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ABSTRACT

Reo is a recently introduced channel-based coordination model, wherein complex coordinators,
called connectors, are compositionally built out of simpler ones. Using a more liberal notion of
a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and
transparent semantical model for Reo, in which connectors are relations on timed data streams.
Timed data streams constitute a characteristic of our model and consist of twin pairs of separate
data and time streams. Furthermore, coinduction is our main reasoning principle and we use it
to prove properties such as connector equivalence.

2000 ACM Computing Classification System: C.2.4, D.1.3, D.3.2, D.3.3, F.1, F.3
Keywords € Phrases: Coinduction, coalgebra, component, stream, coordination.

1 Introduction

Reo (from the Greek word pew which means “[I] flow”) is a recently introduced [Arb02, AMO2]
channel-based coordination model, wherein complex coordinators, called connectors, are compo-
sitionally built out of simpler ones. Reo is intended as a “glue language” for construction of
connectors that orchestrate component instances in a component-based system. The emphasis in
Reo is on connectors and their composition only, not on the components that are being connected.
In this paper, we present a simple and transparent semantical model of connectors and connector
composition, which can be used as a compositional calculus, in which properties such as connector
equivalence, optimization, and realization can be expressed and proved.

The basic connectors are channels, each of which is a point-to-point communication medium
with two distinct ends. Channels can be used as the only communication constructs in communi-
cation models for concurrent systems, because the primitives of other communication models (e.g.,
message passing or remote procedure calls) can be easily defined using channels. In contrast to
other channel-based models, Reo uses a generalised concept of channel. In addition to the common
channel types of synchronous and asynchronous, with bounded or unbounded buffers, and with
fifo and other ordering schemes, Reo allows an open ended set of channels, each with its own,
sometimes exotic, behaviour. For instance, a channel in Reo need not have both an input and an
output end; it can have two input ends or two output ends instead. In addition to channels, Reo
has one more basic connector, called the merge operator. More complex connectors can then be
constructed from the basic connectors (channels and merge) through an operation of connector
composition.

Because Reo is not concerned with the internal activity of the components that it connects, we
represent components by their interfaces only. Therefore, we model the input ends and output ends
of connectors as streams (infinite sequences) of abstract (uninterpreted) data items. Moreover,
we associate with every such data stream an infinite sequence of (natural or non-negative real)
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numbers. These numbers stand for the respective moments in time at which their corresponding
data items are being input or output. This allows us to describe and reason about the precise
timing constraints of connectors (such as synchronous versus asynchronous, and bounded versus
unbounded delay). Thus, we model the potential behaviour of connector ends as timed data
streams, which are pairs consisting of a data stream and a time stream. Note that we use pairs
of streams rather than streams of pairs (of timed data elements), since this enables us to reason
about time explicitly, which turns out to be particularly useful.

The main mathematical ingredients of our model are sets A“ of streams over some set A (of data
items or time moments). These sets A carry a so-called final coalgebra structure, consisting of the
well-known operations of head and tail (here called initial value and derivative). As a consequence,
we can benefit from some basic but very general facts from the discipline of coalgebra, which
over the last decade has been developed as a general behavioral theory for dynamical systems
(see [JRI7, Rut00] for an overview). In particular, the final coalgebra A“ satisfies principles
of coinduction, both for definitions and for proofs. The latter are formulated in terms of so-
called stream bisimulations, an elementary variation on Park’s and Milner’s original notion of
bisimulation for parallel processes [Mil80, Par81]. As we shall see, these coinduction principles are
surprisingly powerful. They will be applied to both data streams and time streams.

Having modelled connector ends as timed data streams, we then model connectors as relations
on timed data streams, expressing which combinations of timed data streams are mutually consis-
tent. This relational model is, in spite of its simplicity, already sufficiently expressive to study a
number of notions and questions about component connectors, such as equivalence (when do two
connectors have the same behavior?), expressiveness (which connectors can I build out of a given
set of basic connectors?), optimization (given a connector, can I build an equivalent connector
out of a smaller number of basic connectors?), verification (given the specification of a certain
connector behavior and given a connector, does the connector meet the specification?), realization
(given the specification of a certain connector behavior, can I actually build a connector with
precisely that behavior out of a given set of basic connectors?), and the like. In the present paper,
we shall mainly focus on connector equivalence and, to a lesser extent, the expressiveness of our
connector calculus.

Reo is more general than dataflow models, Kahn-networks, and Petri-nets, which can be viewed
as specialised channel-based models that incorporate certain basic constructs for primitive co-
ordination. While Reo is designed to deal with the flow of data, it, more specifically, differs
fundamentally from classical dataflow models in four important aspects:

1. Although not treated here, the topology of connections in ‘full’ Reo is inherently dynamic
and accomodates mobility.

2. Reo supports a much more general notion of channels.
3. The model of Reo is based on a clear separation of data and time.
4. Coinduction is the main reasoning principle.

