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Abstract. By combining program logic and static analysis, we present
an automatic approach to construct program proofs to be used in Proof-
Carrying Code. We use Hoare logic in representing the proofs of program
properties, and the abstract interpretation in computing the program
properties. This combination automatizes proof construction; an abstract
interpretation automatically estimates program properties (approximate
invariants) of our interest, and our proof-construction method constructs
a Hoare-proof for those approximate invariants. The proof-checking side
(code consumer’s side) is insensitive to a specific static analysis; the
assertions in the Hoare proofs are always first-order logic formulas for
integers, into which we first compile the abstract interpreters’ results.
Both the property-compilation and the proof construction refer to the
standard safety conditions that are prescribed in the abstract interpreta-
tion framework. We demonstrate this approach for a simple imperative
language with an example property being the integer ranges of program
variables. We prove the correctness of our approach, and analyze the size
complexity of the generated proofs.

1 Introduction

Necula and Lee’s seminal work [Nec97,NL97] on Proof-Carrying Code(PCC) and
its subsequent developments [NS02,NR01,App01,HST+02] have been a convinc-
ing technology for certifying the safety of mobile code, yet how to achieve the
code’s safety proofs is still open for alternatives. The existing proof construction
process either assumes that the programmer provides the program invariants
[Nec97,NL97,NR01], thus being not fully automatic, or is limited to a class of
properties that are automatically inferable by the current type system technolo-
gies [HST+02,AF00,MWCG98].

In this paper we present a method for automatically constructing the pro-
gram proofs, to be used in the PCC framework. We use a combination of static



analysis and program logic. We use the abstract interpretation [CC77a,Cou99]
for the static analysis and Hoare logic [Hoa69] for the program logic. An abstract
interpreter first estimates program invariants. For the computed invariants, we
construct Hoare proofs using the standard Hoare logic rules. For example, sup-
pose that the program property that we have to establish is the range of integer
values of program variables. We employ an abstract interpreter that estimates
the range by an integer interval. The estimated integer-interval for every vari-
able at each program point is an invariant for which we will construct Hoare
proofs. Since the invariants from abstract interpretations are approximate in
general, they sometimes do not exactly fit with the Hoare logic rules. This gap
is filled by the safety proofs of the used abstract interpreter. These safety proofs
are for the standard safety conditions prescribed in the abstract interpretation
framework.

In order to make the proof-checking side (code consumer’s side) insensitive to
a specific static analysis, we fix the assertion language in Hoare logic to first-order
logic for integers,4 into which we have to translate abstract interpretation results.
This translation procedure is nicely defined by referencing the concretization
formulas of the used abstract interpreter.

Note that our method still requires the code producer to design an abstract
interpreter that estimates the desired properties (program invariants) in a right
cost-accuracy balance. Although designing such an abstract interpreter is gener-
ally demanding, our method is still appealing because the once-designed abstract
interpreter can be used repeatedly for all programs of the same language, as long
as their properties to verify and check remain the same.

The code consumer’s side remains simple. Checking the Hoare proofs is sim-
ply by pattern-matching the proof tree nodes against the corresponding Hoare
logic rules. Checking if the proofs are about the accompanied code is straight-
forward, because the program texts are embedded in the Hoare proofs.

Because the trusted computing base(TCB) is the standard Hoare logic rules
with first-order logic for integers, the TCB size amounts to the number of proof
rules in Hoare logic and first-order logic for integers. The number of Hoare
logic rule is linear to the number of syntactic constructs of the source pro-
gramming language. The size of first-order logic rules for integers can vary
depending on where we strike the balance between the number of rules and
proof size. We can reduce this part of the TCB by using the foundational PCC
[App01,AF00,HST+02] approach.

Our work is based on Cousot and Cousot’s insight for the connection be-
tween program logic and static analysis [CC77b,CC79]. They showed that the
set of assertions can be considered as an abstract domain; thus, an abstract in-
terpretation can be used to find assertions that denote approximate invariants,
and these assertions can be used to verify a program. Recently, Heintze et al.
[HJV00] further developed Cousot and Cousot’s insight so that both program
logic and static analysis can get benefits from each other. Our work strenghens

4 Our method is not necessarily limited to first-order logic. It only requires that the
assertion language have first-order quantifiers.



this connection bewteen program logic and static analysis. We use a static anal-
ysis not just to find approximate invariant assertions but also to obtain machine-
checkable proofs, which show that those assertions indeed approximate program
invariants.

In this paper we demonstrate our method for a simple imperative language
with integer variables. In Section 2, we explain the generic abstract interpreter,
which can be instantiated to an analysis for a specific program property. In
Section 3, we present an algorithm that gets a program annotated with the
abstract interpretation results, and gives a Hoare proof for the program. In
Section 4, we conclude.

2 Generic Abstract Interpretation

We consider abstract interpretations that are instances of Cousot’s generic ab-
stract interpretation [Cou99]. The generic abstract interpretation (Figure 2) is
about a simple imperative programming language (Figure 1).

