
1

A small Go board Study of metr ic and dimensional
Evaluation Functions

Bruno Bouzy1

1 C.R.I.P.5, UFR de mathématiques et d'informatique, Université Paris 5,
45, rue des Saints-Pères 75270 Paris Cedex 06 France

bouzy@math-info.univ-paris5.fr
http://www. math-info.univ-paris5.fr/~bouzy

Abstract. The difficulty to write successful 19x19 go programs lies not only in
the combinatorial complexity of go but also in the complexity of designing a
good evaluation function containing a lot of knowledge. Leaving these
obstacles aside, this paper defines very-little-knowledge evaluation functions
used by programs playing on very small boards. The evaluation functions are
based on two mathematical tools, distance and dimension, and not on domain-
dependent knowledge. After a qualitative assessment of each evaluation
function, we built several programs playing on 4x4 boards by using tree search
associated with these evaluation functions. We set up an experiment to select
the best programs and identify the relevant features of these evaluation
functions. Thanks to the results obtained by these very-little-knowledge-based
programs, we can foresee the usefulness of each evaluation function.

1 Introduction

19x19 computer go is difficult because of tree search explosion, but also because of
the complexity of the evaluation function [Chen 2001]. For several years, we have
been developing a go playing program, and we have accumulated experience on two
aspects of 19x19 computer go, the go model and the programming techniques.

With regard to the programming techniques, a go playing program may contain
tactical look-ahead, pattern-matching, evaluation function and highly selective global
search. In this paper we simplify this technical aspect by reducing the size of the
board. Thus, we leave tactical look-ahead, pattern-matching and selectivity and we
keep the evaluation function and tree search without selectivity.

Besides, a go model may contain knowledge about “strings” , “ liberties” , “groups”,
“eyes” , “connections” , “ territories” , “ life” and “death” and other useful concepts
embedded in an evaluation function. But, in this paper we chose not to take this large
domain-dependent knowledge into account and so as to explore the dimensional and
metric features of evaluation functions only. We call “dimensional” , a model in which
the dimension of objects play an important role and we call “metric” , a model in
which the distance between objects plays an important role.

Thus, the aim of this paper is to study dimensional and metric go evaluation
functions with a system which uses tree search on small boards. We call GGG the

2

system that we developed to test the “metric” and “dimensional” ideas. GGG is short
for “Gic-Gac-Goe” , to emphasize that the game is as simple as Tic-Tac-Toe and is
played on small boards.

Section 2 of this paper highlights the motivation behind the “dimensional”
evaluation functions and their definitions. Section 3 defines evaluation functions
based on the distance notion. Section 4 shows examples and contains a qualitative
assessment of the evaluation functions. Section 5 describes the practical experiment
that we set up to assess the evaluation functions. Before the conclusion, section 6
underlines the results of the experiment. To shorten this presentation, EF stands for
Evaluation Function.

2 “ Dimensional” evaluation functions

This section shows the motivation of the dimensional feature and defines dimensional
EF.

2.1 the motivation

The classical Go evaluation function E corresponds to the sum of the abstract color of
each intersection i of the go board I:

E = Σi∈I abstractColor(i)
(1)

The function abstractColor(i) returns +1 (respectively -1) if the intersection i is
controlled by Black (respectively White) and returns 0 if the intersection is not
controlled at all. The control notion can be more or less complex. [Bouzy 2001] used
an EF with a simplified control. [Bouzy & Cazenave 2001] described EFs with
complex control including life and death knowledge and morphological operators. In
our study, we want to keep the abstractColor function as simple as possible. We do
not insert life and death knowledge or morphological knowledge into the
abstractColor function. The abstractColor(i) function returned +1 (respectively -1) if
the intersection i was either occupied by Black (respectively White) or empty but
surrounded by Black (respectively White) intersections only, otherwise returns 0.
Other ways of writing the (1) formula are possible. The notion of “group” in go being
fundamental, we may render this notion by writing:

E = Σg∈G Σi∈g abstractColor(i)
(2)

G is the set of the groups situated on the board, whatever the definition of a group
might be. Furthermore, the abstractColor function returns the same value for each
intersection belonging to the same group. Thus we can define the abstractColor(g) of
a group g as the constant value of the abstractColor(i) in which i is an intersection of
g.

