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Abstract. We present two new parallel algorithms for extending the
domain of a UOWHF. The first algorithm is complete binary tree based
construction and has less key length expansion than Sarkar’s construc-
tion which is the previously best known complete binary tree based con-
struction. But only disadvantage is that here we need more key length
expansion than that of Shoup’s sequential algorithm. But it is not too
large as in all practical situations we need just two more masks than
Shoup’s. Our second algorithm is based on non-complete l-ary tree and
has the same optimal key length expansion as Shoup’s which has the
most efficient key length expansion known so far. Using the recent result
[9], we can also prove that the key length expansion of this algorithm
and Shoup’s sequential algorithm are the minimum possible for any al-
gorithms in a large class of “natural” domain extending algorithms. But
its parallelizability performance is less efficient than complete tree based
constructions. However if l is getting larger, then the parallelizability of
the construction is also getting near to that of complete tree based con-
structions. We also give a sufficient condition for valid domain extension
in sequential domain extension.

Keywords: UOWHF, hash function, masking assignment, sequential
construciton, parallel construction, tree based construction.

1 Introduction

Naor and Yung [7] introduced the notion of universal one-way hash function
(UOWHF) to prove that secure digital signatures can be based on any 1-1 one-
way function. A UOWHF is a family of functions {hk}k∈K for which the following
task of the adversary is computationally infeasible. The adversary has to choose
a x from the domain, and then given a random k ∈ K, he has to find a y such
that x �= y but hk(x) = hk(y). Intuitively, a UOWHF is a weaker primitive than
a collision resistant hash function (CRHF), since the task of the adversary is
more difficult, i.e., the adversary has to commit to the string x before knowing
the actual hash function hk for which the collision has to be found. Furthermore,
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Simon [11] had shown that there is an oracle relative to which UOWHFs exist
but not CRHFs.

A UOWHF is an attractive alternative to a CRHF because it seems that
building an efficient and secure UOWHF is easier than building an efficient and
secure CRHF, and in many applications, most importantly for building digital
signature schemes, a UOWHF is sufficient. In addition, as mentioned in [1], the
birthday attack does not apply to UOWHFs. Hence the size of the message digest
can be significantly shorter.

A reasonable approach to designing a UOWHF that hashes messages of ar-
bitrary and variable length is to first design a compression function, that is, a
UOWHF that hashes fixed-length messages, and then design a method for com-
posing these compression functions so as to hash arbitrary and variable messages.
The present paper deals with the second problem, that of composing compression
functions. We will call the composite method construction or domain extender
for the most part in this paper. The main technical problem in designing such
domain extender is to keep the key length of the domain extender from getting
too large.

The rest of this paper is organized as follows. Motivation and our contribu-
tions are given in Section 2. Some detailed history of UOWHF is also provided in
Section 2 in order to precisely explain our contributions. Preliminaries are given
in Section 3. We will generalize Shoup’s sequential construction in Section 4.
In this section we also provide a sufficient condition for valid sequential domain
extension. Then we will present our new complete binary tree based parallel
domain extender and will give a proof of validness of the extension in Section
5. we will present our second new parallel domain extender which is based on
non-complete l-ary tree and the proof of security in Section 6. In Section 7, we
specifically compare the known constructions with our two constructions. This
paper concludes with Section 8.

2 Motivation and Our Contribution

Most practical signature schemes follow “hash-and-sign” paradigm. They take a
message M of an arbitrary length and hash it to obtain a constant length string,
which is then fed into a signing algorithm. Many schemes use CRHFs to hash
a message x, but as it was first pointed out in [1] a UOWHF suffices for that
purpose. Indeed, if {hk}k∈K is a UOWHF, then to sign a message x, the signer
chooses a random key k, and produces the signature (k, σ(k, hk(x))), where σ is
the underlying signing function for short messages.

Note that the key length varies with the length of input message for
UOWHFs. Therefore, in many cases, the size of (k, hk(x)) can be larger than
the input size of σ. However, in these cases, we can solve the problem by apply-
ing the signing algorithm σ to (hK′(k), hk(x)), where K ′ is part of the signer’s
public key. Here the signature becomes (k, σ(hK′(k), hk(x))). And note that the
function hK′ can be replaced by any second-preimage resistant function, because
its input is random and chosen by the signer. Since messages can be very long,



210 Wonil Lee et al.

hashing speed is a crucial factor. On the other hand, a closer look at the signature
scheme reveals that the key k must be part of the signature so the receiver can
recompute the hash. Therefore the shorter the key better the signature scheme.