Commands C ::= x := E | C;C | if B then C else C fi | while B do C od

Expressions E ::= n | x | E + E
Boolean Expressions B ::= tt | ff | E = E | E < E | B ∧B | B ∨B

Fig. 1. Syntax of a Simple Imperative Language

The abstract interpretation is generic because it is parameterized by an ab-
stract domain A with a lattice structure (v,⊥,t,u,>), an abstraction function
α : P(Ints) → A, a concretization function γ : A → P(Ints), and the following
abstract operators:

+̂ : A×A → A
+̂/ : (A×A×A)→ A×A
=̂/ : A×A → A×A
<̂
/ : A×A → A×A

The operator +̂ abstracts the addition of integers. The other operators make
an abstract interpretation more precise by employing the notion of “backward
abstract interpretation”[Cou99]. When +̂/(a, b, c) gives the pair (a′, b′), the set
γ(a′) of integers contains integers in γ(a) excluding some integers n such that
“n+ b 6= c.” Similarly, the other operators =̂/ and <̂/ exclude integers based on
= or <: when =̂/(a, b) is (a′, b′), the set γ(a′) contains integers in γ(a) excluding
some integers n that are not equal to any n′ in γ(b); and when <̂/(a, b) = (a′, b′),
the set γ(a′) excludes some integers n such that “n 6< b.” For these operators
+̂/
, =̂/, <̂

/, we use subscripts −0 and −1 to denote the first and second of the
result, respectively.



Given a program, the abstract interpreter associates an abstract state with
each program point. An abstract state ŝ is a map from a finite set Vars of variables
to A, and means a set of concrete states, denoted γ(ŝ):

s ∈ γ(ŝ) ⇐⇒ ∀x ∈ Vars : s(x) ∈ γ(ŝ(x))

When the abstract interpreter associates ŝ with a program point, γ(ŝ) contains
all the states that are possible at the point during execution.

The interpretation of commands and expressions is standard except the cases
of a conditional statement and a loop. In those cases, we use backward semantics
[[−]]b for accurate analysis of branches. Let ŝ be an abstract state, and let a be an
abstract value. The backward semantics [[B]]bŝ for boolean expression B makes
ŝ smaller by excluding some concrete states in γ(ŝ) that violate the condition
B. The abstract state [[E]]bŝ a excludes some concrete states s in γ(ŝ) where the
concrete value of E is not approximated by a.

In the interpreter definition, we use macro ¬B which expands to a boolean
expression without negation. We move ¬ inside ∨ or ∧ by de-Morgan’s laws5,
and then transform the negation of atomic boolean expressions by the usual
equivalence: ¬(E=E′)⇐⇒ E<E′ ∨ E>E′ and ¬(E<E′)⇐⇒ E=E′ ∨ E>E′.

The generic abstract interpretation in Figure 2 can be instantiated to various
program analyses. For instance, when we want to design an analysis (called
interval analysis) that estimates program variables’ values by integer intervals,
we can use, for A, an interval domain

{⊥} ∪ {[n,m] | (n,m ∈ Ints ∪ {−∞,∞}) ∧ n ≤ m},

and the abstract operators defined as in Figure 3.
The instantiated abstract interpretation is sound when the abstract domain

and operators are chosen appropriately. The abstract domain A should be a com-
plete lattice, Galois-connected by abstraction α : P(Ints) → A and concretiza-
tion γ : A → P(Ints). The abstract operators should satisfy the requirements
in Figure 4. The Galois connection means that the order in abstract domain
A corresponds to the approximation order among the concrete correspondents.
The abstract operators’ safety arguments dictate that their abstract results must
subsume their concrete correspondents.

3 Construction of Hoare Proofs

The main result of this paper is an algorithm that constructs proofs in Hoare
logic from abstract interpretation results. In this section, we will explain this
construction algorithm.

5 ¬(B ∧B′)⇔ ¬B ∨ ¬B′ and ¬(B ∨B′)⇔ ¬B ∧ ¬B′



ŝ ∈ AbsStates
∆
= Vars→ A

Commands
[[C]] : AbsStates→ AbsStates

[[x:=E]]ŝ = ŝ[x 7→ ([[E]] ŝ)]
[[if B then C0 else C1 fi]]ŝ = [[C0]]([[B]]bŝ) t [[C1]]([[¬B]]bŝ)

[[while B do C od]]ŝ = [[¬B]]b
�
lfp λŝ′. ŝ t [[C]]([[B]]bŝ

′)
�

[[C0;C1]]ŝ = [[C1]]([[C0]]ŝ)

Integer Expressions
[[E]] : AbsStates→ A

[[n]]ŝ = α({n})
[[x]]ŝ = ŝ(x)

[[E0+E1]]ŝ = [[E0]]ŝ +̂ [[E1]]ŝ

Backward Abstract Semantics of Boolean Expressions
[[B]]b : AbsStates→ AbsStates

[[tt]]bŝ = ŝ
[[ff]]bŝ = λx ∈ Vars. ⊥

[[E0=E1]]bŝ =
�
[[E0]]bŝ (=̂/

0([[E0]]ŝ, [[E1]]ŝ))
� u �[[E1]]bŝ (=̂/

1([[E0]]ŝ, [[E1]]ŝ))
�

[[E0<E1]]bŝ =
�
[[E0]]bŝ (<̂

/
0([[E0]]ŝ, [[E1]]ŝ))

� u �[[E1]]bŝ (<̂
/
1([[E0]]ŝ, [[E1]]ŝ))

