectures that deal with transactional compo-
nents, e.g. Enterprise JavaBeans (EJB, [24]), CORBA Components (CCM, [13]), and
the Component Object Model (COM, [9, 10]) forming together with the Microsoft
Transaction Server [6] the COM+ technology. However, most of these standards
employ simple ad-hoc solutions without addressing key issues of transactional com-
ponents. Several research papers have investigated transactional components [2, 3,
21], but their visions of transactional components significantly differ. When speaking
about transactional components, we have identified at least the following issues to
solve: component participation in a transaction, concurrency control, recovery, and
transaction context propagation. Let us discuss each of them separately in the follow-
ing sections.

2.1 Component Participation in a Transaction

What does it mean that “a component takes part in a transaction” or that “a compo-
nent is transactional”? Surprisingly, different component systems answer these ques-
tions differently. An EJB component, for instance, is transactional thanks to the EJB
container that 1) synchronizes the component’s persistent state at well defined points
in time and 2) associates database connections opened by the component with the
current transaction. A CORBA object takes part in transactions if it implements one
of the Resource, Synchronization, or SubtransactionAwareResource inter-

100 Marek Prochazka

faces in which case it can be registered to a transaction and participate in its two-
phase commit. In [18], each component is supervised by a so called spontaneous con-
tainer, which manages its persistence and participation in transaction in a similar way
traditional databases do with ordinary data. In our opinion, all approaches could be
divided into two main groups, depending on whether components take part in transac-
tions implicitly or explicitly.

The scenario of involving a component C to a transaction t in the explicit transac-
tion participation essentially consists of three steps:

1. C is registered to t. The transaction manager stores a pointer to C. More precisely,
to be able to be registered to a transaction, a component has to implement a well
defined interface specific to a particular component architecture. For example, in
the Java Transaction API (JTA, [25]), objects that implement the XAResource or
Synchronization interfaces can be registered to a transaction.

2. The client invokes various operations on C. What makes the explicit transaction
participation different from the classical database-like transaction paradigm is that
the transaction manager is not aware of these operation executions: it has no
scheduler.

3. At the time of t’s commit or abort, the transaction manager invokes selected meth-
ods of the registered C’s interfaces. The order of these invocations reflects a well
defined commit protocol. For example, in the CORBA Transaction Service (OTS,
[11]), the prepare and commit/abort methods of all registered Resource objects
are invoked according to the two-phase commit protocol.

With the explicit transaction participation, scheduling of component operations (that
correspond to data operations in database systems) is not driven by the transaction
manager. Furthermore, the transaction manager is not aware of transaction effects and
therefore is not responsible for their confirmation or cancellation by commit or abort,
neither for their recovery in case of a system crash. All this functionality is instead
implemented as a part of transactional components. Rather than ensuring ACIDity,
standards used in the world of distributed components, such as OTS and JTA, ensure
only atomicity of sequences of operations invoked on objects registered to transac-
tions1.

In the implicit transaction participation, all transactional functionality is imple-
mented by the container and its transaction manager themselves. The scenario of
involving a component C to a transaction t looks as follows:

1. Any time C is visited by a transaction t, the container keeps all necessary informa-
tion to manage concurrency control, commit, rollback, and recovery.

2. When a client invokes any operation on C, the container is aware of it. It applies
concurrency control protocols and manages C’s persistent state. The container be-
haves for components exactly like a database management system does for tradi-
tional data.

1 However, JTA supports ACIDity through the use of XA resources [26]. Concurrency control

and recovery is therefore provided at the level of the databases involved. Both the JTA and
OTS standards support ACID transactions but they do not provide all means to support all of
the ACID properties and some of the properties should be ensured by other system compo-
nents. For instance, concurrency control in CORBA can be managed through a simple
read/write locking as specified in the Concurrency Service [12].

Jironde: A Flexible Framework for Making Components Transactional 101

3. At the time of t’s commit or abort, the transaction manager commits or rollbacks
all effects of t on C (as well as other components it manages). It can eventually
take part in two-phase commit of transactions spread on multiple components su-
pervised by different containers.

To summarize what is different between the implicit and explicit transaction
participation, the former manages all the transactional functionality itself (therefore it
seems to be implicit from the component’s point of view), while the latter leaves the
implementation of what happens at the time of commit, rollback, or crash recovery on
the code of transactional components (transactions are handled by components explic-
itly).