These facts lead us to think we should consider two aspects.

1. Minimizing the key length expansion: This is certainly a very important
aspect of any domain extending algorithm.

2. Parallel implementation: From an implementation point of view paralleliz-
ability is also an important aspect of any domain extending algorithm.

Bellare and Rogaway [1] suggested the XOR tree hash (XTH) construction in
order to reduce the key length expansion. Since XTH is based on the complete
(or full) l-ary tree(l ≥ 2), it has also an efficiency regarding the parallelizabil-
ity (the processing speed). XTH had been the most efficient construction not
only regarding the key length expansion but also regarding the parallelizabil-
ity before Shoup’s construction was presented in [10]. Shoup’s construction is
more efficient than XTH with regard to the key length expansion. Furthermore,
Mironov [4] had shown that the key length expansion needed in Shoup’s con-
struction is the minimum possible for any sequential algorithm. In other words,
there is no sequential algorithm which has more efficient key length expansion
than Shoup’s. But his construction is not more efficient than XTH with regard
to the parallelizability since it is based on the uniary tree. In the following, ‘B
< A’ means that A is more efficient than B regarding the key length expansion
or parallelizability.

Key length expansion: XTH < Shoup
Parallelizability: Shoup < XTH

Sarkar’s work [8] was an attempt to propose a parallel algorithm which has the
following properties:

– The algorithm’s key length expansion is as good as possible.
– The algorithm’s parallelizable efficiency is the same as XTH.

Therefore, he also chose the complete tree to obtain the same parallelizable
performance as XTH and chose binary structure to adopt both of the mask
assignment methods of Shoup’s and XTH algorithm so that the key length ex-
pansion can be reduced as much as possible. As a result, Sarkar’s construction
has the same parallalizable performance as XTH. However, his construction does
not have the same key length expansion as Shoup’s one.

Key length expansion: XTH < Sarkar < Shoup
Parallelizability: Shoup < XTH = Sarkar

In this paper we will first present a tree based domain extension whose key
length expansion is significantly less than Sarkar’s construction. Furthermore,
its parallelizable efficiency is the same as Sarkar’s since it is also based on the
complete binary tree. It will be called Improved Binary Tree based Construction
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(IBTC). In fact, we have got a lot of evidences in [6] that IBTC will be optimal
in the class of complete binary tree based algorithm. But only disadvantage is
that here we need more masks (part of the key) than sequential construction.
But it is not too large as in all practical situations we need just two more masks
than Shoup’s construction.

However, note that all the previously proposed parallel algorithms, including
our first new construction, took more key length expansion than that of Shoup’s
sequential algorithm. So an important question is whether this is true in general
of any parallel algorithm. Our second new construction shows that this is not
the case.

The following is our motivation to design the second new parallel algorithm.
At the present stage, it seems that the parallel constructions based on the com-
plete l-ary tree have the most efficient parallelizability. But we think it is difficult
to construct the parallel domain extender which has the same key length expan-
sion as Shoup’s sequential domain extender if we can only use the complete l-ary
tree. Therefore, we decide to take somewhat different approach as follows with-
out the assumption that we can use only the complete l-ary tree: In contrast
to [8] and our first construction, this work is an attempt to propose a parallel
algorithm which has the following properties:

– The algorithm has the same key length expansion as Shoup’s.
– The algorithm’s parallelizable efficiency is as good as possible.

As a result, the second new construction has the same key length expansion
as Shoup’s one. But the construction does not have the same parallalizable
performance with our first new construction. The construction will be called
l-DIMensional construction (l-DIM, l ≥ 2).

Key length expansion: XTH < Sarkar < IBTC < Shoup = l-DIM
Parallelizability: Shoup < l-DIM < XTH = Sarkar = IBTC

The results may be summarized as shown in Table 1 (Here, ‘seq’ means ‘se-
quential’ and ‘par’ means ‘parallel’). A more detailed comparison is presented in
Table 2 in Section 7.