�
[[B0∧B1]]bŝ = [[B0]]bŝ u [[B1]]bŝ
[[B0∨B1]]bŝ = [[B0]]bŝ t [[B1]]bŝ

Backward Abstract Semantics of Integer Expressions
[[E]]b : AbsStates→ A→ AbsStates

[[n]]bŝ a =

�
ŝ if α({n}) v a
λx ∈ Vars. ⊥ otherwise

[[x]]bŝ a = ŝ[x 7→ (ŝ(x) u a)]

[[E0+E1]]bŝ a =
�
[[E0]]bŝ (+̂

/
0([[E0]]ŝ, [[E1]]ŝ, a))

� u �[[E1]]bŝ (+̂
/
1([[E0]]ŝ, [[E1]]ŝ, a))

�
Fig. 2. Generic Abstract Interpretation

3.1 Translation Function

Our algorithm is parameterized by a translation function, which compiles ab-
stract interpretation results into formulas in first-order logic. Let tr be a trans-
lation function that takes a pair of an abstract value a and an expression E, and
gives a first-order logic formula ϕ about E. Formula tr(a,E) intuitively means
“E ∈ γ(a)”: tr(a,E) holds in a concrete state s precisely when the value of E
at s belongs to γ(a). The formal definition of a translation requires that the
function tr satisfy the following conditions:

– Monotonicity: for all a, a′, and E, if a v a′, then tr(a,E) implies tr(a′, E);



[n0,m0]+̂[n1,m1]
∆
= [n0 + n1,m0 +m1]

+̂
/
i ([n0,m0], [n1,m1], [n2,m2])

∆
= [ni,mi] u [n2 −m1−i,m2 − n1−i]

=̂/
i ([n0,m0], [n1,m1])

∆
= [n0,m0] u [n1,m1]

<̂
/
([n0,m0], [n1,m1])

∆
=

�
(⊥,⊥) if m1 ≤ n0

([n0,minX0], [maxX1,m1]) otherwise
(where X0 = {m0,m1 − 1}, X1 = {n0 + 1, n1})

Fig. 3. Abstract Operators for an Interval Analysis

a0+̂a1 w α({n0 + n1 | ni ∈ γ(ai)})
=̂/
i (a0, a1) w α({ni ∈ γ(ai) | ∃n1−i ∈ γ(a1−i) : ni = ni−1})

<̂
/
i (a0, a1) w α({ni ∈ γ(ai) | ∃n1−i ∈ γ(a1−i) : n0 < n1})

+̂
/
i (a0, a1, a2) w α({ni ∈ γ(ai) | ∃ni−1 ∈ γ(ai−1), n2 ∈ γ(a2) : n0 + n1 = n2})

Fig. 4. Safety of Abstract Operators

– Meet Preservation: for all a, a′, and E, the formula tr(aua′, E) is equivalent
to tr(a,E) ∧ tr(a′, E);

– Strictness: for all E, the formula tr(⊥, E) is ff;
– Constants Preservation: for all integers n, the formula tr(α({n}), n) holds;
– Closedness: Free(tr(a,E)) = Free(E) for all a and E; and
– Commutativity: tr(a,E)[E′/x] = tr(a,E[E′/x]) for all a, E, E′, and x.

The first four conditions are from the corresponding properties of the concretiza-
tion γ: the concretization γ is monotone, preserves u and ⊥, and maps α({n})
to a set containing n. The other two conditions say that tr(a,E) expresses γ(a)
by a formula with holes, and then fills the hole with E.

For the interval analysis, we can use the translation tr defined as follows:

tr([n,m], E) ∆= (n ≤ E) ∧ (E ≤ m) tr(⊥, E) ∆= ff

Note that tr for the interval analysis is monotone and preserves u and ⊥, and
that tr([n,m],−) is a formula (n < −) ∧ (− < m) with two holes, which are
filled by the second argument; thus, tr satisfies the other two conditions for a
translation.

Map trst is a natural extension of tr for abstract states:

trst(ŝ) ∆=
∧

x∈Vars

tr(ŝ(x), x)

Formula trst(ŝ) means the concretization of ŝ: trst(ŝ) holds for a concrete state s
precisely when s is in γ(ŝ). For instance, the abstract state [x 7→ [2, 3], y 7→ [1, 5]]



from the interval analysis gets translated into a formula as follows:

trst([x 7→ [2, 3], y 7→ [1, 5]]) = tr([2, 3], x) ∧ tr([1, 5], y)
= 2 ≤ x ∧ x ≤ 3 ∧ 1 ≤ y ∧ y ≤ 5

3.2 Algorithm

Our algorithm is parameterized by abstract domain and operators, and their
soundness proofs. Suppose that we have obtained a program analysis by instan-
tiating the generic abstract interpretation with an abstract domain A with a
lattice structure (v,⊥,t,u,>), and abstract operators +̂, +̂/

, =̂/, <̂
/. We can

specialize our algorithm for this analysis by providing a translation function tr
for the domain A, and procedures that prove in first-order logic the soundness of
tr and the abstract operators. These procedures must satisfy the specifications
in Figure 5. Note that the procedures monTr, meetTr, conTr imply that tr is
monotone, preserves u and maps each α({n}) to a set containing n; and that
the remaining procedures fAdd, bAddi, bEqli, bInEqli manifest that the abstract
operators +̂, +̂/

, =̂/, <̂
/ satisfy the requirements in Figure 4.