Of all related work, Broy and Stglen’s book [BS01] deserves special mention, since it is also based
on (timed) data streams. However, the points mentioned above distinguish our model also from
theirs. In particular, the separation of data and time, in our model, in combination with the use
of coinduction, leads to simpler specifications (definitions) and proofs. See Section 9 for a concrete
example. Finally, coalgebra and coinduction have been used in models of component-based systems
in [Bar01] and [Dob02]. Also these models are distinguished from ours by the (first three) points
above. Moreover, our model is far more concrete, and therefore allows actual equivalence proofs.

2 Streams and coinduction

Let A be any set and let A“ be the set of all streams (infinite sequences) over A:

AY ={a|a:{0,1,2,..} = A}



We present some basic facts on A“, notably how to give definitions and proofs by coinduction. In
this section, the set A is arbitrary but later, we shall look in particular at streams over some data
set D and streams over the time domain IR.

Individual streams will be denoted as a = («(0), (1), @(2),...) (or a = (a(0),a(1),a(2),...)).
We call a(0) the initial value of a.. The (stream) derivative o/ of a stream « is defined as

o = (a(1),(2),a(3),...)

Note that o/(n) = a(n + 1), for all n > 0. Later we shall also need ‘higher-order’ derivatives a(*),
for any k > 0, defined as a(®) = a and a¥*1) = (a¥))’. These satisfy a¥)(n) = a(n + k), for any
n > 0.

Stream initial values and derivatives will be used both in definitions of (operations on) streams
and in proofs of properties of streams. In this manner, a calculus of streams is obtained, in close
analogy to classical analytical analysis. More specifically, we formulate definitions using the so-
called behavioural differential equations, which specify both the initial value and the derivative of
the stream being defined. Such definitions are also called coinductive. We illustrate this type of
definition through a few basic examples. Let the operations even, odd, and zip be defined by the
following system of equations (one for each a, 8 € A¥):

behavioural differential equation | initial value
even(a) = even(a) even(a)(0) = a(0)
odd(a) = odd(a') odd(a)(0) = &/ (0)
Zip(Ol,ﬂ)’ = zip(ﬂ,o/) le(aaﬂ)(o) = a((])

The reader should have no trouble convincing himself that these operations satisfy the following
identities:

even(a) = (a(0),a(2),a(4),...)
odd(e) = (a(1),a(3),a(b),...)
sip(rB) = (@(0), 5(0), (1), A(1),.)

These equalities could in fact have been taken as definitions, but we prefer the coinductive defini-
tions instead, because they allow the use the coinduction proof principle, as we shall see shortly.

As in analysis, whether a differential equation has a (unique) solution or not depends in general
on the shape of the equation. For the three elementary behavioural differential equations above
(and in fact all other equations that we shall encounter in the present paper), the existence of a
unique solution can be easily established by some elementary reasoning. (For the general case, see
the remark at the end of this section.)

Proofs about streams will be given in terms of the following elementary notion. A (stream)
bisimulation is a relation R C A“ x A“ such that, for all & and 8 in A“:

. (1) «(0)=p4(0) and
if a RSB then { 2) o'R B

(The union of all bisimulation relations is itself a bisimulation, called bisimilarity.) Bisimulations
are used in the formulation of the following coinduction proof principle. For all a, 8 € A“:

if a R 3, for some bisimulation R, then o=/ (1)

In other words, in order to prove a = 3, it is sufficient to establish the existence of a bisimulation
relation R C A¥ x A% such that a R 5.
Consider for instance the following three identities on streams, for all a, 5 € A%,

1. even(zip(a,B)) = a

2. odd(zip(a, B)) =B
3. zip(even(a), odd(a)) = a



Since the following three relations on streams:
1. {(even(zip(e, B)), a) | o, B € A}
2. {(odd(zip(a, B)), B) | a, 3 € A“}
3. {{zip(even(a), odd(a)), a) | a € A*} U {(zip(odd(a), even(a”)), o) | a € A“}

are bisimulations, the above three identities follow, respectively, by coinduction.

The validity of the proof principle itself can be easily established by proving a(n) = 8(n) for
all n > 0, by induction on n. More abstractly, both the coinduction proof and definition principle
are ultimately based on the fact that the set A carries a final coalgebra structure, which is given
by the combination of the operations of initial value and stream derivative:

AY 5 Ax A, a~ (a0),a)

See [JR97, Rut00] for general references on coalgebra. For a detailed treatment of the final
coalgebra of streams, see [Rut01]. The latter paper contains in particular detailed results about
behavioural differential equations (for streams over the set A = IR of real numbers).