Table 1. Comparison of domain extenders for UOWHF

Method Used Tree Ranking of Ranking of Seq
Key expansion Parallelizability /Par

BLH [1] Unary 7 3 seq
XLH [1] Unary 6 3 seq

Shoup [10] Unary 1 3 seq
BTH [1] Complete l-ary (l ≥ 2) 5 1 par
XTH [1] Complete l-ary (l ≥ 2) 4 1 par
Sarkar [8] Complete Binary 3 1 par

IBTC(this paper) Complete Binary 2 1 par
l-DIM(this paper) Non-Complete l-ary (l ≥ 2) 1 2 par
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We think it is difficult to say that which one is more important than the other
between the key length expansion and the parallel implementation. Of course,
it would be very nice to have a regular parallel structure something like the
complete tree which also minimizes the key length expansion. But at this point,
we do not have any such algorithm and IBTC is the best known construction
among the complete binary tree based constructions. Hence, in our opinion, we
should separately consider both the above-mentioned two points of view with
the same importance. And the present works are important in regarding the
former and the latter point of views, respectively. Particularly, the l-DIM and
Shoup’s one are the only two known algorithms which minimize the key length
expansion. In addition that, the reason why the l-DIM has more meaning is that
it is a parallel algorithm which has the same key length expansion as Shoup’s
sequential algorithm and this is the very first trial in designing the parallel
algorithms.

Using the recent result [9], we can also prove that the key length expansion
of our new parallel construction and Shoup’s sequential construction are the
minimum possible for any constructions in a large class of “natural” domain
extenders including all the previously proposed methods.

We also give a sufficient condition for valid domain extension for sequential
construction and it is likely that the condition is necessary. So, that will char-
acterize the valid domain extension for sequential construction. In [6] M. Nandi
has also shown that the same condition becomes sufficient for general tree based
domain extension.

Related Work: Note that all of the above described parallel constructions are
based on the assumption that the number of processors grows with the length
of the message. In [9], Sarkar has first suggested a parallel domain extending
algorithm which can be implemented with finitely many processors. But it does
not have the same key length expansion as Shoup’s. Here, it should be noted that
his work mainly focuses on the parallel implementation with finite processors,
on the contrary, the present work focuses on the parallel implementation with
optimal key length expansion. And it seems that using the technique of [9], our
new parallel constructions can be modified to the constructions which can work
with finite processors.

3 Preliminaries

The following notations are used in this paper.

1. [a, b] = {a, a+ 1, ..., b} where a and b are integers.
2. Suppose A is a finite set. By a ∈R A we mean that a is a uniform discrete

random variable taking values from A.
3. ν2(i) = j if 2j |i and 2j+1 � |i.
4. For t > 1, logm2 (t) means that the function log2 applies m many times on t.

log∗
2(t) = m if logm2 (t) ≤ 1 but logm−1

2 (t) > 1.
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5. In the complete binary tree based construction, Tt = (Vt, Et) means the
complete binary tree where Vt = {1, 2, ..., 2t−1} is a node set and Et = {ei :
2 ≤ i ≤ 2t − 1} is a directed edge set where ei = (i, �i/2�). Here ei = (v, w)
denotes a directed edge, i.e., v is the initial node and w the terminal node.
htt(i) = j means that 2t−j ≤ i ≤ 2t+1−j − 1. So, the root node has height
t and all leaves have height 1. For any node i, define Tt[i] by the complete
binary sub-tree rooted at i.

6. In the 4-dimensional construction, for integer t, g(t) = (a, b, c, d), where
a = �t/4� + �((t mod 4) + 3)/4�, b = �t/4� + �((t mod 4) + 2)/4�, c =
�t/4�+ �((t mod 4) + 1)/4�, and d = �t/4�. Here t mod 4 = t− �t/4�n.