The input of our algorithm is a command in the simple imperative language
(Figure 1) annotated with the results of an abstract interpretation. Let I be an
instance of the generic abstract interpretation, and C a command. The analysis
I annotates each point of C with an abstract state ŝ, so that the output is a
term A in the following grammar:

A ::= [ŝ]R[ŝ]
R ::= x:=E | A;A | if B then A else A fi | [inv ŝ]while B do A od

Note that the annotation specifies the pre- and post-conditions for each sub-
command of C, and also provides loop invariants [inv ŝ]. For each annotated
command of the form A or R, we denote the corresponding command without
annotation using A or R.

Given an annotated program A, our algorithm gives a proof in Hoare logic.
This Hoare proof shows that each annotation ŝ in A holds: the formula trst(ŝ)
holds at the annotated place in the command A. For example, from an annotated
assignment [ŝ]x := y[ŝ′], the algorithm gives the following proof tree:

tr(ŝ(y), y)⇒ tr(ŝ′(x), y)
trst(ŝ)⇒ trst(ŝ′)[y/x] {trst(ŝ′)[y/x]}x := y {trst(ŝ′)}

{trst(ŝ)}x := y {trst(ŝ′)}

Note that this tree is derivable because ŝ(y) = ŝ′(x) = ŝ′(y): the generic abstract
interpretation requires that ŝ′ be the abstract state ŝ[x 7→ ŝ(y)].

Our algorithm, denoted T , calls three subroutines E , Eb , and Bb . Subroutine
E constructs proofs that show that the forward abstract interpretation of ex-
pressions is correct. Given an abstract state ŝ and an expression E, subroutine



For all expressions E,E0, E1, abstract values a, a0, a1, b, and integers n

– monTr(a, b, E) for a v b is a proof tree for

tr(a,E)⇒ tr(b, E);

– meetTr(a, b, E) is a proof tree for�
tr(a,E) ∧ tr(b, E)

�⇒ tr(a u b, E);

– conTr(n) is a proof tree for
tr(α({n}), n)

– fAdd(a0, a1, E0, E1) is a proof tree for�
tr(a0, E0) ∧ tr(a1, E1)

� ⇒ tr(a0+̂a1, E0 + E1);

– bEqli(a0, a1, E) is a proof tree for�
∃x. tr(ai, E) ∧ tr(a1−i, x) ∧ E = x

�
⇒ tr(=̂/

i (a0, a1), E);

– bInEql0(a0, a1, E) is a proof tree for�
∃x. tr(a0, E) ∧ tr(a1, x) ∧ E0 < x

�
⇒ tr(<̂

/
0(a0, a1), E);

– bInEql1(a0, a1, E) is a proof tree for�
∃x. tr(a0, x) ∧ tr(a1, E) ∧ x < E1

�
⇒ tr(<̂

/
1(a0, a1), E);

– bAddi(a0, a1, b, E) is a proof tree for�
∃x. tr(ai, E) ∧ tr(a1−i, x) ∧ tr(b, E + x)

�
⇒ tr(+̂

/
i (a0, a1, b), E).

Fig. 5. Safety Proofs Generated by Analysis-Specific Procedures



E produces a proof of the form:

...
trst(ŝ)⇒ tr([[E]]ŝ, E)

The proved implication says that the abstract value [[E]]ŝ “contains” all the
possible values of E at some state s in γ(ŝ).

Other subroutines Eb and Bb are about backward abstract interpretations.
Given an abstract state ŝ, an expression E and an abstract value a, the subrou-
tine Eb produces the following proof:

...
trst(ŝ) ∧ tr(a,E)⇒ trst([[E]]bŝ a)

This proof shows that the backward interpretation [[E]]b of expression E is cor-
rect; the set γ([[E]]bŝ a) of states can exclude a state s in γ(ŝ) only when the
value of E at s is not in γ(a). Subroutine Bb outputs, for an abstract state ŝ and
a boolean expression B, the following proof:

...
trst(ŝ) ∧B ⇒ trst([[B]]bŝ)

The proved implication says that a state s in γ(ŝ) can be pruned in γ([[B]]bŝ)
only when the boolean expression B is false at the state s. Thus, it implies that
the backward abstract interpretation of boolean expressions is correct.

The main algorithm T is shown in Figure 6, and three subroutines E , Eb ,
and Bb are, respectively, in Figure 7, 8, and 9. In the algorithms, we use macros
monSt and meetSt, which, respectively, extend monTr and meetTr (Figure 5) to
abstract states. Let x0, . . . , xn be the enumeration of all variables in Vars, and
let ŝ and ŝ′ be abstract states. The macro monSt(ŝ, ŝ′) expands to the following
tree:

monTr(ŝ(x0), ŝ′(x0), x0) . . . monTr(ŝ(xn), ŝ′(xn), xn)
trst(ŝ)⇒ trst(ŝ′)

Note that this tree becomes a proof tree when ŝ v ŝ′; it is because, if ŝ(xi) v
ŝ′(xi), monTr(ŝ(xi), ŝ′(xi), xi) is a proof tree. On the other hand, the macro
meetSt(ŝ, ŝ′) always expands to the proof tree:

meetTr(ŝ(x0), ŝ′(x0), x0) . . . meetTr(ŝ(xn), ŝ′(xn), xn)
trst(ŝ) ∧ trst(ŝ′)⇒ trst(ŝ u ŝ′)

Lemma 1. The subroutines E, Eb, and Bb output proof trees. That is, the output
trees are derivable in first-order logic.

