Continuation Semantics for Parallel Haskell
Dialects

Mercedes Hidalgo-Herrero' and Yolanda Ortega-Mallén?

! Dept. Did4ctica de las Mateméticas
Facultad de Educacién, Universidad Complutense de Madrid, Spain
mhidalgo@edu.ucm.es
2 Dept. Sistemas Informéticos y Programacién
Facultad CC.Matematicas, Universidad Complutense de Madrid, Spain
yolanda@sip.ucm.es

Abstract. The aim of the present work is to compare, from a formal se-
mantic basis, the different approaches to the parallelization of functional
programming languages. For this purpose, we define a continuation se-
mantics model which allows us to deal with side-effects and parallelism.
To verify the suitability of our model we have applied it to three program-
ming languages that introduce parallelism in very different ways, but
whose common functional kernel is the lazy functional language Haskell.

1 Introduction

It is well-known that declarative programming offers good opportunities for par-
allel evaluation. More precisely, the different ways for exploiting the parallelism
inherent in functional programs can be classified in three tendencies:

Implicit Parallelism. The parallelism inherent in the reduction semantics
—independent redexes can be reduced in an arbitrary order or even in
parallel— is the basis for automatic parallelization of functional programs.

Semi-explicit Parallelism. The programmer indicates where a parallel eval-
uation is desired. Either annotations for the compiler are added to the pro-
gram, or parallel higher-level constructs, like skeletons or evaluation strate-
gies, are used to express algorithms. Although the programmer controls the
parallelism to some extent, the details are still implementation dependent.

Explicit Parallelism. Functional programming languages are extended with
constructs for explicit process creation, communication and synchronization,
so that general concurrent systems can be modelled.

R.Loogen gives in [Lo0o99] a similar classification, and provides a complete
overview and a detailed discussion on these approaches. It is stated in that work
that, when there is no explicit notion of parallel process —that is, in implicit
and semi-explicit parallelism—, the denotational semantics remains unchanged.
We admit that this is true if a “standard” denotational semantics is considered,
where only the functional input-output relationship is considered; but the quality
of a denotational semantics resides in the level of abstraction that it discloses,

A. Ohori (Ed.): APLAS 2003, LNCS 2895, pp. 303-321] 2003.
© Springer-Verlag Berlin Heidelberg 2003

304 M. Hidalgo-Herrero and Y. Ortega-Mallén

i.e. how many execution details are incorporated in the program denotation,
and the utmost abstraction is to keep only the final value. One may argue that
other aspects to be observed from a parallel execution, like runtimes, resource
consumption, communications, etc. are implementation dependent and, thus,
they should be not considered as semantical issues; at most they should be
described through abstract machines.

It is our purpose to reach an intermediate level of abstraction, so that we can
compare programs in terms of the amount of work, i.e. calculation, that must
be done to obtain the same output from the same input. This is particularly
interesting in the case of functional languages with demand-driven evaluation,
which is inherently sequential and, therefore, parallelization introduces specula-
tive parallelism —some expressions may get evaluated, whose results are never
used— that should be detected and avoided. The degree of work duplication
and speculation can be then semantically observed, as well as other properties
concerning communications between processes. To this extent, we are interested
in three different aspects:

— Functionality: the final value computed.

— Parallelism: the system topology (existing processes and connections among
them) and its corresponding interactions generated by the computation.

— Distribution: the degree of work duplication and speculation.

Few research has been carried out in these directions for parallel and/or
concurrent functional languages. There has been some work addressing the first
two aspects, for instance, in two denotational semantics for the
strict language Concurrent ML (CML) [Rep92] are presented. Both are based
on the Acceptance Trees model [Hen88|, originally defined for the analysis of
reactive systems. In each paper, the model is extended with value production,
in order to express the overall input-output relation of functional programs. The
semantic model for strict evaluation is much simpler than one for lazy evaluation,
and in a concurrent setting there is no need to bother about the distribution
aspects mentioned above.

1.1 Haskell Parallel Dialects

The lazy functional programming language Haskell [Pey03] is a wide-spectrum
language widely known and used by the functional programming community.
Haskell, like many other functional programming languages, has succumbed to
the greediness of the parallel programming community, and different varieties of
parallel or concurrent Haskell have emerged in the 90’s.

The three parallel dialects of Haskell chosen for the present work, represent
excellent examples of each kind of parallelism that we have explained above.

— The language pH (parallel Haskell) [NAOI] adopts a parallel evaluation or-
der (implicit parallelism), concretely in the case of data constructors with
many arguments, and local definitions in program blocks. Moreover, pH adds
special data structures that allow synchronization among parallel tasks, but
introduce side-effects and non-determinism.

Continuation Semantics for Parallel Haskell Dialects 305

— Glasgow parallel Haskell (GPH) just introduces two special com-

binators
seq,par::a —>b —>b

The former corresponds to sequential composition, while the latter indicates

potential parallelism. These combinators are used to define evaluation strate-

gies that allow the programmer to overrule laziness in favor of parallelism
and to specify the degree of evaluation.

— The language Eden [BLOMPY6] extends Haskell by a coordination language
with explicit parallel process creation and streams, i.e. lazy lists, as com-
munication channels [KMT77]. Eden incorporates also a restricted form of
non-determinism by means of a predefined non-deterministic process merge
used to model many-to-one communication.