2.2 Concurrency Control and Recovery

Following the discussion in the previous paragraph, let us discuss what is different
between the explicit and implicit transaction participation from the concurrency con-
trol point of view. As mentioned before, in the explicit transaction participation, the
transaction manager does not support any (implicit) scheduling. For example, EJB use
the JTA standard for transactions. However, JTA is not component-aware and only
provides an API for managing distributed transactions over XA resources [26] in
Java. As for concurrency control, JTA relies on the underlying databases via JDBC
connections. To have a locking policy at the component level, EJB add exclusive
locking to any visited component. This approach makes it impossible to share any
bean instance among transactions even if they are about to invoke read-only methods.

In CORBA, any object visited by a transaction is not locked by default and appli-
cations can use the CORBA Concurrency Service (CCS, [12]) or other transaction-
aware locking if needed.

To summarize, there is no implicit concurrency control at the level of components
if the explicit transaction participation is used. However, components can use an arbi-
trary transaction-aware concurrency control mechanism, such as CCS-like read/write
locking in CORBA or mutual exclusion in EJB.

With the implicit transaction participation, concurrency control is supported by the
transaction manager through the container that controls every component invocation.
Similarly as in a database system, the container essentially implements the functional-
ity of three entities: the transaction manager, scheduler, and data manager [4]. The
transaction manager receives component operations (method invocations) and trans-
action operations (begin, commit, etc.) and forwards them to the scheduler. The
scheduler ensures certain order of component and transaction operations. For each
component operation sent by the transaction manager, the scheduler may 1) schedule
it immediately by sending it to the data manager, 2) delay it by inserting it into a
queue, or 3) reject it and cause the issuing transaction to abort. Various concurrency
control policies, ranging from aggressive and optimistic schedulers that avoid delay-
ing operations, to conservative schedulers tending to delay operations and to avoid
rejecting them, as well as different implementation techniques, based on e.g. locks,
timestamps, or serialization graph testing, can be employed.

As for recovery, the container supporting the implicit transaction participation
manages recovery of every deployed component. On the opposite, with the explicit
transaction participation, components should manage their recovery themselves, since

102 Marek Prochazka

the container does not have enough information to do that. For example, in CORBA,
a reference to a Recovery Coordinator is obtained when registering a resource to
a transaction. A recoverable object has to use the Recovery Coordinator to drive the
recovery process in certain situations. In EJB, recovery is supported only at the JDBC
connection level. In principle, the container is able to continue two-phase commit on
all the participating JDBC connections thanks to the XA protocol. There is no recov-
ery protocol at the level of bean instances in EJB.

2.3 Transaction Context Propagation

To allow a component to participate in a client transaction, the transaction context has
to be propagated from the client to the component. This implies the support for the
transaction context propagation in the communication protocol used (e.g., IIOP or
RMI) and the container’s ability to determine the transaction context from the client
request. Along with the simple transaction propagation, more advanced manipulation
of the transaction context can be provided. This includes applying various policies
that specify, for example, whether an external transaction has to be present when
invoking a particular method, whether a container creates a new (container-managed)
transaction or the client transaction context is propagated to the component, etc. [21].

Essentially, there is no difference between the implicit and explicit transaction par-
ticipation, since the propagation policy could be both set implicitly by the container or
explicitly by the component author/deployer in both approaches. In EJB, CCM, and
COM+, the transaction propagation policy is determined by the value of a single
transaction attribute associated with the invoked method. The transaction attribute is
defined apart from the business interface specification and the component code as late
as in the deployment descriptor of the component. Various frameworks that separate
transaction demarcation from the container and allow defining new transaction propa-
gation policies have been proposed [20, 23].

3 Jironde

Jironde is a framework for making components transactional. The architecture of
a component enabled to participate in transactions is shown in Fig. 1. The key ideas
behind Jironde are as follows:

− To be transactional, a component is extended by several transactional controllers
that manage transactional functionality on its behalf.

− The functionality implemented by transactional controllers is not fixed or deter-
mined by a transactional standard used. Instead, each transactional controller may
implement a part of the transactional functionality (e.g., concurrency control) in its
own way.

− The set of transactional controllers used by the component is specified during the
component deployment. In other words, the way transactions are managed by the
component is determined by its deployment configuration.

− The component must fulfill the component contracts of all the transactional con-
trollers used in order to manage transactions correctly.