Proof. The lemma can be shown by induction on the structure of the input
boolean or integer expression. Each induction step can be shown by the definition
of the generic abstraction interpretation, and the specification (Figure 5) for the
provided procedures. ut



Case A ≡ [ŝ]x := E[ŝ′]

trst(ŝ)⇒ �∧y∈Vars−{x}tr(ŝ′(y), y)
� E(ŝ, E)

trst(ŝ)⇒ trst(ŝ′)[E/x] {trst(ŝ′)[E/x]} x := E {trst(ŝ′)}
{trst(ŝ)} x := E {trst(ŝ′)}

Case A ≡ [ŝ]if B then [ŝ1]R1[ŝ′1] else [ŝ2]R2[ŝ′2] fi[ŝ′]

Bb(ŝ, B) T ([ŝ1]R1[ŝ′1]) monSt(ŝ′1, ŝ
′
1 t ŝ′2)

{trst(ŝ) ∧ B}R1 {trst(ŝ′)}
Bb(ŝ,¬B) T ([ŝ2]R2[ŝ′2]) monSt(ŝ′2, ŝ

′
1 t ŝ′2)

{trst(ŝ) ∧ ¬B}R2 {trst(ŝ′)}
{trst(ŝ)} if B then R1 else R2 fi {trst(ŝ′)}

Case A ≡ [ŝ]([inv ŝ0]while B do [ŝ1]R1[ŝ′1] od)[ŝ′]

monSt(ŝ, ŝ0)

Bb(ŝ0, B) T ([ŝ1]R1[ŝ′1]) monSt(ŝ′1, ŝ0)

{trst(ŝ0) ∧ B}R1 {trst(ŝ0)}
{trst(ŝ0)} while B do R1 od {trst(ŝ0) ∧ ¬B} Bb(ŝ0,¬B)

{trst(ŝ)} while B do R1 od {trst(ŝ′)}

Case A ≡ [ŝ]A1;A2[ŝ′]
T (A1) T (A2)

{trst(ŝ)}A1;A2 {trst(ŝ′)}

Fig. 6. Proof Construction T (A) for an Annotated Program A

Case E ≡ n
conTr(n)

trst(ŝ)⇒ tr([[n]]ŝ, n)

Case E ≡ x
trst(ŝ)⇒ tr([[x]]ŝ, x)

Case E ≡ E0+E1

E(ŝ, E0) E(ŝ, E1)

trst(ŝ)⇒ tr([[E0]]ŝ, E0) ∧ tr([[E1]]ŝ, E1) fAdd([[E0]]ŝ, [[E1]]ŝ, E0, E1)

trst(ŝ)⇒ tr([[E0+E1]]ŝ, E0 + E1)

Fig. 7. Proof Construction E(ŝ, E)



Case E ≡ n
if (α({n}) v a) then

trst(ŝ)⇒ trst([[n]]bŝ a)

trst(ŝ) ∧ tr(a, n)⇒ trst([[n]]bŝ a)

else
tr(a, n)⇒ trst([[n]]bŝ a)

trst(ŝ) ∧ tr(a, n)⇒ trst([[n]]bŝ a)

Case E ≡ x
meetTr(ŝ(x), a, x)

trst(ŝ) ∧ tr(a, x)⇒ trst([[x]]bŝ a)

Case E ≡ E0+E1

let (b0, b1)
∆
= +̂

/
([[E0]]ŝ, [[E1]]ŝ, a) and (ŝ0, ŝ1)

∆
= ([[E0]]bŝ b0, [[E1]]bŝ b1)

τ0 Eb(ŝ, b0, E0)

trst(ŝ) ∧ tr(a,E0 + E1)⇒ trst(ŝ0)

τ1 Eb(ŝ, b1, E1)

trst(ŝ) ∧ tr(a,E0 + E1)⇒ trst(ŝ1)

trst(ŝ) ∧ tr(a,E0 + E1)⇒ trst(ŝ0) ∧ trst(ŝ1) meetSt(ŝ0, ŝ1)

trst(ŝ) ∧ tr(a,E0 + E1)⇒ trst([[E0+E1]]bŝ a)

where τi is:

ψi
∆
= ∃x. tr([[Ei]]ŝ, Ei) ∧ tr([[E1−i]]ŝ, x) ∧ tr(a,Ei + x)

E(ŝ, E0) E(ŝ, E1)

trst(ŝ)⇒ tr([[E0]]ŝ, E0)∧tr([[E1]]ŝ, E1)

trst(ŝ)∧tr(a,E0+E1)⇒ tr([[E0]]ŝ, E0)∧tr([[E1]]ŝ, E1)∧tr(a,E0+E1)

trst(ŝ)∧tr(a,E0+E1)⇒ ψi

trst(ŝ)∧tr(a,E0+E1)⇒ trst(ŝ)∧ψi
bAddi([[E0]]ŝ, [[E1]]ŝ, a, Ei)

trst(ŝ)∧ψi ⇒ trst(ŝ)∧tr(bi, Ei)

trst(ŝ)∧tr(a,E0+E1)⇒ trst(ŝ)∧tr(bi, Ei)