The following example illustrates the main difference between the three ap-
proaches. If we want to obtain the product of the total sum of the elements of
two given lists of integers, it can be expressed in Haskell as follows:

let s1 = sum 11, s2 = sum 12 in sl * s2

where sum is a standard function that sums up all the elements in a list. Sup-
posing that lists 11 and 12 have been constructed already, the evaluation of this
expression sums up first the elements of 11 and then those of 12. But if we
consider this same expression in pH and we have available two processors, then
the sum for each list will be done in parallel. Laziness is abandoned in favor of
parallelism; s1 and s2 are evaluated, eagerly, even if their result would never be
demanded by the “main” computation.

The same idea is expressed in GPH with the following expression:

let s1 = sum 11, s2 = sum 12 in s2 ’par’ (sl * s2)
where e ’par’es requires the parallel evaluation of e; and es, and returns the
value obtained for es.

Finally, in the case of Eden, we write:

let p = process list -> sum list, s1 = p # 11, s2 = p # 12

in sl * s2
where a process abstraction p is defined with sum as its body, and is instantiated
twice —by using the special infix operator #— thus creating two processes that
will execute sum in parallel with the process that is evaluating the let-expression
and is considered the parent of the other two processes. The parent process has to
communicate the corresponding list to each child, and each child communicates
the result of the sum to the parent.

1.2 A Continuation Semantics

The difficulties for parallelizing Haskell lie in laziness, a identity-sign of Haskell.
As we have mentioned above, parallelization requires some changes in the rules
for evaluation. The combination of laziness with eager evaluation is a very inter-
esting point to be studied through a formal semantics. In general, the evaluation
of a program of this kind may give rise to different computations, where the
amount of speculative parallelism depends on the number of available proces-
sors, the scheduler decisions and the speed of basic instructions. Hence, when

306 M. Hidalgo-Herrero and Y. Ortega-Mallén

defining a formal semantics for these languages one can model that speculation
ranges from a minimum, i.e. only what it is effectively demanded is computed,
to a maximum, i.e. every speculative computation is carried out.

Formal operational semantics have already been given for each of the three
parallel languages that we are considering (or more exactly, for simplified kernels
of these languages):

— For pH an operational semantics described in terms of a parallel abstract
machine, in the spirit of the G-machine [Pey87], is given in [AAAT9A|.

— The operational semantics given in Im for GPH is small-step for
process local reduction, and big-step for the scheduling and parallelization.

— Similarly, a two-level operational semantics is given in [HOMO02| for Eden: a
local level for process evaluation, and a global level for the system evolution.

We intend to define a general framework where we can express the semantics
of each language, in order to be able to compare the differences between the three
approaches. For this purpose, the actual operational semantics are unsuitable,
because they include too much detail concerning computations and the order of
evaluation, and the overall meaning of programs gets lost.

Detecting work duplication and speculation requires to express somehow in
the semantics the sharing/copying of closures. In order to achieve this, we depart
from a standard denotational semantics [Sto77] just expressing the input-output
relationship of functional programs, and we extend it with a notion of process
system gemeration. Maintaining the process system as part of the denotation of
a program means that the evaluation of an expression may produce some side-
effects which must be treated with care in a lazy context. For instance, in the
case of evaluating an application such as (\x.3)y in a process p, the evaluation
of the variable y may imply the corresponding evaluation of other bindings.
Whereas this is not relevant in the case of a denotational semantics which is only
interested in the final value, in our approach the modifications in the process
system should not be carried out, because the A-abstraction is not strict in its
argument and, therefore, the evaluation of y is not going to be demanded. Hence,
process creation and value communication are side-effects which must take place
only under demand. Moreover, we recall that laziness implies that arguments
to function calls are evaluated at most once. Therefore, we must be careful to
produce the corresponding side-effects only the first time a value is demanded.

Continuations resolve elegantly the problem of dealing with command se-
quencing in denotational semantics. The meaning of each command is a function
returning the final result of the entire program. The command meaning receives
as an extra argument a function from states to final results. This extra argu-
ment —the continuation— describes the “rest of the computation”, that will
take place if the command ever ends its execution [Rey9§].

In the case of functional languages, a continuation is a function from values to
final results. The semantic function for the evaluation of an expression depends
on an environment and a continuation, so that the result of the entire program is
obtained by applying the continuation to the value obtained for the expression.

In order to deal with side-effects in functional programming, Josephs [Jos86]
combines the two views of continuations to obtain a expression continuation,

Continuation Semantics for Parallel Haskell Dialects 307

which is a function that receives a value and produces a “command continua-
tion” or state transformer. In it is described how to use these expression
continuations to model accurately the order of evaluation in a denotational se-
mantics for a lazy A-calculus. We use these ideas to define a continuation-based
denotational semantics for parallel lazy functional languages, where process cre-
ation and interprocess communication and synchronization are considered as
side-effects produced during the evaluation of expressions.

In a mixed lazy/strict semantics is presented. Apart from the fact
that it does not consider any form of parallelism, the strict semantics just tests
whether an expression would evaluate to a normal form, but the actual evaluation
will only take place when the value is needed. This is not adequate for our case,
where evaluation of an expression may produce the side-effects explained above.

As far as we know, ours is the first denotational semantics which considers
this problem and expresses not only the final result, but also the interaction
between processes in a lazy context.