Jironde: A Flexible Framework for Making Components Transactional 103

Fig. 1. The architecture of a component enhanced to support transactions. The controller part of
the component contains several transactional controllers that manage transaction participation
on behalf of the component

We have borrowed our terminology from Fractal, a generic composition frame-
work based on components, which we have also used for a prototype implementation
of Jironde (described in Section 4). However, Jironde is not Fractal-specific and can
work with any component model that supports reflection, flexible component man-
agement through a configurable set of controllers2, as well as means supporting invo-
cation interception.

With having a configurable set of transactional controllers, we leave the decision
whether to follow the explicit or implicit approach (Section 2.1) on particular control-
ler implementations. For example, in our current prototype implementation, we use
the explicit transaction participation along with implicit concurrency control and
transaction context propagation. Composite components allow us to use transactional
controllers at any level of nesting, i.e., a subcomponent of a component can again be
deployed with various transactional controllers and therefore can manage transactions
in its own way. The component’s author does not care about transactional controllers.
When deploying a component, it is only necessary to specify which controllers will be
present in the target architecture. Obviously, this approach gives component develop-
ers/deployers a big portion of flexibility, but the specification of a deployment con-
figuration as well as combining different transactional controllers have to be handled
with care.

To participate in transactions correctly, a component has to fulfill requirements of
the controllers used – the component contracts. For example, the OTS Transaction
Controller in our prototype checks whether the component implements either the
Resource or Synchronization interfaces. If it does, the interfaces are registered to
the current OTS transaction. Most of this functionality is done in component intercep-
tors that correspond to related transactional controllers. Each of the interceptors
checks whether a transaction is associated with the thread asking for method invoca-
tion. Then the code specific to each interceptor is executed.

2 By a controller here we mean any runtime entity that provides certain management services

for a component. It may have a form of a wrapper, interceptor, adapter, proxy, and others.

transactional
interceptors

incoming
requests

Transaction
Controller

Concurrency
Controller

Propagation
Controller

Recovery
Controller

interfaces

controller objects

component content

104 Marek Prochazka

4 Implementing Jironde in Fractal

Jironde has been made as a part of the Java Open Transaction Manager (JOTM, [16]),
one of the ObjectWeb [14] projects. Fractal [15], another ObjectWeb project, pro-
vides a general software composition framework that supports component-based pro-
gramming, including component definition, configuration, composition, and man-
agement. In the next section we provide a brief overview of Fractal, and then we
present details of our Jironde implementation in Fractal.

4.1 The Fractal Composition Framework

In Fractal, a component is considered a run-time structure composed of two parts: a
controller part and a content part. The content part (or content) of a component is
composed of (a finite number of) other components, which are under control of the
controller of the enclosing component. The component model is recursive and allows
components to be nested (i.e., to appear in the content of enclosing components) at an
arbitrary level. Therefore, we distinguish a primitive component with no other com-
ponent inside, and a composite component that contains other components. The no-
tions of subcomponent, parent component, child component, and top-level component
are used in the obvious way.

A component interacts with its surrounding environment via its access points
called interfaces. An interface is a set of methods whose invocations reflect compo-
nent interactions. Visibility of interfaces is managed by the component controller part
composed of several controller objects (or controllers for short). A component may
have multiple server interfaces, which define the functionality that the component
offers to other components, and multiple client interfaces, which define the function-
ality the component requires from the surrounding environment. The controller part of
a component embodies the control behavior associated with this component. In par-
ticular, a component controller can intercept incoming and outgoing operation invoca-
tions and returns targeting or originating from the components in the component con-
tent. For example, the Lifecycle Controller manages the component lifecycle and the
Binding Controller manages bindings to other components.

4.2 Concurrency Controller

In the Jironde prototype, a component is a unit of concurrency control. The Concur-
rency Controller works as a database scheduler. It can delay the method execution by
temporarily suspending the invoking thread, or reject the method invocation by roll-
ing back the current transaction, or schedule the method invocation.