3

E = Σg∈G size(g).abstractColor(g)
(3)

Furthermore, we can define GB as the subset of G whose groups gb are black, in other
words abstractColor(gb) = +1 and we can define GW as the subset of G whose groups
gw are white, in other words abstractColor(gw) = -1. Then we can write formula (3) as
follows:

E = EB - EW (4)

EB = Σg∈GB size(g)
(5)

EW = Σg∈GW size(g)
(6)

The size of objects being a basic feature when studying dimensionality of objects, we
should bear in mind that the dimensionality of a set S is defined on the basis of
measures Md, r(S) such as:

Md, r(S) = Σg∈G size(g)d (7)

d is a dimensional parameter and G is a set of balls g of radius r whose union covers
S.

S ⊆ ∪g∈G g
(8)

These formulas are applied to sets of continuous space to determine their fractal
dimension [Mandelbrot 1982]. When the radius r of the ball falls to zero, Md, r(S)
reaches a value Md(S). It is proved that Md(S) equals either 0 or +∞. The fractal
dimension δ is defined as the unique value for which

Md(S) = 0 for d>δ and Md(S) = +∞ for d<δ (9)

Of course, a go board is not continuous but discrete and finite. Thus, decreasing the
radius of ball to zero is nonsense. Nevertheless, we are not aiming at finding any
fractal dimension of any object but we may wonder whether the measures defined by
(7) provide useful information to a Go program or not. This is the “dimensional”
motivation of our paper.

2.2 the dimensional EF

With d integer, we can now define the EF Ed by the following formula:

Ed = Σg∈Gb size(g)d - Σg∈Gw size(g)d (10)

In our study, we assume that d ∈ [0, 2]. E1 is the classical EF useful for the endgame.
E0 is the count of black groups minus white groups. E2 measures the ability of one
color to get large groups of this color and small groups of the other color.

4

3 “ Metr ic” evaluation functions

This section defines a “metric” EF. As the connection and the distance notions are
important in go, we may define simple evaluation functions by using simple distance
functions like in [Van Rijswijk 2000] or in [Enzenberger 1996].

Formula 11 is a simple way to define an evaluation function for color c. When
combined with formula 4, formula 11 leads to the definition of the “metric”
evaluation function. The minus sign stands for increasing the evaluation function of
color c when the distance of two intersections is low. The player of color c wants to
minimize the distance of color c between the intersections.

Ec = -Σi,j∈I d (c, i, j)
(11)

d(c, i, j) is a distance function between two intersections i and j depending on color c.
It is defined by formula 12 with a usual distance d, c can be equal to ’Black’ , ‘White’
or ‘Empty’ , otherC(Black) equals ‘White’ , otherC(White) equals ‘Black’ and
otherColor(Empty) equals ‘Empty’ , c(i) is short for abstractColor(i).

d(c,i,j) = +∞ if c(i)=otherC(c) or c(j)=otherC(c)

otherwise, d(c,i,j) = 0 if i, j ∈ S connex set and c(S)=c

otherwise, d(c,i,j) = 1 if d(i,j)=1

otherwise, d(c,i,j) = Min c(k)!=otherC(c) { d(c,i,k)+d(c,k,j)}

(12)

The first line of formula 12 means that two intersections are situated at an infinite
distance for color c if one of them is of the opposite color of c. Otherwise, the second
line shows that two intersections belonging to the same connected set S of color c are
situated at distance 0 for color c. Otherwise, the third line indicates that two distance
one intersections for the classical distance are also at distance one for the colored
distance. Finally, colored distance d is defined by the fourth line for the other cases.

Formula 12 provides an almost correct definition of a distance. First, when applied
on intersections x and y, d of color c is not a distance because d(c,x,y)=0 ⇒ x=y is
false. But when aggregating the elements of a connected set into one element, then d
is respectful of d(c,x,y)=0 ⇒ x=y. Second, d(c,x,y)=d(c,y,x) is true. Third,
d(c,x,y)≤d(c,x,z)+d(c,z,y) is true if we mention that +∞+∞=+∞.