3 Coinduction and greatest fixed points

There is yet another, in fact more classical, way of understanding bisimulations and the coinduction
proof principle. Consider the set P(A¥ x A¥) = {R| R C A“ x A“} of binary relations on A%,
and the function ® : P(A“ x A¥) — P(A¥ x A¥) defined, for any R C A“ x A, by

2(R) = {(a,8) | a(0) =B(0) A (a',5) € R}
As an immediate consequence of the definition of bisimulation, we have
R is a bisimulation < R C ®(R)

Bisimulation relations are, in other words, post-fized points of ®. (The characterisation of bisim-
ulations as post-fixed points goes back, in the context of nondeterministic transition systems, to
[Par81, Mil80].) Consequently, the coinduction proof principle (1) is equivalent to the following
equality, where id g0 = {(a, ) | @ € A¥}:

idge = J{RIRC ®(R)}

Since id gw is itself a (bisimulation and thus a) post-fixed point, it is in fact the greatest fixed
point of ®. Therefore the above equality is an instance of the following well-known greatest fixed
point theorem [Tar55]. Let X be any set and let P(X) = {V | V C X} be the set of all its subsets.
If ¥:P(X)— P(X) is a monotone operator, that is, R C S implies U(R) C ¥(S) for all RC X
and S C X, then U has a greatest fixed point P = ¥(P) satisfying

P = (J{RIRC¥(R)} (2)

This equality can be used as a proof principle in the same way as (1): in order to prove that
R C P, for any R C X, it suffices to show that R is a post-fixed point of ¥, that is, R C ¥(R).
We shall see further instances of this theorem (and as many related proof principles) in Section 6.

4 Timed data streams

We model connectors as relations on timed data streams, which we introduce in this section.
For the remainder of this paper, let D be an (arbitrary) set, the elements of which will be
called data elements. The set DS of data streams is defined as

DS =D*



that is, the set of all streams o = («(0), @(1), @(2),...) over D. Let IR be the set of non-negative
real numbers, which play in the present context the role of time moments. Let IRY be the set
of all streams a = (a(0),a(1),a(2),...) over R4. Let < and < be the relations on IRY that are
obtained as the pointwise extensions of the corresponding (‘strictly smaller’ and ‘smaller than’)
relations on IR,. That is, for all a = (a(0),a(1),a(2),...) and b= (b(0),b(1),b(2),...) in IRY,

a<b = VYn>0,a(n)<bn), a<b = VYn>0, a(n) <bn)
The set T'S of time streams is defined by the following subset of IR :
TS={ac R |a<ad}
Note that time streams a € T'S satisfy, for all n > 0,
a(n) < a'(n) = a(n+1)

and thus consist of increasing time moments a(0) < a(1) < a(2) < ---
Finally, the set T DS of timed data streams is defined by

TDS =DSxTS

and contains pairs (@, a) consisting of a data stream a = («(0), a(1), a(2),...) in DS, and a time
stream a = (a(0),a(1),a(2),...) in T'S.

As we shall see shortly, connectors will be modelled as relations on timed data streams. Each
of the arguments of such a relation will be viewed as an input or as an output end of the connector
that is modelled by the relation. Thus the following operational interpretation of a timed data
stream (o, a) can be given: the time stream a specifies for each n > 0 the time moment a(n) at
which the nth data element a(n) is being input or output:

a: | a0) | a(l) | a(2) | -+ | a(n)
a: | a(0) | a(l) | a(2) | --- | a(n)

Connectors being relations, there are typically many timings a possible at a specific connector’s
end, which together with a given data stream « form admissible timed data streams («,a), that
is, satisfying the connector’s relation. A timed data stream («,a) could therefore also be viewed
as a scenario, one out of many, for the behaviour of a connector end. Connectors, then, relate
various such scenarios that together are mutually consistent.

As we already observed in the introduction, one could have, alternatively and equivalently,
defined timed data streams as (a subset of) (D x IR, )%, because of the existence of an isomorphism

DY xR = (D xR4)”, (a,a) = ((a(0),a(0)), (a(1),a(1)), («(2),a(2)), ---)

We prefer to work with pairs of streams rather than streams of pairs, because this will allow us
to reason about the data streams and time streams separately, which turns out to be of crucial
importance for much of what follows.

We could also have used streams of natural numbers 0,1,2,... for our timings, rather than
(positive) real numbers. This difference would leave most of our model unaffected. Our model
with ‘continuous time’, however, is more abstract than the model with ‘discrete time’ would be,
in the sense that more connector equivalences can be proved. (In the world of temporal logic, this
observation goes back to at least [BRP86].) An example is the equivalence of a fifos buffer (with
capacity 2) with the composition of two fifo; buffers in Section 7.

Finally, it is often useful to require time streams a to be not only increasing: a < a’, but
also progressive: for every N > 0 there exists n > 0 with a(n) > N. This assumption prevents
‘Zeno’ paradoxes, where infinitely many actions take place in a bounded time interval. In most of
what follows, the progressive time assumption is not used, but whenever it is, we shall mention it
explicitly.



5 Basic connectors: channels

The most basic connectors are channels, which are formally defined as binary relations

RCTDS xTDS

on timed data streams. For such relations, we distinguish between input and output argument
positions, called input ends and output ends, respectively. This information will be relevant for
the definition of connector composition in Section 7. In the pictures that we draw of channels and
connectors, input and output ends are denoted by the following arrow shaft and head:

input: ——--- output: ... ——

Here are the (for our purposes) most important examples of channels:

1.