It is not our objective to give a complete denotational semantics for each
language. For our purposes, it is sufficient to concentrate on a very simple func-
tional kernel —a lazy A-calculus— extended with the parallel features particular
to each approach. To facilitate the comparison, a uniform syntax is adopted.

The paper is structured as follows: We devote the next three sections to
the parallel Haskell dialects Eden, GPH and pH. For each language we explain
its main characteristics, we give its kernel syntax, and define its denotational
semantics, i.e. semantic domains and semantic functions. In the last section we
draw some conclusions and comment on future work.

2 Eden

Eden extends the lazy functional language Haskell with a set of coordination fea-
tures that are based on two principal concepts: explicit management of processes
and implicit communication. Functional languages distinguish between function
definitions and function applications. Similarly, Eden offers process abstractions,
i.e. abstract schemes for process behavior, and process instantiations for the
actual creation of processes and of the corresponding communication channels.

Communication in Eden is unidirectional, from one producer to exactly one
consumer. Arbitrary communication topologies can be created by means of dy-
namic reply channels. In order to provide control over where expressions are
evaluated, only fully evaluated data objects are communicated; this also facil-
itates a distributed implementation of Eden. However, Eden retains the lazy
nature of the underlying computational functional language, and lists are trans-
mitted in a stream-like fashion, i.e. element by element. Concurrent threads
trying to access not yet available input will be suspended. This is the only way
of synchronizing Eden processes.

In Eden, nondeterminism is gently introduced by means of a predefined pro-
cess abstraction which is used to instantiate nondeterministic processes, that
fairly merge a list of input channels into a single list.

308 M. Hidalgo-Herrero and Y. Ortega-Mallén

For details on the Eden language design, the interested reader is referred to
[BLOMPY6]. Here we just concentrate on Eden’s essentials which are captured by
the untyped A-calculus whose (abstract) syntax, with two syntactic categories:
identifiers (z € Ide) and expressions (E € Exp), is given in Figure [

Ei=x identifier
| \z.E A-abstraction
| x1 %2 lazy application
| x1 %%z parallel application
| let {z;=Ei}i—; inx local declaration
| zi]ze choice

Fig. 1. Eden-core syntax

The calculus mixes laziness and eagerness, using two kinds of application: lazy
(%), and parallel ($#). The evaluation of z1 $ 22 generates demand on the value
for x1, but the expression corresponding to xo is only evaluated if needed. By
contrast, the evaluation of 21 $# 25 implies the creation of a new parallel process
for evaluating 1 x2. Two channels are established between the new process and
its creator: one for communicating the value of x5 from the parent to the child,
and a second one for communicating from the child to the parent the result value
of x125. Eden-core includes also an operator that carries out a non-deterministic
choice between its two arguments.

Following [Lau93], the calculi presented in this paper have been normal-
ized to a restricted syntax where all the subexpressions, but for the body of
A-abstractions, have been associated to variables. We have several reasons for
doing this: (1) In this way all the subexpressions of any expression are shared.
This maximizes the degree of sharing within a computation and guarantees that
every subexpression of a program is evaluated at most once. (2) The seman-
tic definition of lazy application is clearer, because with the normalization it is
unnecessary to introduce fresh variables for the argument of the application.

2.1 Semantic Domains for Eden

The semantic domains that are needed for defining the continuation semantics
for Eden are listed in Figure 2

As it was motivated in the introduction, the meaning of a program is a
continuation, or a state transformer. To deal with the non-determinism present
in Eden, we consider sets of states (for a given set S, P;(S) is the set of all the
finite parts of S), so that a continuation transforms an initial state into a set of
possible final states. In the present case a state (s € State) will consist of two
items:

— An environment (p € Env) mapping identifiers to values. Environments
here are analogous to stores when dealing with imperative variables. Fol-
lowing [Sto77], we do not consider the option of separating the environment
from the state, because no evaluation in Eden produces irreversible changes

Continuation Semantics for Parallel Haskell Dialects 309

Cont = State — SState continuations
k € ECont = EVal — Cont expression continuations
s € State = Env x SChan states
S € SState = P;(State) set of states
p€ Env = Ide — (Val + {undefined}) environments
Ch € SChan = P;(Chan) set of channels
Chan = IdProc x CVal x IdProc channels
CVal = EVal + {unsent} communication values
v € Val = EVal + (IdProc x Clo) 4+ {not_ready} values
¢ € EVal = Abs x Ides expressed values
a € Abs = Ide — Clo abstraction values
v € Clo = IdProc — ECont — Cont closures
I € Ides = P;(Ide) set of identifiers
p,q € IdProc process identifiers

Fig. 2. Semantic domains for Eden-core

in the state, so that the preservation and restoration of the environment is
easily practicable.

— A set of channels (Ch € SChan). Processes in Eden-core are not isolated
entities, but they communicate through unidirectional, one-value channels.
Each channel is represented by a triple (producer,value,consumer). The value
can be either the expressed value that has been communicated, or unsent if
there has been no communication through the channel.

The domain Val of values includes final denotational values (or expressed
values ¢ € EVal), and closures (v € Clo), i.e. “semi”-evaluated expressions. The
evaluation of a closure may imply the creation of new processes. In order to build
the process system topology it is necessary to know which is the father of each
newly created process. This is the reason for associating a process identifier to
the closure. The special value not_ready indicates that the corresponding closure
is currently being evaluated, and it is used to detect self-references.