4 Qualitative assessment

This section provides a set of examples of evaluations and several remarks showing
that each of these evaluations corresponds to some meaningful concept of go and
recalling the possible downsides of each one.

5

4.1 Example evaluations

This subsection gives several examples of position evaluations. But first, we need
to distinguish between “open” from “closed” boards. Figure 1 gives examples of such
boards.

 a central board piece a corner board piece

 a “ large” board an edge board piece a “small” board

Figure 1. The “open” boards and the “closed” boards. Go is always played on “closed” board,
for example the 10x10 board on the left or the 4x4 board on the right. But, when studying a
local position of a large board it is easier to define board pieces. A board piece contains edges
that are either “open” or “closed” . A closed edge of a board piece corresponds to an actual edge
of the initial board. It is drawn with a thick line. An open edge of a board piece is “open”
toward other parts of the initial board. It is drawn as if the initial board was cut along this edge.
An intersection of an open edge has an unknown number of liberties that depends on the hidden
part of the initial board. A board that contains at least one open edge is defined as open, and
closed otherwise.

 Secondly, figures 2, 3, 4 and tables 1, 2, 3 show evaluations E1, E2, Ed4 and Ed8 of
some example positions.

 v w x y z

Figure 2. Five terminal positions. The boards are open.

6

Table 1. The evaluation of the terminal positions of figure 2. +∞ value is set to 1024.
v w x y z

E0 0 0 0 -1 0
E1 +1 -1 -3 +5 +3
E2 +5 -7 -27 +47 +27
Ed4 +5120 -7168 -27648 +48128 +27648
Ed8 +9216 -9216 -27648 +48128 +27648

 a b c d e

Figure 3. non terminal positions. The boards are open.

Table 2. The evaluation of the non terminal positions of figure 3. +∞ value is set to 1024.
a b c d e

E0 0 0 0 +1 0
E1 +1 -1 -3 +5 +3
E2 +3 -5 -21 +25 +15
Ed4 +9208 -3076 -33780 +78784 +54224
Ed8 +11260 -11260 -33780 +78784 +54224

 f g h i j

Figure 4. Other positions. The boards remain open.

Table 3. The evaluation of the terminal positions of figure 2. +∞ value is still set to 1024.
f g h i j

E0 0 +1 0 -1 -2
E1 0 +4 +2 +1 -1
E2 0 +16 +8 +7 +1
Ed4 0 +71612 +38876 +11274 -31640
Ed8 0 +71612 +38878 +23528 -13304

Finally, table 4 sums up the final evaluations of perfect play on nxn closed boards
with n∈{ 2,3,4} .

Table 4. The evaluation of the terminal positions of perfect play on small boards.
size 2x2 3x3 4x4
E0 0 +1 0
E1 +1 +9 +2
E2 +3 +81 +28
Ed4 +5118 +82944 +36856
Ed8 +5118 +82944 +36856

7

4.2 Remarks

This subsection contains a list of qualitative remarks about the EFs.

Remark 1. E0 alone is adapted to the opening of games on large boards. The small
upper board of figure 5 shows the perfect sequence played by using E0 without using
the capture rule. The large upper board of figure 5 contains the sequence mapped
from the small board into the large one by a scaling operator. To some extent, this
sequence contains adequate moves of an opening on a large board. The moves are
played to occupy big empty points far from friendly stones, which is one of the most
important strategies in the opening.

Figure 5. two openings on a large board obtained by a mapping from the perfect play on a
small board by using either Eo or λE1 + Eo (and not the capture rule).

Remark 2. Associated with E1, E0 is also adapted to the openings of games on large
boards. The small lower board of figure 5 shows the perfect game played on a 3x3
board by using a λE1 + E0 evaluation function without the capture rule. The large
lower board of figure 5 contains the sequence mapped from the small lower board by
a scaling operator. This sequence completes the previous one by adding the moves to
occupy normal empty points, which is another important feature in the opening.

Remark 3. E1 is adapted to the endgame. Associated with the abstractColor function,
this is the classical EF in Go.