Fig. 8. Proof Construction Eb(ŝ, a, E)



Case B ≡ tt

trst(ŝ)⇒ trst([[tt]]bŝ)

trst(ŝ) ∧ tt⇒ trst([[tt]]bŝ)

Case B ≡ ff

ff⇒ trst([[ff]]bŝ)

trst(ŝ) ∧ ff⇒ trst([[ff]]bŝ)

Case B ≡ E0 = E1

let (b0, b1)
∆
= =̂/([[E0]]ŝ, [[E1]]ŝ) and (ŝ0, ŝ1)

∆
= ([[E0]]bŝ b0, [[E1]]bŝ b1)

τ0 Eb(ŝ, b0, E0)

trst(ŝ) ∧ E0 = E1 ⇒ trst(ŝ0)

τ1 Eb(ŝ, b1, E1)

trst(ŝ) ∧ E0 = E1 ⇒ trst(ŝ1)

trst(ŝ) ∧ E0 = E1 ⇒ trst(ŝ0) ∧ trst(ŝ1) meetSt(ŝ0, ŝ1)

trst(ŝ) ∧ E0 = E1 ⇒ trst([[E0 = E1]]bŝ)

where τi is:

ψi
∆
= ∃x. tr([[Ei]]ŝ, Ei) ∧ tr([[E1−i]]ŝ, x) ∧ Ei = x

E(ŝ, E0) E(ŝ, E1)

trst(ŝ)⇒ tr([[E0]]ŝ, E0) ∧ tr([[E1]]ŝ, E1)

trst(ŝ) ∧ E0 = E1 ⇒ tr([[E0]]ŝ, E0) ∧ tr([[E1]]ŝ, E1) ∧ E0 = E1

trst(ŝ) ∧ E0 = E1 ⇒ trst(ŝ) ∧ ψi
bEqli([[E0]]ŝ, [[E1]]ŝ, Ei)

trst(ŝ) ∧ ψi ⇒ trst(ŝ) ∧ tr(bi, Ei)

trst(ŝ) ∧ E0 = E1 ⇒ trst(ŝ) ∧ tr(bi, Ei)

Case B ≡ E0 < E1

let (b0, b1)
∆
= <̂

/
([[E0]]ŝ, [[E1]]ŝ) and (ŝ0, ŝ1)

∆
= ([[E0]]bŝ b0, [[E1]]bŝ b1)

τ0 Eb(ŝ, b0, E0)

trst(ŝ) ∧ E0 < E1 ⇒ trst(ŝ0)

τ1 Eb(ŝ, b1, E1)

trst(ŝ) ∧ E0 < E1 ⇒ trst(ŝ1)

trst(ŝ) ∧ E0 < E1 ⇒ trst(ŝ0) ∧ trst(ŝ1) meetSt(ŝ0, ŝ1)

trst(ŝ) ∧ E0 < E1 ⇒ trst([[E0 < E1]]bŝ)

where τi is:

ψ0
∆
= ∃x. tr([[E0]]ŝ, E0) ∧ tr([[E1]]ŝ, x) ∧ E0 < x ψ1

∆
= ∃x. tr([[E0]]ŝ, x) ∧ tr([[E1]]ŝ, E1) ∧ x < E1

E(ŝ, E0) E(ŝ, E1)

trst(ŝ)⇒ tr([[E0]]ŝ, E0) ∧ tr([[E1]]ŝ, E1)

trst(ŝ) ∧ E0 < E1 ⇒ tr([[E0]]ŝ, E0) ∧ tr([[E1]]ŝ, E1) ∧ E0 < E1

trst(ŝ) ∧ E0 < E1 ⇒ trst(ŝ) ∧ ψi
bInEqli([[E0]]ŝ, [[E1]]ŝ, Ei)

trst(ŝ) ∧ ψi ⇒ trst(ŝ) ∧ tr(bi, Ei)

trst(ŝ) ∧ E0 < E1 ⇒ trst(ŝ) ∧ tr(bi, Ei)

Case B ≡ B0 ∧B1

Bb(ŝ, B0) Bb(ŝ, B1)

trst(ŝ) ∧ (B0 ∧ B1)⇒ trst([[B0]]bŝ) ∧ trst([[B1]]bŝ) meetSt([[B0]]bŝ, [[B1]]bŝ)

trst(ŝ) ∧ (B0 ∧ B1)⇒ trst([[B0 ∧ B1]]bŝ)

Case B ≡ B0 ∨B1

Bb(ŝ, B0) monSt([[B0]]bŝ, [[B0 ∨ B1]]bŝ)

trst(ŝ) ∧ B0 ⇒ trst([[B0 ∨ B1]]bŝ)

Bb(ŝ, B1) monSt([[B1]]bŝ, [[B0 ∨ B1]]bŝ)

trst(ŝ) ∧ B1 ⇒ trst([[B0 ∨ B1]]bŝ)

(trst(ŝ) ∧ B0) ∨ (trst(ŝ) ∧ B1)⇒ trst([[B0 ∨ B1]]bŝ)

trst(ŝ) ∧ (B0 ∨ B1)⇒ trst([[B0 ∨ B1]]bŝ)

Fig. 9. Proof Construction Bb(ŝ, B)



Theorem 1. If an annotated command A is the result of an abstract interpre-
tation, the tree T (A) is a proof tree in Hoare logic.