The synchronous channel +—— is defined, for all timed data streams (o, a) and (3,b), by
(a,a)——={B,b) = a=B A a=1b

This channel inputs the data (elements in the) stream o at times a, and outputs the data
stream [ at times b. All data elements that come in, come out again (in the same order):
a = . Moreover, each element enters and exits the channel at the very same time moment:
a=b.

The synchronous drain PO s defined, for all timed data streams (a, a) and (3, b), by

() P 80) = a=b

The corresponding data elements in the streams « and 3 enter the two input ends of this
channel simultaneously: a = b. No relation on the data streams is specified (the data
elements enter and ‘disappear’).

The fifo buffer "> is defined, for all timed data streams (a, a) and (8, b), by

(a) 2 (8h) = a=8 A a<b

This is an unbounded fifo (first-in-first-out) buffer. What comes in, comes out (in the same
order): oo = 3, but later: a < b (which is equivalent to a(n) < b(n), for all n > 0).

The fifo; buffer ELL U defined, for all timed data streams («, a) and (8, b), by
fifo, ,
(a,a) —=(6,b) = a=f N a<b<a

This models a 1-bounded fifo buffer. What comes in, comes out: o = 3, but later: a < b.
Moreover, at any moment the next data item can be input only after the present data item
has been output: b < a’, which is equivalent to b(n) < a(n + 1), for all n > 0.

The fifor, buffer Iﬂ for any k > 1, is defined, for all timed data streams («a,a) and
(B,b), by

<a,a>|&><ﬁ,b> = a=8 A a<b<a®

(Recall from Section 2 that a(*) denotes the k-th derivative of the stream a.) This models a
k-bounded fifo buffer, generalizing the fifo; buffer above. What comes in, comes out: o = £,
but later: a < b. Moreover, at any moment the kth-next data item can be input only after
the present data item has been output: b < a(*) (which is equivalent to b(n) < a(n + k), for
all n > 0).



6. Let z € D be any fixed data element. The fifo(z) buffer M is defined, for all timed

data streams (o, a) and (8,b), by

<a,a>M<5,b> = B0)=z AN a=8 A a<l¥

This channel behaves precisely as the unbounded fifo buffer above, but for the fact that,
initially, it contains the data element x, which is the first element to come out: 3(0) = z (at
time b(0)).

6 More channels and the merge connector

The definitions of the basic (channel) connectors so far have been, mathematically speaking, fairly
straightforward. Next, we introduce some further basic connectors, including the merge operator,
using greatest fixed point definitions. As we saw in Section 3, each of these definitions will come
together with its own proof principle, similar to the coinduction principle in Section 2.

d . .
1. The asynchronous drain A inputs any two streams of data items at its two input ends,

but never at the same time (in contrast to the synchronous drain of Section 5). It is defined,
for all timed data streams {«, a) and (3, b), by

asyndr

(,a) ——(B,b) = armab
where <C T'S x T'S is a relation on time streams, given by

o = a0 o { €50 Ko <0

More precisely, < is defined as the greatest fixed point of the following monotone operator,
Dy : P(TS x TS) = P(TS x TS), defined for R C T'S x T'S, by

bur) = () o) 200) A { (008 HHN <N

Thus <1 = gfp(Pq). A px-bisimulation is a relation R C T'S x T'S with R C ®(R). There is,
as an immediate consequence of (2) in Section 3, the following ti-coinduction proof principle.
For all time streams a and b:

if a R b, for some >x-bisimulation R, then o< (3)

For an example of a proof by <-coinduction, see the end of the present section.

2. The connector merge is a ternary relation M with two input ends and one output end, and
is defined, for timed data streams («, a), {8, b), (7, ¢), by

(o, a) ;\

M—— <77C>



This connector merges the two data streams « and 3 on its input ends into a stream - on its
output end, on a ‘first come first served’ basis. It inputs one data element at a time: a(0) #
b(0). The data element that is handled first, say a(0) at time a(0)<b(0), is the first element to
come out: a(0) = y(0), at exactly the same moment: a(0) = ¢(0). After that, the connector
handles the remainder of the streams in the same manner again: M ((a/,a’), (8,b), (7, c')).
(Similarly for the case that 3(0) is handled first, at time 5(0) < a(0).) The relation M can
be formally defined as the greatest fixed point of a monotone operator ®,, defined, for any
RCTDS xTDS xTDS, by

QM(R)«ava% </37b>7 <77 c>)
& a(0) £b(0) A
{a(O)Zv(O) A a(0) =c(0) A R((a',a'), (B,b), (v',¢)) if a(0) <b(0)
B0) =7(0) A b(0)=c(0) N R((e,a), (8,0), (v, ¢)) if b(0) <a(0)

An M -bisimulation is a relation R with R C ®)/(R) and we have a M -coinduction proof
principle: if R({(w, a), (8,b), (v, c)), for some M-bisimulation R, then M ({c, a), (B,b), (v, c)).