2 4

1 3

5

6

1 3

5

2 4

6

1 3

5

2 4

6

7

8 9

2 4

1 3

5

6

7

96

8

Remark 4. E2, Ed4 and Ed8 are well suited for middlegame. E2 leads the program to
grow its own large groups and to reduce the opponent’s ones. Figure 6 shows four
open position in which it may be worthwhile to connect or disconnect the stones.
Table 5 gives the evaluations of positions of figure 6. In the context of middle game,
human go players will agree that position B is the best option for Black and that C is
the best one for White.

 A B C D

Figure 6. Four open positions. Position A is the starting position in which B is a “good” option
for Black, C is a “good” option for White and D is a “bad” option for Black.

Table 5. Evaluations of the positions of figure 6.
A B C D

E0 0 0 +1 0
E1 -1 0 -2 0
E2 -5 0 -36 +2
Ed4 -72544 0 -81868 -51080
Ed8 -21564 0 -81868 -70

E1 is a dull evaluation situating every move of position A on the same level, with
an incentive +1. E2 is more suited to middle game because, when playing white,
option C is far ahead. But unfortunately, when playing black, depth one search using
E2 cannot clearly discriminate between the set of moves. Depth one tree search using
Ed4 enables the system to select option B for black because connecting two 4-
connected sets of color c into one slightly increases Ed4(c). But option C is not far
ahead when playing white because adding one element to a connected set does not
increase Ed4. Moreover, 8-connected sets correspond either to the boundary of
territories recognized at the end of the game or to the dividers in a fighting position.
Therefore, Ed8 cannot be of no use. Depth one tree search using Ed8 enables the
system to select option C for White. Option B is ahead when playing Black, because
connecting two 8-connected sets of color c into one increases the Ed8(c). Therefore,
E2, Ed4 and Ed8 seem to be relevant evaluation functions for middle game. This will be
confirmed by the experiments.

Remark 5. Ed4 is a linear combination of E2 on terminal positions. We demonstrate
that E2 and Ed4 are linked by formula 13 on terminal positions.

Ed4=∞E2 (13)

Let us assume that the position is terminal. Given the importance of the connected
sets, ordering the sum of formula 11 according to the connected sets S and S’ of the
position is appropriate. This yields formula 14.

9

Ec = -ΣS, S’ Σ i∈S,j∈S’ d(c, i, j)
(14)

Now, an intersection is either Black or White. Furthermore, d(c, i, j) either equals 0 or
+∞. If i and j are of color c and belong to the same connected set, then d(c, i, j) equals
0, otherwise equals +∞. This gives formula 15.

Ec = - (ΣS, S’ Σ i∈S,i’∈S’ ∞ -ΣS c(S)=c Σ i,j∈S ∞)
(15)

Then, we can count the number of elements of these two sums. If T is the number of
intersections of the terminal position, the first sum contains T2 elements and the
second one contains E2,c elements (by definition of E2,c). Thus, we simply obtain
formula 16.

Ec = - ∞(T2-E2,c) (16)

Finally, the use of formula 4 and formula 16 demonstrates formula 13. We could of
course get a similar formula linking Ed8 and E2 by changing the connection from 4-
connection to 8-connection.

Remark 6. Ed4 and Ed8 are more reliable than E1 or E2 on non-terminal positions. On
19x19 middle-game positions, E1 cannot be used appropriately. Moreover, E2 has the
downside of being insensitive to some good moves (see remark 4). On the positions
of figure 7, depth-one tree search based on Ed4 or Ed8 selects the right moves for Black
and White.

 G H I J K L

Figure 7. Six open positions corresponding to larger middle-game positions. Position G and J
are the starting positions in which H and K are “good” options for Black, I and L are “good”
options for White.