Abstractions values (o € Abs) are the only type of expressed values in
this calculus. Each abstraction is represented by a function from identifiers to
closures, together with the list of its free variables, that have to be evaluated
before communicating the abstraction value through some channel.

A closure is a function that depends on (1) the process where the closure
will be evaluated, and (2) the expression continuation denoting the rest of the
program.

2.2 Evaluation Function for Eden

Distributing the computation in parallel processes requires indicating the process
where an expression is to be evaluated. Notice that the process identifier is

310 M. Hidalgo-Herrero and Y. Ortega-Mallén

not necessary to distinguish its variables from those of other processes —each
process owns different identifiers—, but to be able to determine the parent in
possible process creations. The semantic function for evaluating expressions has
the following signature:

£ : Exp — IdProc — ECont — Cont.

After evaluating the expression, the continuation obtained by instantiating the
expression continuation with the value produced for the expression carries on
with the computation.

The definition of the evaluation function for Eden-core is detailed in Figure[3l
We use the operator @ to express the extension/update of environments, like for
instance in p @ {x — v}, and @, in the case of the set of channels of a state:

Elz]pk = forcex K
EN\z.Elpr = s(Ax.E[E], fv(\z.E))
Elz1 $z2]pr = EJzi]pr
where k' = Ma,). As.(ax2)pk s
Elz1 $# x2]p K = forceFV a1 '
where k' = Ma, I).As.(ax2) qK" s
q = newldProc s

Komin = Mo/, 'Y \s".case (p' z2) of
<a//7 [//> (= EVal — Sd Den {<Q7 <a7 [>7p>) <p7 <a//7 [//>7 q>}
otherwise — S. Do {{q, (o, I}, p) , (p, unsent, q)}
endcase
where (p/,(h') = s’
S. = mforceFV I’ s’
Sqa= U mforceFVI" s,
scESe
Komaz = Mo/, 'Y As'. |J forceFV zs ke se
scE€Se
where S. = mforceFV I’ s’

Ke =)‘6”')‘8”'{8” Den {<q7 <Oﬁ, I>7p>7 <pa 6”7 q>}}
El1et {x; = Ei}» in z]pr = Xp, Ch).E[z]pr’ (o', Ch)

where {y1,...,yn} = newldenp
P =p@®{y = (E[Eilyr/21, . yn/aal],p) [1 <0 <n}

/ —
Rmin = K

Khas = Ae.As.mforce I s
where [= {y; | E; = z1 $#a5 A1 <i<n}

Elzi]z2]pr = As.(E]z1]pr s) U (E]z2]pk s)

Fig. 3. Evaluation function for Eden-core

Continuation Semantics for Parallel Haskell Dialects 311

The evaluation of an identifier “forces” the evaluation of the value bound to
that identifier in the given environment. The function force is defined in Figure
and is explained later.

The evaluation of a A-abstraction produces the corresponding expressed
value, that is a pair formed by a function which given an identifier returns a
closure, and the set of free variables of the syntactic construction.

In the case of lazy application, the evaluation of the argument, x5, is delayed
until it is effectively demanded; the expression continuation, x, given for the
evaluation of the application is modified, &’ to reflect this circumstance. This &’
is the one supplied for the evaluation of the variable corresponding to the ap-
plication abstraction, x;. Therefore, once the abstraction value is obtained, it is
applied to the argument variable, zo, and the corresponding closure is evaluated.

The evaluation of a parallel application x1 $# x5 produces the creation of a
new process, q. The following actions take place:

— Creation of a new process ¢ (where ¢ is a fresh process identifier).

— Creation of two new channels, (g,_, p), (p,-, q), between parent p and child q.

— Evaluation of z1, to obtain the abstraction value, together with its free vari-
ables, («, I). The function forceFV , given in Figure[is used for this purpose.
In Eden, processes do not share memory. Therefore, the heap where the new
process is going to be evaluated must contain every binding related to the
free variables of the value abstraction corresponding to the process body. All
this information is evaluated in the parent and then “copied” to the child.

— Evaluation of z5. As we have explained in the introduction, speculative par-
allelism ranges from a minimum to a maximum. In the case of Eden, we can
define a minimal semantics where argument xo is evaluated only if needed,
while in a mazimal semantics this evaluation always takes place. The value
for z9 has to be communicated (from the parent to the child) together with
all the information concerning its free variables. The function forceFV , given
in Figure @] is used again for evaluating xo and its free variables.

— Communication (of the value for z3) from parent p to child ¢. Under a
minimal semantics it may not occur this communication.

— Evaluation of the application x1 x5 in the new process q.

— Communication (of the value for zy 23) from child ¢ to parent p . Before
communication, the free variables have to be evaluated too; the auxiliary
function mforceFV (see FigureM) is invoked.

Before evaluating the body of a local declaration, all the local variables,
x;, (with fresh identifiers, y;, to avoid name clashes) are to be incorporated in
the environment. Each new local variable, y;, is bound to the proper closure,
E;lyj/x;], which is obtained from the corresponding expression in the declara-
tion. Closures are paired with the process identifier, p, where the declaration is
being evaluated. When a local variable is defined as a parallel application, this
must be evaluated too (in the case of a maximal semantics).

Finally, the choice operator comprises the possibility of evaluating either of
its two subexpressions, x; and x».