Under the assumption that our time streams are progressive (defined at the end of Section
4), the merge operator is fair: from both input ends, infinitely many data elements will be
input.

3. The lossy synchronous channel Iﬂ is defined, for all («,a) and (3,b), by

(a,a) 2% (8,0) =

a(0) < b(0) A a(0) = B0) A (a'a') 2" (3, b) if a(0) = b(0)
< (o,a) }% (B, b) if a(0) < b(0)

This channel passes an input data element instantaneously on as an output element: «(0) =
B(0), in case a(0) = b(0); after that, it continues with the remainder of the streams as before.
If a(0) < b(0), that is, if it is too early for the output end of the channel to be active, the
input data element «(0) is simply discarded (lost), and the channel proceeds with (', a’)
on its input and (3, b) on its output end. As before, this channel can be formally defined as
the greatest fixed point of a monotone operator on the set of binary relations on timed data
streams.

Next, we illustrate the use of the coinduction proof principles that were introduced above. A look
at the definition of M and one moment’s thought suffice to see that, for all timed data streams

(o, a), (B,b), (7,c),
if M({a,a), (B,b), (7,c)) then axb (4)

since the merge connector never inputs two data items at its two input ends at the same time. But
how to prove it formally? The answer is provided by what we have called >-coinduction above.
Consider the following relation:

R={(k1) | 35, A, p, m: M((k, k), (A1), (u,m)) }

Using the definition of M, it is straightforward to prove that this is a d<-bisimulation. As a
consequence of (3), R C i<, which implies (4). For a second example, consider the following
equivalence, for all timed data streams (a, a), (3, b), (v, ¢):

M({,a), (B,b), (v,¢)) & M((B,b), (@, a), (7,¢)) (5)



The implication from left to right (and thus the equivalence) follows by M-coinduction from the
trivial observation that

S ={((a,a), (B,b), (v, ) | M({B,0), (@, a), (7,¢))}

is an M-bisimulation, which implies S C M.

7 Composing connectors

Connectors are relations and their composition can therefore be naturally modelled by relational
composition. For instance, the composition of two copies of the synchronous channel yields the
following binary relation, defined for all timed data streams (a, a) and (3, b), by

(a,a) —— o — (3, b)
= Av,0: ()= (7,0} A (v,00—=(B,))
Ay,e): (= A a=c) AN (y=8 AN c=b)

(which happens to be equivalent to (a,a)——(8,0) = a =8 A a = b). Composition
essentially does two things at the same time: the output end (argument) of the first connector
is identified with the input end of the second, and the resulting ‘mixed’ end is moreover hidden
(encapsulated) by the existential quantification. We shall also use the following picture to denote
connector composition:

(@, a) ——3(7,¢) —— (8, b)

Here 3(v,c) is used to indicate that this is an internal end of the connector, which is no longer
accessible (for further compositions) from outside. The two aspects of connector composition:
identification and hiding, could, and for the full version of Reo actually should, be separated. But
for the basic examples we shall be dealing with, this type of composition is sufficient.

Note that the identification of connector ends, which are timed data streams, includes the
identification of the respective time streams, thus synchronising the timings of the two connectors.

The general definition of the composition of an arbitrary n-ary connector R and an m-ary
connector T, is essentially the same. One has to select a number of (distinct) output ends and
input ends from R, and equal numbers of input ends and output ends from 7', which then are
connected in pairs in precisely the same manner as in the example above. To describe this in full
generality, one would have to be slightly more formal and explicit about the (input and output)
types of argument positions. Although not very difficult, such a formalisation would not be very
interesting. Moreover, it will not be necessary for the instances of connector composition that will
be presented here. In all cases, the relevant typing information will be contained in the pictorial
representations with which connector compositions will be introduced.

We shall also allow an output end to be connected to several input ends at the same time, to
each of which the output is copied. Here is an example, in which the output end of a synchronous
channel is connected to the input ends of two other synchronous channels:

(e, a) —— (4, d) — (B, b)

|

(15¢)
= 36,d)y: (=6 AN a=d) N (6=8 N d=b) AN (d=v N d=¢)
= a==9 AN a=b=c

The connection of several output ends to one and the same input end, can be modelled by means
of the merge operator introduced in Section 6.



Finally, it is relevant to note that nothing in the above prevents us from connecting an output
end to an input end of one and the same connector, simply by connecting them to the input end
and the output end of a synchronous channel. In other words, we have in passing included the
possibility of feedback loops into our calculus.

Here are various examples of composite connectors (including examples of feedback) built out of
a number of basic connectors. As usual, (a,a), (8,b), (7,c), ... are arbitrary timed data streams.