Table 6. The evaluations of the positions of figure 7.
G H I J K L

E1 +1 +2 0 0 +1 -1
E2 +1 +4 -2 -2 -1 -7
Ed4 +29630 +57438 -100 -80 +27718 -27810
Ed8 +29642 +57342 -66 -30 +27684 -27732

5 The practical exper iment

This section describes the two main experiments we carried out: the 4x4 go resolution
speed-up with E2 instead of E1, and the automatic weight adjustments of a
combination of E1, E2, Ed4, Ed8 and other parameters by means of an evolving
population of 4x4 go programs. First, we briefly go over the state of the art of

10

programs playing on small boards to define the test set of the first experiment. Then,
we describe the main properties of the tree search algorithm that we used to perform
the experiments. Finally, we point out the main features of the evolving population of
4x4 go programs which aims at finding the adapted combination of parameters.

5.1 small Go board resolution

 [Thorpe & Walden 1972] and [Lorentz 1997] focused on 2xN boards while [Sei &
Kawashima 2000] and [Bouzy 2001] focused on NxN boards (N<=4). [Sei &
Kawashima 2000] provided a solution of 2x2, 3x3 and 4x4 go by using Japanese
rules, little go knowledge, and alpha-beta with transposition table. [Bouzy 2001]
highlighted the retrograde analysis of go patterns of size 3x3 or 4x4 with Chinese
rules. Table 7 points out the results of NxN go using either Japanese rules or Chinese
rules and Figure 8 shows the optimal sequence for each size of board from 2x2 up to
4x4. The sequences apply to both Chinese and Japanese rule sets.

Table 7. The results of NxN go in Japanese and Chinese rules (0<N<5)
Size 1x1 2x2 3x3 4x4

Japanese draw draw win draw
Chinese 0 { +1|-1} { +9|-9} { +2|-2}

Figure 8. The perfect play on 2x2, 3x3 and 4x4 boards.

5.1 Tree search algor ithm

Our reference algorithm is alpha-beta with iterative deepening [Slate & Atkin 1977]
[Korf 1985]. The time limit, at which the last iteration was triggered, was 900 seconds
(on a Pentium 450Mhz with 128Mo). Iterative deepening enabled the search
algorithm to find the correct move without exploring a lot of nodes. What’s more, the
first three positions of the optimal 4x4 game could not be played without iterative
deepening because of a lack of memory. We used transposition table [Greenblatt & al.
1967], [Marsland 1986] with 219 entries. For each entry, we stored the zobrist key of
the position, the next player to move, whether the last move was a pass or not, the set
of moves forbidden by repetition, the depth, the alpha beta bounds and the move
found by the previous iteration.

2

13

2

413

5 7

9 11 2 4

6

8

10

12

13

5

7 9

11

13

15

11

We used the history heuristic [Schaeffer 1989]: when a move is found to be
“sufficient” to create a cut-off somewhere in the tree, the history move value is
increased by 2depth in the history table. We observed a 22% reduction of visited nodes.
Thus, the history heuristic offers a very positive enhancement. Of course, it is not
indispensable but it is so easy to implement without any downside that we inserted it
into our reference algorithm. We did not use null-move pruning reduction [Donninger
1993] because, in go, null-move is a normal move. We did not use MTD(f) [Plaat &
al, 1996] either because the reduction was too small.

Apart from the rules of go, and the evaluation function that uses a simple
abstractColor function, we insert as little go knowledge as possible into the move-
ordering algorithm. A move has a domain dependent priority that is low near the
corners and high in the centre of the board. A move has a very low priority when the
rules of the game forbid it to the opponent, illustrating the proverb that “my good
moves are also my opponent’s good moves” .

5.3 Population of 4x4 programs

When starting the experiment, we were looking for a good combination of E1, E2, Ed4

and Ed8. Therefore, we used evaluation E defined by formula 17.

E = a1.E1+a2.E2+b4.Ed4+b8.Ed8 (17)

We set up a population of eight 4x4 go programs, each of them using an instance of
the evaluation of formula 17. In the first stage, +∞ was set to the 1024 value. We
decided that a1, a2, b4 and b8 ∈ [0,16]. The first eight programs were picked up at
random. One tournament consisted in 56 games in which every program matched all
other programs twice (one game with black and one with white). One win gave 2
points to the winner, one draw gave one point to both players and one loss gave no
point. After the 56 games, the programs were ranked according to their point
number.When the point numbers were identical, the programs were ranked according
their score average. The timeout limit of iterative deepening was set to one second to
make the programs play quickly to shorten the time of the experiment.