Our current implementation of the Concurrency Controller uses the JOTM Lock
Manager which supports transaction-aware locking with user-defined lock modes and
user-defined conflict tables, which may define both non-symmetric and non-transitive
conflict relations [16]. Let us have an example component that implements a single
Account interface with the balance, deposit, and withdraw methods. As bal-
ance is obviously not modifying the bank account balance, it is not conflicting with
the other two methods. Even both deposit and withdraw modify the account bal-

Jironde: A Flexible Framework for Making Components Transactional 105

ance, only withdraw is considered conflicting with other operations. The semantics
here is that any dirty balance retrieved due to concurrent deposits is considered cor-
rect, while multiple withdraw or withdraw combined with non-committed deposit can
lead to negative balance of the bank account, which is considered undesirable. The
corresponding conflict table is shown in Table 1, where “–” implies no conflict and
“+” implies a conflict.

Table 1. The conflict table of the Account component example

 balance deposit withdraw
balance – – –
deposit – – +
withdraw + + +

The only thing the author of a component has to do is to define a conflict table of

methods of all implemented interfaces in a simple configuration file as follows:
1 <lock-controller>

2 <default-conflict value=”false” />

3 <lock-mode name="balance">

4 <operation>Account.balance</operation>

5 </lock-mode>

6 <lock-mode name="deposit">

7 <operation>Account.deposit</operation>

8 <conflict held-mode="withdraw" value="true" />

9 </lock-mode>

10 <lock-mode name="withdraw">

11 <operation>Account.withdraw</operation>

12 <conflict held-mode="balance" value="true" />

13 <conflict held-mode="deposit" value="true" />

14 <conflict held-mode="withdraw" value="true" />

15 </lock-mode>

16 </lock-controller>

The configuration file is the only component contract of the Concurrency Control-
ler. The lock configuration above reflects the conflict table in Table 1. Inside each
lock mode definition (e.g., lines 3-5 for the balance lock mode) is a list of methods
associated with the lock mode (the operation element on line 4), together with the
definition of conflicts (the conflict elements on lines 8 and 12-14). The default
conflict value is false (line 2) and therefore all methods not explicitly listed in the
conflict element are considered non-conflicting. An alternative configuration with
the traditional read/write lock modes, where balance is associated with the read and
both deposit and withdraw are associated with the write lock mode, could be eas-
ily defined. The Concurrency Controller works as follows:

106 Marek Prochazka

− It is initialized during the application instantiation. During the initialization, the
configuration file is parsed to detect which interfaces and methods are subjects to
locking. There is always a single lock associated with each component. The lock
modes are values of lock-mode elements and the conflicts are attribute values of
conflict elements in the configuration file. Also, the Concurrency Controller is
registered as a transaction participant.

− For each request for method invocation, the Concurrency Interceptor detects
whether a transaction is associated with the request.

− If a transaction is associated with the request, the Concurrency Interceptor finds
whether the invoked method is a subject for locking. This is true only if the method
name was defined in the operation element of one of the lock modes in the con-
figuration file.

− If the method is subject for locking, the JOTM Transaction Lock is acquired in the
mode corresponding to the invoked method (the name of the lock mode in whose
definition the method was listed in the operation element).

− The lock is released at the time of transaction commit or abort. This is possible
thanks to the fact that the Concurrency Controller has been registered as
a transaction participant during the initialization phase.

Thanks to the Concurrency Controller based on the JOTM locking with an arbitrary
conflict table, the author of a component can exploit method semantics and therefore
the component sharing potential is increased comparing to the traditional read/write
approach. The controller configuration file is easy to define (a single conflict table per
a component type). Our current Concurrency Controller implementation uses the
implicit approach (i.e., the component lock is controlled by the controller), but the
lock configuration is up to the component’s developer/deployer.

4.3 Transaction Controller

The Transaction Controller manages the registration of components to transactions.
We have decided to follow the explicit transaction participation approach, especially
due to the fact that we do not have any appropriate container being able to manage
implicit transaction participation, component persistency, and recovery. We have
implemented three Transaction Controllers that are able to register a component to
one of the OTS, JTA, and JOTM transactions, respectively. Each Transaction Con-
troller implementation allows to get a transaction object to demarcate transactions, to
get the current transaction, and to configure transactions in the component according
to the underlying standard.

For every issued method invocation, the interceptor of the corresponding Transac-
tion Controller detects whether a transaction is associated with the request and
whether it is the transaction’s first visit of the component. If an OTS, JTA, or JOTM
transaction is associated with the request, the corresponding Transaction Controller
finds whether the component implements the Resource and Synchronization
OTS interfaces, the XAResource and Synchronization JTA interfaces, or the
EventListener JOTM interface. If yes, the respective interface is registered to the
issuing transaction.