1. The composition of two unbounded fifo buffers yields again an unbounded fifo buffer:

fifo fifo fifo

: of =1

because of the following equivalences:

(a,a) %% o 2, 18, )

= (o,a) - 3y, ) > (8, b)

= Iy,e)ra=y A a<c AN y=8 A ¢<b
= a=8 AN a<bd

= (a,a) s (8,0)

2. The composition of two fifo; buffers yields a fifoy buffer:

Sifo,  fifo _ fifo,

because

(@, a) 4 o TP 15 1y

L e LI )

= y,e): a=9 A a<c<ad AN y=8 A e<b<{
= a=0 A a<b<ad =a® [since ¢ < a’ implies ¢’ < a”']

= (a,0) % (8,1)

= (wa)

Given a = 8 and a <b<a”, the converse of the above implication can be proved by defining
v =« and

¢(n) =1/2 x (max{a(n),b(n — 1)} + min{a(n + 1),b(n)})
for all n > 0 (where b(n — 1) =0 for n = 0).

3. Consider the following composition of three synchronous channels:

(v, a)t of B,0) = a=8=y AN a=b=c

(v,¢)

This connector can be viewed as a ‘take-cue’ regulator: any time a data item is taken from
v (by some future context), that same data item is allowed to flow from left to right. This
constitutes one of the most basic examples of what could be called ezogenous coordination,
that is, coordination from outside.

10



4. The following connector is a variation on the previous one, in that the lower channel now is
a synchronous drain:

(o, a) ¢ of B,0) = a=p N a=b=c

syndr
(1,0)

It is a ‘write-cue’ regulator that regulates the flow of data items from left to right by inputs
or writes on the lower channel end. Note that what is being input there is irrelevant. What
matters is that such inputs are synchronised, through the synchronous drain, with both the
channels above: a = b = c.

5. With four synchronous channels and one synchronous drain, the following barrier synchro-
niser can be constructed:

(,a) ——=o+——=(B,b) = a=8 AN y=§ AN a=b=c=d
syndr

(v, ¢) ——=o+——> (4,d)

The synchronous drain in the middle ensures that data items pass through the upper and
lower channels simultaneously.

6. Here is a simple example of a feedback loop, consisting of one (unbounded) fifo buffer con-
taining an initial data element & € D, and two synchronous channels:

fifo(z)

«

o\/\ol—> <a,a>

fifo(x)

Wy 3 (aa)
~_ A

BRI 0=z A B=+ A b<d) A (=B A c=b)
AN(y=a AN c=a)

= 3(B,b)I(v,c): a=B=~v A a=b=c N ¥y(0)=xz AN y=9 A c<
3(B,b) Av,c): a=B=7 AN a=b=c N yv=(z,2,z,...)

= a=(z,z,z,...)

For the last but one equivalence, note that (y(0) = =z Ay = 4') is equivalent to v =
(z,z,z,...); moreover, the inequality ¢ < ¢’ is redundant, because ¢ is by assumption a time
sequence and hence satisfies this inequality by definition. The behaviour of this connector
is thus pretty much what it should be. It outputs perpetuously the data element x. Note
that there are no constraints on the time stream a (= b = ¢). The only requirement is that
it is indeed a time stream, that is, satisfies a < a’.

7. Let * € D be again some fixed data element. The following connector acts as a sequencer
on its two connector ends:

fifo
(a, @) I—isyndr o©o I—isyndr (B,b)
fifo(z)

11



fifo
‘e syndr
E|<'75 C> E|<67 d> — <ﬁa b>
~_ A
fifo(z)
y,e)I,d): a=c AN d=Db A
(y=8 N e<d) AN (v(0)=z A =8 AN d<C)
= I(vy,e)H,d): y=0=(z,z,2,...) N c=a AN d=b A (c<d<()
= a<b<d

syndr

(a, a)

Thus, arbitrary data elements can be input alternatingly from the left and the right channel
ends, at times

a(0) < b(0) < a(1) <b(1) <---

For future reference, we introduce the following notation for the sequencer connector:
seq ’
(a,a) ——{B,b) = a<b<a (6)

8. One can construct a connector that serialises any number k of channel ends by combining
k + 1 sequencers. For instance,

(o, a) (8,b) (v, 0)

-]

[e] [¢] [e]

~_

seq
= (a<b<d) A (a<c<d) AN (b<c<V)
= a<b<c<d

8 Connector equivalence

In Section 7, we already saw some elementary examples of connector equivalence, such as:

—— o }——> = —
fifo fifo fifo
—— o }—> = —
fifo, fifo, fifo,
—— o }——> = —

Below we present some further, slightly less elementary examples.