Proof. We prove by induction on the structure of A.

– A is [ŝ]x:=E[ŝ′]: In this case, we need to show that the subtree τ of T (A)
for trst(ŝ) ⇒ trst(ŝ′)[E/x] is derivable in first-order logic. From the generic
abstract interpretation of x := E, we have

ŝ′ = ŝ[x 7→ [[E]]ŝ].

Thus, ŝ′(y) = ŝ(y) for all y in Vars − {x}. And tr([[E]]ŝ, E) = tr([[x]]ŝ′, E),
which implies that the tree E(ŝ, E) is for the formula

trst(ŝ)⇒ tr([[x]]ŝ′, E).

Since E(ŝ, E) is a proof tree (Lemma 1), the tree τ is derivable.
– A is [ŝ]if B then [ŝ1]R1[ŝ′1] else [ŝ2]R2[ŝ′2] fi[ŝ′]: From the generic abstrac-

tion interpretation, we have

ŝ′1 t ŝ′2 = ŝ′, ŝ1 = [[B]]bŝ, and ŝ2 = [[¬B]]bŝ.

Note that Bb(ŝ, B) and Bb(ŝ,¬B) are both derivable (Lemma 1), and that
for i = 0, 1, the tree monSt(ŝ′i, ŝ

′
1 t ŝ′2) is derivable because ŝ′i v ŝ′1 t ŝ′2.

Therefore, the induction hypothesis implies that the tree is derivable.
– A is [ŝ]([inv ŝ0]while B do [ŝ1]R1[ŝ′1] od)[ŝ′]: From the generic abstraction

interpretation, we have

ŝ v ŝ0, ŝ′1 v ŝ0, ŝ1 = [[B]]bŝ0, and ŝ′ = [[¬B]]bŝ0.

The correctness of Bb , the assumption for monSt, and the induction hypoth-
esis imply that the tree T (A) is derivable.

– A is [ŝ]A1;A2[ŝ′]: Let [ŝ1]R1[ŝ′1] be A1, and let [ŝ2]R2[ŝ′2] be A2. From the
generic abstract interpretation, we have

ŝ = ŝ1, ŝ′1 = ŝ2, and ŝ′2 = ŝ′.

Therefore, the induction hypothesis shows that T (A) is a proof tree.
ut

We illustrate algorithm T with an example from the interval analysis. Con-
sider the following program A annotated with the analysis results, integer inter-
vals of program variables.

[x 7→ [1, 4], y 7→ [2, 5]]
if (x = y + 1) then [x 7→ [3, 4], y 7→ [2, 3]]

x := x+ y
[x 7→ [5, 7], y 7→ [2, 3]]

else [x 7→ [1, 4], y 7→ [2, 5]]
x := x+ 1
[x 7→ [2, 5], y 7→ [2, 5]]

fi
[x 7→ [2, 7], y 7→ [2, 5]]



When algorithm T gets the input A, it first recurses for sub-command x := x+y,
and for x := x+ 1, and obtains Hoare proofs, one for the Hoare triple H0

{3 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 3}x := x+ y {5 ≤ x ≤ 7 ∧ 2 ≤ y ≤ 3}

and the other for the Hoare triple H1

{1 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 5}x := x+ 1 {2 ≤ x ≤ 5 ∧ 2 ≤ y ≤ 5}.

Note that there is a “gap” between these triples and what’s needed to complete
a proof for the input A. That is, the pre- and post-conditions of triples H0 and
H1 do not match with those of the required triples in the following Hoare proof:

...



1≤x≤4
∧ 2≤y≤5
∧ x=y+1



x := x+ y

{
2≤x≤7
∧ 2≤y≤5

}
...




1≤x≤4
∧ 2≤y≤5
∧ x6=y+1



x := x+ 1

{
2≤x≤7
∧ 2≤y≤5

}

{
1≤x≤4
∧ 2≤y≤5

}
if x = y + 1 then x := x+ y else x := x+ 1 fi

{
2≤x≤7
∧ 2≤y≤5

}

Algorithm T fills this gap by calling Bb and monTr. The calls to Bb give proofs
for implications between pre-conditions:

1 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 5 ∧ x = y + 1 ⇒ 3 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 3
1 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 5 ∧ x 6= y + 1 ⇒ 1 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 5

and the calls to monTr give proofs for implications between post-conditions:

5 ≤ x ≤ 7 ∧ 2 ≤ y ≤ 3 ⇒ 2 ≤ x ≤ 7 ∧ 2 ≤ y ≤ 5
2 ≤ x ≤ 5 ∧ 2 ≤ y ≤ 5 ⇒ 2 ≤ x ≤ 7 ∧ 2 ≤ y ≤ 5.