The auxiliary functions for “forcing” the evaluation are defined in Figure @l
The action of force depends on the value bound to the identifier that is to be

312 M. Hidalgo-Herrero and Y. Ortega-Mallén

force :: Ide —+ ECont —+ Cont
forcexx = A{p, Ch).case (pz) of
z € EVal — k= {p,(h}
{p,v) € (IdProc x Clo) — vpk' s
where k' = A" Ap', W) .we' (o' @ {z — £} ')
s’ ={p® {z — not_ready}, Ch)
otherwise — wrong

forceFV :: Ide — ECont — Cont mforceFV :: Ides — Cont
forceFV x x = force z ' mforceFV §§ = Xs.{s}
where &' = Mo, I}.As'. |J s{a,I}s" [mforceFV ({x} UI) = As. |JmforceFV1s'
Pus=- sest
5" = mforceFV I s’ where S’ = forceFV z id, s

Fig. 4. Auxiliary semantic functions for Eden-core

“forced”. In the case of an expressed value, the given expression continuation
is applied to it in order to continue with the computation. In the case of a
closure, this has to be evaluated and the result is bound in the environment to
the identifier. During the evaluation of the closure, the identifier is bound to
not_ready; if an identifier bound to not_ready is ever forced, this indicates the
presence of a self-reference. After the evaluation of the closure, the expression
continuation is applied to the obtained expressed value and the modified state.
Of course, forcing an “undefined” location or a “not_ready” variable is a mistake.

The difference between force and forceFV lies in the scope of evaluation. The
former only evaluates the closure associated to the variable, while the latter
propagates the evaluation to the free variables of that closure, and to the ones
corresponding to the closures of these free variables, and so on. The multiple
demand for a set of identifiers is carried out by mforceFV.

In the definition of mforceFV, id,; represents the identity for expression con-
tinuations, defined as id, = Ae.As.{s}.

3 GpH

GPH (Glasgow Parallel Haskell) introduces parallelism via the annotation
’par’ ; the expression e; ’par’es indicates that e; and e; may be evaluated in
parallel, returning the value obtained for es. Sequential composition is possible
in GPH using ’seq’; so that e;’seq’es evaluates e; and, only after obtaining
the corresponding value, if any, the evaluation proceeds with e,. In Figure Bl
the syntax for GPH-core is given, which includes identifiers, A-abstractions, lazy
functional application, local declaration of variables, and both sequential and
parallel composition.

Continuation Semantics for Parallel Haskell Dialects 313

E:==x identifier
| \z.E A-abstraction
| z1$822 lazy application
| let {z; = E;j}j—, inx local declaration
| =1 ’seq’ w2 sequential composition
| 1 ’par’ mo parallel composition

Fig. 5. GpH-core syntax

3.1 Semantic Domains for GpH

The semantic domains that we need for GPH-core are given in Figure[ll As GPH
has neither notion of process nor of communication, the program state consists
only of the environment, and the rest of semantic domains are simplified; for
instance, expressed values are just abstraction values, without the set of free
variables.

Moreover, GPH does not introduce non-determinism. Consequently, a con-
tinuation is a state transformer which takes an environment as its argument and
yields another environment.

Cont = Env — Env continuations
k € ECont = EVal — Cont expression continuations
p € Env =1Ide — (Val 4 {undefined}) environments
v € Val = EVal + Clo + {not_ready} values
c¢e€ EVal = Abs expressed values
a € Abs =1Ide — Clo abstraction values
v € Clo = ECont — Cont closures

Fig. 6. Semantic domains for GPH-core

3.2 Evaluation Function for GpH

The signature for the evaluation function £ for GPH-core is similar to the one
given for Eden-core, but without process identifiers:

€ : Exp — ECont — Cont

whose definition is detailed in Figure [1

The definition of the evaluation function for identifiers, A-abstractions, and
lazy applications, as well as the auxiliary function force (in Figure[) is similar to
the definition given for Eden-core, but much simpler because process identifiers,
channel sets and free variables are removed.

Aslocal declaration does not introduce parallelism, its evaluation just extends
the environment with the new variables bound to the corresponding closures.

314 M. Hidalgo-Herrero and Y. Ortega-Mallén

Elz]k = forcez k Elx1 7seq’ z2]k = E[x1]K
£[\z.E]r = k(O\x.£[E]) where k' = Ae Ap.E[z2]k p
Elx1 $xao]k = E[z1]K a1 >par’ wo]k = E[z2]

where k' = \e.\p.K € ppar
Ppar = pParai p

where k' = Ae.Ap.exakp

Ellet {z; = Ei}n in z]k = Ap.E[z]k p’
where {y1,...,yn} = newlden p
p'=p@&{yi = E[Eilyr/z1, ... yn/zna]] [1 <0 < n}

Fig. 7. Evaluation function for GPH-core

In a sequential composition z; >seq’ 2 we have to respect the order of eval-
uation: firstly, x; is evaluated, and then its expression continuation evaluates xo
only if the evaluation of x7 has given rise to an expressed value.