When a tournament was finished, the first sixth programs plus two new programs
attended the next tournament. The first new program was the copy of the first
program of the tournament with a random mutation ai=ai±. The second new program
was created at random. The tournaments were performed over a “period” . After each
tournament, a population had an average value that was the average value of the first
six programs. We measured the convergence of the population average value with the
sum of the square of the error of each weight. When the convergence was situated
below a threshold, the period ended.

When a period ended, the space in which the population evolved was adjusted to the
average value for the next period. This adjustment was performed for several reasons.
First, to avoid too slow a convergence. For example, if one parameter, say a2,

12

converged to a fixed value, say 4, and the population was in the interval [2,6], then
generating a program with one parameter set at random in [0,16] was not appropriate.
Therefore, a new set of values for this parameter such as [2, 6] with 17 values was
chosen. Secondl, when one parameter reached one frontier of the interval, the size of
the interval was doubled. For example, if one parameter, say b4, reaches the max
frontier, say 16, then the new interval was [0, 32]. When a parameter did not converge
significantly during the period, this parameter was considered as “noisy” and its
interval remained the same for the next period.

We supervised all this process “by hand” and we stopped it when we considered that
either some parameters were sufficiently adjusted or some parameters remained
“noisy” . This was the end of an “era” - one supervision iteration. At the end of each
era, a convergent parameter was fixed to its value, and disappeared from the list of
features for the next era, and a “noisy” parameter may give rise to the birth of new
features for the next era.

The first era was the life of a1, a2, b4 and b8 at the end of which, we observed that the
linear combination of formula 17 could greatly benefit from the tuning of other
parameters. The second era marked the adjustment of ∞, used by Ed4 and Ed8. At the
end of this era, no more convergence was foreseeable. But the dimensional and the
metric evaluation functions being very different by nature, we wondered whether they
could be applied two different stages of the game. Thus, the third era witnessed the
introduction and the adjustment of “ temporal” parameters reflecting the split of a 4x4
game into an opening phase, a middle-game phase and an endgame phases. Our
method was closely supervised “by hand” .

6 Results of the exper iments

This section provides numerical results from the two experiments assessing the
dimensional and metric EF. First, we highlight the node number reduction provided
by E2 on 4x4 resolution. Then, we underline the weights of a linear combination of
E1, E2, Ed4 and Ed8 obtained by an evolving population of programs playing go on 4x4
boards.

6.1. E2 “ enhancement” assessment

Table 8 illustrates the node number reduction resulting from the classical alpha-beta
enhancements such as transposition table, iterative deepening, history heuristic, null
move pruning and MTD(f). The measurements were performed on the test set made
up of 17 positions of the optimal sequence of 4x4 go.

Table 8. The results of the enhancements
TT ID HH null-move MTD(f)
+∞ +∞ 22% 10% 6%

13

Without well-formulated go knowledge about move ordering, we observed that
transposition table and iterative deepening were mandatory. The history heuristic is
efficient (22%). Null move reductions are possible (10%). Like in chess, null move
pruning on 4x4 go actually reduces the number of visited nodes. MTD(f) is a positive
but small enhancement (6%).

Instead of E1, we tried to use E2. First, we noticed that the sequences found by the
search algorithm using E2 were exactly the same as the sequences found by the
normal algorithm. Hence, changing the evaluation function does not change the
external behavior of the program and E2 is still correct over the perfect play on 4x4
go. Furthermore, as shown in Figure 9, the advantage is that, from position number 2
up to the last position of the optimal game, the number of nodes visited by E2

algorithm is situated 21% below the number of nodes visited by E1 algorithm.

Figure 9. Number of visited nodes by the reference algorithm with E1 or E2

We try to explain this visited node number reduction. E2 increases the position
evaluations in which the friendly sets are connected. Therefore, the algorithm “ first
explores the moves that increase the size of the connected sets” and “give a bad
evaluation to positions in which friendly stones are split into parts” . This explanation
is closely linked with the fact that, unfortunately, E2 based tree search visits slightly
more nodes than the normal one on positions 0 and 1. In these two positions, one
color is not present. Consequently, E2 cannot benefit from increasing a connected set
of this colour because this set does not exist. Then, the question is to know how the
node number evolves with the “power” of the evaluation function but we have not
carried out this experiment yet.