Jironde: A Flexible Framework for Making Components Transactional 107

The required component contract of the OTS, JTA, and JOTM Transaction Con-
trollers is to implement the corresponding interfaces. To allow components also to
register other types of transactional resources, we have also implemented the Generic
Transaction Controller. Its component contract states that the component takes the
responsibility for the resource registration and implements the Registration inter-
face. When intercepting a method invocation, the Generic Transaction Controller
finds out if the component implements Registration – in this case the Registra-
tion.registerResources method is invoked. It is up to the component which
resources are in this method registered to a transaction that visits the component.

4.4 Propagation Controller

As described in Section 2.3, the Propagation Controller is responsible for the propaga-
tion of transaction context to the component. The behavior of the controller is driven
according to various transaction propagation policies. When intercepting a method
invocation, the Propagation Controller is able to modify the transaction context in
which scope the requested component method is invoked. In the current version of
our prototype, the Propagation Controller has only a simple policy for transaction
propagation: If there is no transaction associated with the client request, the requested
component method is not executed in the context of a transaction. If a transaction is
associated with the client request, the transaction is propagated to the component. In
the future, we expect to have the transaction propagation policy specified in a con-
figuration file similar to the Concurrency Controller one. We plan to employ the Open
Transaction Demarcation Framework [23], which has been proposed as a part of
JOTM/ObjectWeb.

5 Evaluation

Comparing to the current commercial component architectures, such as EJB, COM+,
or CCM, an important feature of Jironde is its flexibility. Combining different
transactional controllers makes it possible to achieve different levels of component’s
transactional functionality as well as to employ different transactional standards. It is,
for example, possible to use concurrency control at the level of components if JTA
transactions are used or to add EJB-like transaction propagation policies to OTS. The
only requirement with respect to the component implementation is to fulfill the
component contracts of the employed controllers. In our Fractal prototype
implementation of Jironde, for the Transaction Controller it means to implement one
of the interfaces that can be registered to a transaction. The Concurrency Controller
requires to define the lock modes and the Propagation Controller requires to define
propagation policies in a configuration file, but both controllers can also use default
values, such as exclusive locking and simple transaction propagation.

Our current implementation does not support dynamic interceptors being able to be
added or removed to the interception chain. The authors of [18] use dynamic aspects
to extend a component with a transactional functionality at runtime, which is useful
especially in mobile environments. Our aim is also to extend our prototype with such
a runtime adaptability. We have found our approach very close to the aspect-oriented

108 Marek Prochazka

one. We agree with conclusions in [7] that transactions are hard to aspectize, espe-
cially when aspectizing constructs of a programming language. However, it seems to
us that aspectizing a well defined architectural and programming framework makes
things different. We believe that thanks to the well defined notions of component
composition (reflected in Fractal by the Content Controller), component lifecycle
(Lifecycle Controller), component binding (Binding Controller), and thanks to the use
of reflection, we can address some of the most problematic issues related to aspects
(e.g., a composition of multiple aspects).

6 Conclusions

In this paper, we have discussed some of the key issues of combining components
with transactions, as well as different approaches to make components transactional.
We have introduced Jironde, a flexible framework for making components transac-
tional. The main contribution of Jironde is its flexibility. Thanks to managing transac-
tions in components by a configurable set of transactional controllers, it is possible to
achieve different levels of component’s transactional functionality, as well as to em-
ploy different transactional standards. In the future, we would like to study in more
detail the collaboration of transactional controllers with other ones, such as the Bind-
ing Controller and Lifecycle Controller. We plan to identify more precisely Jironde
requirements on component architectures, as well as limitations of combing transac-
tional controllers with incompatible component contracts. As for the Jironde proto-
type in Fractal, we plan to implement a Recovery Controller and various Propagation
Controllers that will use a controller-managed transaction to form together with a
client transaction a parent-child pair in the nested transaction model, or a relation in
the split/join transaction model. Another interesting task is to employ dynamic inter-
ceptors, which have been recently added to Fractal, to enable transactional controllers
to add or remove their interceptors at runtime.