In a parallel composition z; *par’ xs, x5 is always evaluated, but the evalua-
tion of x; takes place only if there are enough resources. Therefore, in a minimal
semantics x; is not evaluated, while in a maximal semantics x; is evaluated in
parallel. This is expressed by using the function par (see Figure B]).

force :: Ide — ECont — Cont par :: Ide — Cont

forcex k = Ap.case (px) of par i, & = Ap.p
e e EVal — kep
veClo— vk p
where k' = X" \p" k" p’ @ {x — "}
p' = p® {x — not_ready}
not_ready — wrong
endcase

par,,., * = A\p.E[x]id. p

Fig. 8. Auxiliary semantic functions for GPH-core

4 pH

This section is devoted to pH (parallel Haskell), a successor of the Id dataflow
language [Nik91], adopting the notation and type system of Haskell. pH is charac-
terized by its implicit parallelism, the mixture of strictness and laziness, and the
existence of updatable cells conveying implicit synchronization: I-structures are
single-assigment data structures that help producer-consumer synchronization,
while M-structures are multiple-assigment data structures that allow mutual
exclusion synchronization, introducing side-effects and non-determinism.
Figure @ shows the syntax for the pH-core, which includes identifiers, A-
abstractions, application —strict and non-strict—, local declaration of variables,
and primitive operations to create, read from, and write to updatable cells.

Continuation Semantics for Parallel Haskell Dialects 315

E:=z identifier
| \z.E A-abstraction
| z1 8z lazy application
| z1 8 xo strict application
| let {x; = FE;}}"; inx local declaration
| iCellz|mCellx cell creation
| Fetchuz|Store (z1,x2) cell operations

Fig. 9. pH-core syntax

I-cells dissociate the creation of a variable from the definition of its value, so
that attempts to use the value of an I-cell are delayed until it is defined; but once
an I-cell has been “filled” with a value, it can be neither emptied nor changed.
On the other hand, a fetch over a M-cell empties the contents of that cell, so
that any later query over it must wait until it is filled again. The behavior of
both kinds of cells is summarized in Table [II

Table 1. I-cells and M-cells behavior

I-cell M-cell
cell | empty I-cell creation | empty M-cell creation
fetch | I-cell reading M-cell reading
error if empty error if empty
empty after reading
store | I-cell filling M-cell filling
error if full error if full

Let us explain in more detail how updatable cells introduce side-effects and
non-determinism:

— A Fetch operation gives back the value stored in a M-cell, as a side-effect it
empties the corresponding cell.

— Due to race-conditions, the evaluation of an expression may yield different
values in different occasions. For an expression like

let { =mCell m,x = Store muv;,y = Store muvy,z =Fetchm in 2
either the value of v, or the value of v, may be assigned to z.

4.1 Semantic Domains for pH

Figure[Id shows the semantic domains that we need for formalizing the semantics
of pH-core. Similarly to GPH and unlike Eden, pH does not have processes
or communication channels; but, in order to model the separation of creation
from value definition for updatable cells, a double binding-mechanism is needed:

316 M. Hidalgo-Herrero and Y. Ortega-Mallén

environments and stores. The locations of a store either contain some value or are
undefined, while environments map identifiers to locations in the corresponding
store.

Therefore, in the present case, the state of a program is represented by the
global store (o € Store). We have explained above how M-cells may introduce
non-determinism; thus, continuations will transform a given store into a set of
stores.

Similarly to the two previous approaches, the domain of values includes ex-
pressed values, closures and the special value not_ready. A new kind of values is
included: (updatable) cells, that are distinguished by labels I and M. Each cell
is either empty or it contains an expressed value.

Besides abstraction values —that in this case are mappings from locations
to closures— the domain of expressed values includes the special value unit for
expressions whose effect is not the production of a value, but the modification
of the state (side-effects), like creating a cell, or storing a value in a cell.

Cont = Store — SStore continuations
k € ECont = EVal — Cont expression continuations
o € Store = Loc — (Val 4 {undefined}) stores
XY € SStore = P (Store) set of stores
p € Env =1Ide — Loc environments
v € Val = EVal + Clo + Cell + {not_ready} values
¢ € EVal = Abs + {unit} expressed values
a € Abs = Loc — Clo abstraction values
v € Clo = ECont — Cont closures
Cell = {I[,M} x (EVal + {empty}) updatable cells
l € Loc locations

Fig. 10. Semantic domains for pH-core

4.2 Evaluation Function for pH

In addition to the expression continuation, the evaluation function £ for pH-core
needs an environment for determining the locations for the free variables in the
expression. Its definition is shown in Figure [Tl and its signature is:

£ : Exp - Env — ECont — Cont

The evaluation of an identifier forces the evaluation of the value stored in
the corresponding location. The auxiliary function force (given in Figure [2) is
very similar to those defined previously for Eden-core and GpPH-core.

In the case of a A-abstraction, the corresponding abstraction value is created
and the expression continuation is applied to it.