6.2. The “ dimensional” versus “ metr ic” evaluation function assessment

This subsection deals with results obtained by the evolving population. First, we
describe the results of the weight adjustment of formula 17. This adjustment
corresponds to the first era. The first era contained 8 periods and about 400
tournaments at the end of which we observed the results of table 9:

0

500000

1000000

1500000

2000000

1 3 5 7 9 11 13

E1

E2

14

Table 9. Results at the end of the first era

A1 A2 B4 B8
[0,8] [0,8] [32, 96] [16, 48]

These results showed the superiority of the metric evaluations over the dimensional
ones and also the slowness of the convergence, all parameters remaining “noisy” in
their convergence interval.

Because the “best” move of each iteration of iterative deepening was unstable, the
decision to set the timeout with a low value lead to almost random play for the first
few moves in the openings played in the first tournaments. But the advantage lay in
the possibility to explore much space and make the evaluation function weight adapt
more quickly.

Given the importance of the metric evaluations and the important weight of +∞
within these evaluations, it was an urgency to detect the relative importance of the +∞
value. Therefore, we added the new feature +∞ to the population of programs and
started the second era with +∞ ∈[0, 2048]. This era lasted 200 tournaments and 6
periods. Table 10 shows the results.

Table 10. Results at the end of the second era

A1 A2 B4 B8 +∞
[0,8] [0,1] [60,68] [28, 36] [384, 640]

Beyond the value of +∞, 512, we observed a better convergence in this era than in the
previous era: a2 decreased a lot and b4 and b8 converged toward 64 and 32 to some
extent. But still, a1 remained noisy. At the end of this era, several observations could
be made.

First, the games were not played until their end, as defined by the rules, but
stopped before. This was a positive consequence of the weight adjustment. The
downside was that the good programs stopped early without physically capturing the
virtually captured stones. When two programs disagreed, the referee decided who the
winner was. Unfortunately, the referee used E1 and did not count the correct
evaluation1 but the physical one, and the programs playing well had a penalty.

Second, we saw that the first iterations of iterative deepening produced a very
fluctuant “best” move. Because we wanted the experiment to be finished early
enough, we were obliged to set up a short timeout to iterative deepening.
Consequently, the first moves of the game (about the first four ones), produced by
elapsed timeout iterative deepening were almost random, whereas the middle and
endgame moves, produced by enough depth iterative deepening, were correct. For the
opening, we also noticed that the move produced by the first iteration of iterative
deepening was suprisingly the good one, and that the next iterations gave worse
moves.

Therefore, for the next era, we required a population of programs whose
parameters depended on the stage of the game and also included the maximal depth of
iterative deepening as a parameter.

1 the referee did not perform mini-max search as the players did!

15

In the third era, we fixed the old features of the playing programs with a1 = 1, a2 =
8, +∞ = 512 and we correlated b4 and b6 with the formula b8 = b4/2. We defined five
new parameters: ‘depthOpening’ , ‘bOpening’ , ‘bEndgame’ , ‘openEndGame’ and
‘endOpening’ . ‘endOpening’ was the last move number of the opening phase of a
game. ‘openEndGame’ was the number of the first move of the endgame.
‘depthOpening’ was the maximal depth of iterative deepening during the opening.
‘bOpening’ was the value of b4 during the opening and the middle game and
‘bEndgame’ was the value of b4 during the endgame. We started the third era with
‘depthOpening’ ∈[1, 6], ‘endOpening’ ∈[1, 16], ‘openEndGame’ ∈ [‘endOpening’ ,
20], ‘bOpening’ ∈[48, 80], ‘bEndgame’ ∈[0, 80]. After 200 tournaments these
parameters converged toward the values shown by table 11.