1. Recall the definition of the sequencer in Section 7:

fifo
se syndr \/_\ syndr
(a) (8,0 = (aa)——io er———i(8)
fifo(z)
= a<b<d

12



(where z € D is some fixed data item). Here is an alternative way of constructing the
sequencer, now with a 1-bounded fifo buffer and a synchronous drain:

fifo, syndr

(a,a) —> o —— (B, b)

= (a0 P 30, 00 P (8, 0)

= y,e): (a=y A a<c<d) A c=b
= a<b<d

= (a,a)——i (B,b)

2. Conversely, a 1-bounded fifo buffer can be constructed using two synchronous channels, a
sequencer, and an unbounded fifo buffer:

fifo
fifo, \/\

(a,a) ——=(B,b) = (a,a)——>o0 o——> (B, b)

seq
because we have the following equivalences:

fifo

« 2\
AL

seq

(a,a) ——>o0 o—— (8,b)

fifo

XM
<a,a) e E|<77 C> E|<67 d> e <67 b>
—
= 3(v,0), 36,d) : (aa) =(y,¢) A (§,d) =(B,b) A
(y=8 N ec<d) N e<d<{)
a=8 AN a<b<d

(@, a) T (8, )

3. Recall the definition of asynchronous drain in Section 6:

<a,a>wl<ﬂ,b> = axb

Here is another way of constructing the asynchronous drain, using the merge connector and
a synchronous drain:

(@, a)
}\ M — OD syndr
B

= 3(y,0): M((a,a), (B,b), (1,¢) A c=c

= axb

asyndr

= (a,a)——(8,b)
For the middle equivalence, the implication from left to right follows from (3) in Section 6,

which was proved by <-coinduction. The converse implication can be proved in a similar
fashion, using M-coinduction.

13



4. Next we look at a connector that is built from two unbounded fifo buffers, the sequencer,
and the merge operator:

fifo

<a,a>|—>0)\
»/

seq

M — <7vc>

<Bab>To

Using the coinduction proof principle, we shall prove that this connector has the following
behaviour (with the operations zip, even and odd as in Section 2):

zip(a, B) =y A a<even(c) A b<odd(c)
The proof consists of the following sequence of equivalences:

fifo

(a,a>|—>0»\

M (3,)

Bty o

fifo

= <a,a>ﬂ>3<5,d>\
squ

</8,b>|T <€’e>\/

3(6,d) e,ey: (a=68 A a<d) A (B=€¢ AN b<e) AN (d<e<d)

A M((6,d), (e,€), (7,0))

= 3dd,e: a<d N b<e AN (d<e<d) AN M({a,d), (B,e), (v,c))

dd,e: a<d AN b<e A zip(a,8) =7 A =zip(d,e) =c [using (7) below]

Ad,e: a<d N b<e A zip(a,8) =~ N d=-even(c) A e=odd(c)

= zip(a,B)=7v A a<even(c) A b<odd(c)

M ——— <’Yac>

We have used the following equivalence, which will be proved by coinduction:

(d<e<d) A M((ad), (B,e), (1,c) & (zip(a,8) =7 A zip(die)=c) (7)
For the implication from left to right, define the following relation on streams:

R = {(zip(k,\), p) | Tk, l,m: (k<l<k') A M((k,k), (\1), (u,m))}

We show that R is a bisimulation. Consider a pair (zip(k, A), p) in R, with corresponding
time streams k,l,m. Because k < it follows from M ((x, k), (1), (u, m)) that p(0) =
k(0), and since k(0) = zip(x, A)(0), this proves the first of the two bisimulation conditions.
Next consider the pair of derivatives (zip(k, \)’, p’) = (zip(A, &), ). It follows from the
definition of M that the latter pair is again in R, since

(k<i<K) A M((sE), (D, (am))
= (<K <) A MK, E), (XD, (W',m'))
= (I<k <l')y A~ M\, (K'Y, (4,m')) [by equivalence (5)]
This proves that R is a bisimulation. Assuming now (d<e<d') and M ({e, d), (8,€), (7,c)),
zip(a, B) = v follows by coinduction. In the same manner, one shows zip(d,e) = c¢. This

proves the implication from left to right of equivalence (7). The implication from right to
left can be proved along similar lines, using M-coinduction.
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9 Protocol verification

Our calculus of component connectors also allows the formulation and formal verification of com-
munication protocols. We present a simple example, taken from [BS01, pp. 29-36]. It consists of
an (unbounded fifo) lossy buffer composed with a driver that corrects the lossiness of the buffer.
Below we specify both connectors, and prove that their composition is equivalent to an ordinary
(correct) unbounded fifo buffer.

Let (a,a), (8,b), and (4,d) be timed data streams over an arbitrary data set D and let (v, c)
be a timed data stream with v € {0,1}*. We define the lossy buffer as a ternary relation L on
timed data streams with one input end and two output ends as follows:

/

T
= L(<B,b>, <’y,c>, <5’d>)

(6, d)

7(0) =1 A 6(0) =8(0) A L((B,0b), (v,c), (¢',d))
= b<c N b<d A V

7(0) =0 A L(</8/’b’>’ <7I’c,>’ <67 d>)

This connector inputs data items at the input end 3. For every data item that is input, there
are two possible scenarios: (1) the data item is stored successfully and is output (at some later
moment) at the upper output end § together (not necessarily simultaneously) with a success signal
1 along v, after which the connector proceeds as before with the remainder of all streams involved.
Or: (2) storage of the data item fails, no data item is output along the end 3, a 0 signalling the
failure is output along 7, and the connector proceeds as before, now with (8',b) and (7', ¢'), but
with (4, d) unchanged.