3.3 Size of Generated Proof Trees

We measure the size of an output tree from T by counting the nodes in the
tree. While counting these nodes, we will assume that each call to the provided
procedures, such as monTr, meetTr and fAdd, returns a proof tree with a single
node. Note that the size k of a tree τ , computed under this assumption, still gives
an upper bound for the number of nodes in τ ; when each call to the provided
procedures gives a proof tree with at most k′ nodes, the tree τ can have at most
k × k′ nodes. Let |Vars| be the cardinality of Vars. Since we always use for Vars
the set of variables in the input program, |Vars| denotes the number of variables
in the input program. Let the size of an expression or a command be the number
of its tokens. For instance, the size of the expression y + z + 1 is 5, and the size
of the command x := y + z + 1;x := 2 is 11.

Lemma 2. For an expression E of size n and an abstract state ŝ, the tree
E(ŝ, E) has O(n) nodes.



Proof. Subroutine E recurses only when E = E0 + E1. In that case, it calls
itself for disjoint subparts E0 and E1 of E. Thus, there can be only O(n)-many
recursive calls to E . This number of recursive calls limits the size of the tree
E(ŝ, E) to O(n). ut

Lemma 3. For an expression E of size n, an abstract state ŝ, and an abstract
value a, the tree Eb(ŝ, a, E) has O(n2 + n× |Vars|) nodes.

Proof. Subroutine Eb can recurse only O(n) times, because of the same reason
as in the proof of Lemma 2. Thus, E is called O(n)-times in Eb , and the macro
meetSt is expanded O(n) times giving O(n× |Vars|)-many calls to meetTr. Since
each call to E can add O(n) nodes, the tree Eb(ŝ, s, E) has O(n)+O(n2)+O(n×
|Vars|) = O(n2 + n× |Vars|) nodes. ut

Lemma 4. For a boolean expression B of size n and an abstract state ŝ, the
tree Bb(ŝ, B) has O(n2 + n× |Vars|) nodes.

Proof. Subroutine Bb recurses only when B = B1 ∨ B2 or B = B1 ∧ B2. In
both cases, the recursive calls are for disjoint subparts of B. So, Bb(E) recurses
only O(n) times. This number of recursive calls bounds the number of macro
expansions of meetSt and monSt, so that meetTr and monTr can be called O(n×
|Vars|) times. As of the calls to E and Eb in Bb , we observe that both E and Eb are
called in Bb only when Bb does not recurse; moreover, when n0, n1, . . . , nk are the
size of inputs to all these calls to E and Eb , the sum Σk

i=0ni is O(n). Therefore,
although E and Eb are called O(n) times, only O(n) nodes are constructed from
all the calls to E , and O(n2 + n × |Vars|) nodes from all the calls to Eb ; when
O(n) = Σk

i=0ni, we have O(nl) = Σk
i=0(ni)l for all natural numbers l. Therefore,

the tree Bb(ŝ, B) can have O(n) +O(n× |Vars|) +O(n) +O(n2 + n× |Vars|) =
O(n2 + n× |Vars|) nodes. ut

Proposition 1. For a command A of size n, the tree T (A) has O(n2+n×|Vars|)
nodes.

Proof. Algorithm T calls itself O(n) times. Thus, the macro monSt is expanded
O(n) times, giving O(n × |Vars|) calls to monTr. For the calls to Bb and E , we
note that when n0, . . . , nk are the sizes of inputs to all the calls to Bb and E , the
sum Σk

i=0ni is O(n). We can use the argument in the proof of Lemma 4 to prove
that all the calls to Bb can construct O(n2 + n× |Vars|) nodes, and all the calls
to E O(n) nodes. The tree T (A), therefore, has O(n) +O(n× |Vars|) +O(n2 +
n× |Vars|) +O(n) = O(n2 + n× |Vars|) nodes. ut

We expect that in practice, the sizes of generated proofs are significantly smaller
than the worst case O(n2 + n × |Vars|), because boolean or integer expressions
in programs are usually short: their sizes are practically constant compared to
the size of a program.



4 Conclusion

We have presented an algorithm that automatically constructs Hoare proofs
for program’s approximate invariants annotated by abstract interpreters. The
gap between the approximate invariants and the Hoare-logic rules is filled by
the safety proofs of the used abstract interpreter. Although our algorithm still
requires a well-designed abstract interpreter and its safety proofs, it reduces the
complexity of proof construction, because 1) the same abstract interpreter can
be used repeatedly for multiple programs; 2) the needed safety proofs of the used
abstract interpreter are standard ones prescribed by the abstract interpretation
framework.

The method reported in this paper suggests a yet another framework of PCC,
where the proof construction process is fully automatic, and the code properties
it can verify and check are more general than types. We will employ this method
in our planned PCC compiler system. The compiler uses abstract interpretations
and our method to construct safety proofs of the input programs. The compiler
then compiles the obtained proofs for the source code into proofs for the compiled
target code. This compiled proof and code pairs are to be checked by the code
consumer. Developing such a “proof compiler” technology is our next goal.

Currently we are implementing our algorithm for a simple imperative lan-
guage extended with arrays and procedures. An abstract interpreter verifies that
all array references are within bounds. Through this implementation, we expect
to use similar ideas as [NR01] in engineering the proof sizes.
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