References

1. Allen, R., J., “A Formal Approach to Software Architecture”, Ph.D. Thesis (1997)
2. Alonso, G., Fessler, A., Pardon, G., Schek, H.-J., “Correctness in General Configurations

of Transactional Components”, in Proceedings of the ACM Symposium on Principles of
Database Systems (PODS ‘99), Philadelphia, USA (1999)

3. Andersen, A., Blair, G., Goebel, V., Karlsen, R., Stabell-Kulø, T., Yu, W., “Arctic Beans:
Configurable and Reconfigurable Enterprise Component Architectures”, IEEE Distributed
Systems Online, Vol. 2, No. 7, http://dsonline.computer.org/ (2001)

4. Bernstein, P., A., Hadzilacos, V., Goodman, N., “Concurrency Control and Recovery in
Database Systems”, Addison Wesley (1987)

5. Giannakopoulou, D., “Model Checking for Concurrent Software Architectures”, Doctoral
Dissertation, Imperial College, University of London (1999)

6. Gray, S., Lievano, R., Jennings, R., “Microsoft Transaction Server 2.0”, Sams Publishing
(1997)

Jironde: A Flexible Framework for Making Components Transactional 109

7. Kienzle, J., Guerraoui, R., “AOP: Does it Make Sense? The Case of Concurrency and
Failures”, in Proceedings of the 16th European Conference on Object-Oriented Program-
ming, Malaga, Spain (2002)

8. Luckham, D., C., Kenney, J., J., Augustin, L., M., Vera, J., Bryan, D., Mann, W., “Speci-
fication and Analysis of System Architecture Using Rapide”, IEEE Transactions on Soft-
ware Engineering, Vol. 21, No. 4 (1995) 336-355

9. Microsoft Corporation, “Component Object Model (COM) Specification 0.9” (1995)
10. Microsoft Corporation, “Distributed Component Object Model Protocol – DCOM/1.0”

(1998)
11. Object Management Group, “Transaction Service”, Version 1.2, formal/01-05-02 (2001)
12. Object Management Group, “Concurrency Service”, Version 1.0, formal/00-06-14 (2000)
13. Object Management Group, “CORBA Components”, Version 3.0, formal/02-06-65 (2002)
14. ObjectWeb, http://www.objectweb.org/
15. ObjectWeb, “The Fractal Composition Framework Specification”, Version 1.0,

http://www.objectweb.org/fractal/ (2002)
16. ObjectWeb, “The Java Open Transaction Manager”, http://jotm.objectweb.org/
17. Plasil, F., Visnovsky, S., “Behavior Protocols for Software Components”, IEEE Transac-

tions on Software Engineering, Vol. 28, No. 11 (2002)
18. Popovici, A., Alonso, G., Gross, T., “Spontaneous Container Services”, in Proceedings of

the 17th European Conference on Object-Oriented Programming, Darmstadt, Germany
(2003)

19. Prochazka, M., “Advanced Transactions in Enterprise JavaBeans”, in Proceedings of the
Engineering Distributed Objects (EDO) Workshop, Davis, USA (2000)

20. Prochazka, M., Plasil, F., “Container-Interposed Transactions”, in Proceedings of the
Component-Based Software Engineering (CBSE) Special Session of the SNPD ‘01 Con-
ference, Nagoya, Japan (2001)

21. Prochazka, M., “Advanced Transactions in Component-Based Software Architectures”,
Ph.D. thesis, Charles University, University of Evry (2002)

22. Prochazka, M., “A Flexible Framework for Adding Transactions to Components”, the 8th
International Workshop on Component-Oriented Programming (WCOP 2003, in conjunc-
tion with ECOOP 2003), Darmstadt, Germany (2003)

23. Rouvoy, R., Merle, P., “Abstraction of Transaction Demarcation in Component-Oriented
Platforms”, ACM/IFIP/USENIX International Middleware Conference, Rio de Janeiro,
Brazil (2003)

24. Sun Microsystems, “Enterprise JavaBeans Specification”, Version 2.0, Final Release
(2001)

25. Sun Microsystems, “Java Transaction API (JTA)”, Version 1.01 (1999)
26. X/Open Distributed Transaction Processing: Reference Model, Version 3 (1996)

	1 Introduction
	2 Combining Components and Transactions
	2.1 Component Participation in a Transaction
	2.2 Concurrency Control and Recovery
	2.3 Transaction Context Propagation

	3 Jironde
	4 Implementing Jironde in Fractal
	4.1 The Fractal Composition Framework
	4.2 Concurrency Controller
	4.3 Transaction Controller
	4.4 Propagation Controller

	5 Evaluation
	6 Conclusions
	References