It follows from the definition of the lossy buffer that eventually some data item gets successfully
stored and output. In other words, there exists n > 0 with y(n) = 1. In order to prove this, assume
L((B,b), {v,c), (6,d)) and suppose that y(n) = 0, for all n > 0. Then

L(B™,b™), (4™, ™), (5, d))

for all n > 0 (recall that the superscript (n) stands for the n-th derivative). As a consequence,
b(™)(0) = b(n) < d(0), for all n. Under the assumption that our time streams are progressive (cf.
the end of Section 4): for any N > 0 there exists n > 0 with b(n) > N, this is a contradiction.
Therefore, there exists n > 0 with v(n) = 1. We see that, somewhat surprisingly, the fact that
all our streams are infinite and the assumption that time streams are progressive, together imply
here the right type of fairness (or liveness) behaviour.

Next we turn to the driver, which has two input ends and one output end, and is defined as
the following ternary relation D:

(a,a) ;\

D —— (B,b)

(7¢) —

= D((a;a), (8,), (7,¢))

7(0) =1 A D((d,d), (8,0), (v, )
a=b AN a<c<d A B0)=a0) A V

7(0) =0 A D((a,d), (B,6), (', ¢))

The driver inputs data items at a and outputs them at 5. Before proceeding with the next data
item, it checks its input at . If v(0) = 1 then the last data item that has been output is considered
to have been handled correctly (by the lossy buffer in the composition below), and D proceeds
as before with the remainder of all streams involved. If 4(0) = 0, however, something has gone
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wrong (the buffer has lost the data item), and D sends the data item again. This is modelled
here by D({a,a’), (8',b'), (',c'}), in which all streams have progressed to their derivatives but
for o, which remains unchanged. As a consequence, «(0) is (again) the next data item that D will
output (but note that the time stream a has changed into a’).

Composing the driver and the lossy buffer as below yields a connector that is equivalent with
the (non-lossy) unbounded fifo buffer: for all timed data streams (o, a) and (4, d),

(8, b
7 v >\ fifo

(a,a)—— D L —— (6,d) (a,a) —— (8, d)

\3<% c) —

For the implication from left to right, we have to show that & = § (and a < d). To this end, define
the following relation on data streams:

R ={(a,0) | 3a,d, (8,b), (v,¢) : D({,a), (8,0), (v,¢)) A L((B,b), (v, ), (6,d))}

In order to prove that R is a bisimulation relation, consider a pair (a,d) in R with ‘witnesses’
a,d, (B, b}, (v, ¢) such that D({(c, a), (B, b), (7,c)) and L({B, b}, {7,c), (5,d)). Let n be the smallest
natural number such that y(n) =1 (which exists by the remark above) It follows that

)

D({a,a™), (8™ ,6), (), ™)) A L((B™,0M), (™), (5,d))
Together with 4(™)(0) = 4(n) = 1, this implies a(0) = 3™ (0) = §(0) and, moreover,
D(<a1,a(n+1)>, <B(n+1)’b(n+1)>, <,y(n+1)’c(n+1)>) A

L((ﬁ("+1),b("+1)>, <7(n+1)7c(n+1)>7 <(5’,d/>)

Thus, (o', ") € R, which concludes the proof that R is a bisimulation. It now follows by coinduc-
tion that & = §. (A minor variation on this argument proves that a < d.)

For the implication from right to left, choose (8,b) = (o, a), v = (1,1,1,...), and ¢ = 1/2 x
(a+ d') (in a hopefully self explanatory notation). It is now a straightforward proof by (D- and
L-)coinduction to show that D({«,a), (8, b), (7,c)) and L({B,b), (v, c), (4,d)).

10 Conclusion

We have provided a simple and transparent semantical model for Reo, in which connectors are
defined as relations on timed data streams. We use coinduction to reason about both time streams
and data streams, leading to some initial formal results on expressiveness and connector equiva-
lence in Reo. Our work on Reo and this model is on-going. One of the first questions to address
is to decide what set(s) of basic channels and connectors to choose as the basis for a connector
calculus (or calculi). Another plan is to look at more instances of connector protocol verification.
On the basis of the example of Section 9 (and other examples not included in the present paper,
such as the alternating bit protocol), we expect that the present model will be competitive with
both traditional dataflow networks and with process algebra, by combining the best of those two
worlds. Like data flow and unlike process algebra, Reo is channel-based and models the (com-
munication) topology of connectors explicitly. Like process algebra and unlike data flow, (our
model of) Reo is a calculus in which complex connectors are compositionally built out of simpler
ones. Moreover, unlike data flow, the model for Reo that we presented is both simple and formal
enough to allow actual verification. And unlike process algebra, there is no need to use nondeter-
ministic transition systems and computationally complicated notions such as weak or branching
bisimulation. Instead, streams and coinduction are all that is needed.
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