Continuation Semantics for Parallel Haskell Dialects 317

Ez]pr =force(pz) s
E\z.Elpr = c(ALE[E])(p @ {x = 1}))
Elx1$ @]k = E[x1]p ' Eler $t wa]pr=2a. U & (o2(pz1)) o2

where k' = Az.Ag.case ¢ of g2€8s
s € Abs — clka’ where X = force (pT1) ide o

where [= freeloc ¢ T2= U force(paz)ids o

aIEX)
o =0 ®{l— E[z2]p} k' = Az \o'.case & of
otherwise — wrong e € Abs — = {pza) ko’
endcase otherwise — wrong
endcase

E[1et {z; = Ei}v in g]pr = Mo.E[z]p &' o'
where {l1,...,In} =freelocn o
pP=pd{ri—h,. . a0~}
0" =0d {31 — glEl]]er‘ . azﬂ s SIIE,&],OJ}
K'=xzAde”. | keoyg
Fae Xy
where By =decls{z1,...,z,}p 0"
E[iCell z]p s = Ao.sunit (o & {(pz) — (I, empty)})
EmCell x]pk = Ao.sunit (o & {(pz) = (M, empty)})
E[Fetchz]pk = incGont (T, Ae. Aok eT)
where ¢’ = case o(pz) of
I,y — o
(M, 2"y — o @ {(px) — (M, empty)}
otherwise — wrong
endcase
E[store (x1,22)]or = Efx2]o K
where k' = Az.Aa.(out cont (1, £, K unit) ')
o' = case ag(pxi) of
(I empty) — o @ {(pz1) = (L)}
(M, empty) — o @ {{pz1) = (M, e}}
otherwise — wrong
endcase

Fig. 11. Evaluation function for pH-core

Both, lazy and strict applications, force the evaluation of the expression
which will yield the abstraction. The difference is that in lazy applications the
argument is stored as a closure in a new location, to be evaluated only under
demand; while in strict applications the evaluation of the argument is forced
before the evaluation of the application.

We have three different actions concerning updatable cells:

Creation: An empty cell is stored in the location associated to the variable.
The type of the cell is reflected in the cell label.

Query: If the corresponding cell is empty an error is raised. In the case of an
M-cell, the cell is emptied after consulting its content.

318 M. Hidalgo-Herrero and Y. Ortega-Mallén

Store: the value is obtained and placed in the corresponding cell. If the cell is
already full an error is raised.

There is a clear similitude between cells and channels: the filling of a cell
resembles the action of communicating a value. On the other hand, the value of
a cell can only be consulted if it is full. In a similar way, the reception of a value
can only take place if the value has been sent. This point of view is denotationally
expressed using the usual functions outcont and mcont (see [HIOF).

The evaluation of a local declaration is done in two phases: firstly, the en-
vironment and the store are widened with the information from the new local
variables, and secondly, parallel threads are created to evaluate each variable.
This is done by means of the auxiliary function decls, given in Figure

In pH a program computation finishes only when every created thread has
been completely evaluated. Therefore, we do not differentiate between minimal
and maximal semantics (in fact, the definition given here corresponds to the
maximal semantics).

force :: Loc — ECont — Cont decls :: Pr(Ide) — Env — Cont
forcea sk = Ao.case (0 a) of declsp = Ao.{o}

€€ Abs — keo decls I p =

veClo— vk o =Xo. U(U decls(I\{z})pos)

where k' = A" No" ke " D {l— "} w€l 03 €Yy ,
o' = o @ {l — not_ready} where Y, = E[z]pid. o

otherwise — wrong

endcase

Fig. 12. Auxiliary semantic functions for pH-core

5 Conclusions and Future Work

We have used continuations to model laziness, parallelism, non-determinism and
side-effects in a denotational semantics.

The differences between the three approaches —explicit, semi-explicit and
implicit parallelism— are reflected in the semantic domains, where only in the
first case (explicit parallelism) some notion of process is needed. Moreover, the
distributed (not shared memory) nature of Eden, complicates quite a lot the
semantics, because bindings have to be copied from one process to the others,
while in the other two cases there are no restrictions in sharing memory.

The explicit parallelism of Eden requires special domains for representing
processes: process identifiers, IdProc, and sets of channels, SChan. By con-
trast, GPH and pH do not need these particular domains. However, not only
the domains do vary, but also the definition of the semantic function differs. The
explicit parallelism of Eden resides in the evaluation of $#, where the structure
of a new process is created, i.e. the corresponding channels. A point where the

Continuation Semantics for Parallel Haskell Dialects 319

differences clearly arise is in theletevaluation: GPH does nothing special be-
cause these new variables are evaluated only if they are demanded, consequently
they are just added to the environment; pH evaluates in parallel all the local
variables and simultaneously to the main expression; thanks to the expression
continuation all these variables are evaluated. Eden only evaluates —if it is not
the minimal case— the variables associated to processes creation; once again this
task is developed by means of the expression continuation.

Obviously, GPH with no processes, no communications, no non-determinism,
and no side-effects has the simplest semantics. However simple, this semantics
can help to detect speculative parallelism by comparing the final environments
under the minimal and under the maximal semantics. Even though, this probably
can also be done without continuations.

The semantics presented in this paper allows to extract the degree of par-
allelism and the amount of speculative computation. For instance, in the case
of Eden, a set of channels defines an oriented graph whose nodes correspond to
process identifiers and edges are labelled with the communicated values. There-
fore the number of nodes of this graph coincides with the number of processes in
the corresponding system. By modifying the definition of the expression contin-
uation for the parallel application, other approaches between the minimal and
the maximal semantics are possible in this framework. The speculation degree
can therefore be obtained as the difference between the number of nodes in a
non-minimal graph and the number of nodes in the minimal one.

Concerning pH programs, a speculative location is one that has not been
needed for obtaining the final result. We could define an alternative “minimal”
expression continuation for theletexpression that only introduces the closures in
the store, but it does not evaluate it. Comparing the final store in the semantics
given en Section [with the one derived from this new expression continuation
we observe that the locations that do not longer appear in the new minimal
version are speculative. Moreover, for a location that appears in both stores if
it is bound to an expressed value or a cell in the non-minimal semantics but it
is bound to a closure in the minimal, then this location is also speculative.