Table 11. The results at the end of the third era
depthOpening endOpening openEndGame bOpening bEndGame
1 4 10 [64, 80] [8, 16]

One result is very surprising: the iterative deepening depth that produces the best
result is depth one! We are not able to provide an adequate explanation for it. The
other results had no unexpected element. We expected the value of ‘bEndgame’ to
decrease to give more importance to the basic E1 evaluation function, relevant to the
endgame. This was observed because ‘bEndGame’ converged toward 8, which is the
E1 weight. We expected ‘bOpening’ to keep the same value and we actually observed
this result. Finally, the two boundaries fixing the opening and endgame phases
reached satisfying values: the value 4 marks the end of the opening and the value 12
corresponds the beginning of the endgame.

7 conclusion

Here are the following contributions of this paper:
• definition of three ”dimensional” go evaluation functions E0, E1 and E2,
• definition of two ”metric” go evaluation functions Ed4 and Ed8,
• E0 is qualitatively adapted to the opening on large boards,
• E1 is the classical go evaluation function,
• E2 is an experimental speed-up on the resolution of 4x4 go to be compared to the

classical alpha-beta enhancements,
• Ed4 and Ed8 are qualitatively relevant to middle-game on large boards and

experimentally adapted to small board go associated with depth-one search. This
constitutes the main contribution of this study.

This paper opens up various perspectives. First, extending the experiment to larger
boards until the life and death module becomes necessary, then introducing life and
death knowledge into the abstractColor function. Furthermore, it seems worthwhile to
integrate the metric evaluation functions Ed4 and Ed8 into our 19x19 program to
improve its middle-game play, and to integrate the E0 evaluation into the opening
evaluation of our 19x19 playing program.

16

References

1. Bouzy B., Go generated patterns by retrograde analysis. In: J.W.H.M. Uiterwijk (ed.): the
6th Computer Olympiad Computer-Games Workshop Proceedings, Report CS 01-04,
Universiteit Maastricht, (2001)

2. Bouzy B., Cazenave T., Computer Go : an AI oriented Survey, Artificial Intelligence, Vol.
132 n°1 (2001), 39-103

3. Chen K., Computer Go: Knowledge, Search, and Move Decision, ICCA Journal, Vol. 24
n°4 (2001), 203-215

4. Donninger C., Null move and deep search: selective-search heuristics for obtuse chess
programs, ICCA Journal, Vol. 16 n°3 (1993), 137-143

5. Enzenberger M., the integration of a priori knowledge into a Go playing neural network,
http://www.markus-enzenberger.de/neurogo.html, 1996.

6. Greenblatt R.D., Eastlake III D.E., Crocker S.D.: The Greenblatt chess program, fall joint
computing conference proceedings 31, (New-York ACM), San Francisco, (1967), 801-810

7. Lorentz R., 2xN Go, Proceedings of the 4th Game Programming Workshop in Japan'97,
Hakone, pp. 65-74, 1997

8. Mandelbrot B., The fractal geometry of nature, W.H. Freeman and Company, San
Francisco (1982)

9. Marsland T.A., A Review of Game-Tree Pruning, ICCA Journal, Vol. 9. n°1 (1986) 3-19
10. Plaat A., Schaeffer J., Pijls W., de Bruin A.: Best-first fixed-depth minimax algorithms,

Artificial Intelligence, Vol. 87 n°1&2 (1996), 255-293
11. van Rijswijk J., Computer hex: are bees better than fruitflies?, M.Sc. Thesis, University of

Alberta, Edmonton, AB, 2000
12. Schaeffer J.: The history heuristic and alpha-beta search enhancements in practice, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 11 n°1 (1989), 1203-
1212

13. Sei S., Kawashima T.: A solution of Go on 4x4 board by game tree search program,
Fujitsu Social Science Laboratory, (2000), manuscript

14. Slate D.J., Atkin L.R.: Chess 4.5 – the north-western university chess program, in Chess
Skill in Man and Machine, P. Frey (ed.), Springer-Verlag, (1977), 82-118

15. Thorpe E.O., Walden W.E.: A computer assisted study of Go on MxN boards, Information
sciences, vol 4 (1972) 1-33