The analysis of the speculation in GPH follows the same ideas that we have
outlined above for pH, but changing locations in the store by variables in the
environment.

On the other hand, the abstraction level of the present denotational model
does not permit to observe work duplication because this has to do with the
copy of variables from one process to another.

One of our future tasks is to use the denotational semantics presented here to
relate formally some notions concerning these languages. For instance, we intend
to compare the behaviour of the communication channels of Eden with the cells
of pH: an I-cell is like a channel where a thread writes some value that other
threads can later read, but once this value has been set, the I-cell cannot be
filled again; similarly, a channel is a one-use-only entity, although the reader of
the value is unique in this case.

320 M. Hidalgo-Herrero and Y. Ortega-Mallén

Acknowledgements. This work has been partially supported by the Spanish
project CICYT-TIC2000-0738. We are very grateful to David de Frutos for his
comments on earlier versions of Eden’s semantics and to the APLAS’03 anony-
mous reviewers for their helpful criticisms.

References

[AAAT95]

[BFKT00]

[BLOMPY6]

[DBY7]

[EMO02]

[FH99)

[Hen&8|
[H193]

[HOMO02]

[Jos86]
[Jos89]

[KM77]

[Lau93]

[Loo99]

S. Aditya, Arvind, L. Augustsson, J. Maessen, and R. S. Nikhil. Se-
mantics of pH: A parallel dialect of Haskell. In P. Hudak, edi-
tor, Haskell Workshop, pages 35-49, La Jolla, Cambridge, MA, USA,
YALEU/DCS/RR-1075, June 1995.

C. Baker-Finch, D. King, and P. Trinder. An operational semantics for
parallel lazy evaluation. In ACM-SIGPLAN International Conference on
Functional Programming (ICFP’00), pages 162-173, Montreal, Canada,
September 2000.

S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Penia. Eden — the
paradise of functional-concurrent programming. In EUROPAR’96: Fu-
ropean Conference on Parallel Processing, pages 710-713. LNCS 1123,
Springer, 1996.

M. Debbabi and D. Bolignano. ML with Concurrency: Design, Analy-
sis, Implementation, and Application, chapter 6: A semantic theory for
ML higher-order concurrency primitives, pages 145-184. Monographs in
Computer Science. Ed. F. Nielson. Springer, 1997.

M. van Ekelen and M. de Mol. Reasoning about explicit strictness in
a lazy language using mixed lazy /strict semantics. In Draft Proceedings
of the 14th International Workshop on Implementation of Functional
Languages, IFL’02, pages 357-373. Dept. Sistemas Informaticos y Pro-
gramacion, Universidad Complutense de Madrid, 2002.

W. Ferreira and M. Hennessy. A behavioural theory of first-order CML.
Theoretical Computer Science, 216:55-107, 1999.

M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

M. Hennessy and A. Ingdlfsdéttir. A theory of communicating processes
with value passing. Information and Computation, 107:202-236, 1993.
M. Hidalgo-Herrero and Y. Ortega-Mallén. An operational semantics for
the parallel language Eden. Parallel Processing Letters. World Scientific
Publishing Company, 12(2):211-228, 2002.

M. B. Josephs. Functional programming with side-effects. PhD thesis,
Oxford University, 1986.

M. B. Josephs. The semantics of lazy functional languages. Theoretical
Computer Science, 68:105—111, 1989.

G. Kahn and D. MacQueen. Coroutines and networks of parallel pro-
cesses. In IFIP’77, pages 993-998. Eds. B. Gilchrist. North-Holland,
1977.

J. Launchbury. A natural semantics for lazy evaluation. In POPL’93,
Charleston, 1993.

R. Loogen. Research Directions in Parallel Functional Programming,
chapter 3: Programming Language Constructs. Eds. K. Hammond and
G. Michaelson. Springer, 1999.

[NAOI]

[Nik91]

[Pey87]
[Pey03]
[Rep92]
[Rey9g)]
[Sto77]

[THM " 96)

Continuation Semantics for Parallel Haskell Dialects 321

R. S. Nikhil and Arvind. Implicit Parallel Programing in pH. Academic
Press, 2001.

R. S. Nikhil. Id (version 90.1) language reference manual. Technical Re-
port CSG Memo 284-2, Laboratory for Computer Science, MIT, Cam-
bridge, MA, USA, 1991.

S. Peyton Jones. Implementation of Functional Programming Languages.
Prentice Hall, 1987.

S. Peyton Jones. Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, 2003.

J. H. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University
(Deparyment of Computer Scienge), 1992.

J. C. Reynolds. Theories of Programming Languages. Cambridge Uni-
versity Press, 1998.

J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, Cambridge, MA, 1977.

P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton
Jones. GUM: a portable implementation of Haskell. In Proceedings of
Programming Language Design and Implementation, Philadephia, USA,
May 1996.

	Introduction
	Haskell Parallel Dialects
	A Continuation Semantics

	Eden
	Semantic Domains for Eden
	Evaluation Function for Eden

	GpH
	Semantic Domains for textsc {GpH}
	Evaluation Function for $textsc {GpH} $

	pH
	Semantic Domains for pH
	Evaluation Function for pH

	Conclusions and Future Work