7. In the 4-dimensional construction let Tt = (Vt, Et) be a non-complete 4-ary
tree, where Vt = {1, 2..., 2t} and Et = {ei : 2 ≤ i ≤ 2t} where ei = (i, i− 1)
for 2 ≤ i ≤ 2a, ei = (i, i − 2a) for 2a < i ≤ 2a+b, ei = (i, i − 2a+b) for
2a+b < i ≤ 2a+b+c, and ei = (i, i− 2a+b+c) for 2a+b+c < i ≤ 2t. Here a, b, c,
and d are such that g(t) = (a, b, c, d).

Let {hk}k∈K be a keyed family of hash functions, where each hk : {0, 1}n →
{0, 1}m, n > m. Consider the following adversarial game.

1. Adversary chooses an x ∈ {0, 1}n.
2. Adversary is given a k which is chosen uniformly at random from K.
3. Adversary has to find x′ such that x �= x′ but hk(x) = hk(x′).

A strategy A for the adversary runs in two stages. In the first stage Aguess,
the adversary finds the x to which he has to commit in Step 1. It also pro-
duces some auxiliary state information σ. In the second stage Afind(k, x, σ), the
adversary either finds a x′ �= x such that hk(x) = hk(x′) or reports failure.
Both Aguess and Afind(k, x, σ) are probabilistic algorithms. The success proba-
bility of the strategy is measured over the random choices made by Aguess and
Afind(k, x, σ) and the random choice of k in Step 2 of the game.

We say that A is an (ε, η)-strategy for {hk}k∈K if the success probability
of A is at least ε and it invokes the hash function hk at most η times. In this
case we say that the adversary has an (ε, η)-strategy for {hk}k∈K. Note that we
do not include time as an explicit parameter though it would be easy to do so.
Informally, we say that {hk}k∈K is a UOWHF if the adversary has a negligible
probability of success with respect to any probabilistic polynomial time strategy.
Here, the security parameter is length of the message i.e., the length of the input.

In this paper we are interested in extending the domain of a UOWHF. More
specifically, given a UOWHF {hk}k∈K, hk : {0, 1}n → {0, 1}m, n > m , we would
like to construct another extended UOWHF {Hp}p∈P with Hp : {0, 1}N →
{0, 1}m, where n < N .

We say that B is an (ε, η)-extended strategy for {Hp}p∈P if the success prob-
ability of B is at least ε and it invokes the hash function hk at most η times. In
this case we say that the adversary has an (ε, η)-extended strategy for {Hp}p∈P .
Note that Hp is built using hk and hence while studying strategies for Hp we
are interested in the number of invocations of the hash function hk.

The correctness of our construction will essentially be a Turing reduction. We
will show that if there is an (ε, η)-extended strategy B for {Hp}p∈P , then there
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is an (ε′, η′)-strategy A for {hk}k∈K, where ε′ is not significantly lesser than ε
and η′ is not much larger than η. This shows that if {hk}k∈K is a UOWHF, then
so is {Hp}p∈P . In this case, we say that the domain extension is valid.

The key length for the base hash family {hk}k∈K is �log2|K|	. On the other
hand, the key length for the extended hash family {Hp}p∈P is �log2|P|	. Thus
increasing the size of the input from n bits to N bits results in an increase of
the key size by an amount �log2|P|	 − �log2|K|	. From a practical point of view
it is very important to minimize this increase in the key length.

For the remainder of this paper we assume the following conventions.

1. {hk}k∈K is always the base hash family, where K = {0, 1}K and hk :
{0, 1}n → {0, 1}m. In case of sequential construction n > m, in case of
full binary tree based construction n > 2m, and in case of 4-dimensional
construction n > 4m.

2. We will construct {Hp}p∈P , Hp : {0, 1}N → {0, 1}m using the base hash
family {hk}k∈K, where p = k||µ1||µ2|| · · · ||µl for some l and each µi is m-bit
binary string called mask and |k| = K. Here, in case of sequential algorithm
N = n(r+1)−mr, in case of tree based constructionN = n(2t−1)−m(2t−2)
and in case of 4-dimensional construction N = n2t−m(2t−1). Let us define
µ[i, j] = µi|| . . . ||µj , where 1 ≤ i ≤ j ≤ l. We will use µ[j] instead of µ[1, j]
for j ≥ 1 and define µ[0] to be empty string.

3. In sequential construction input of Hp is written as y = y0||y1|| · · · ||yr
where |y0| = n and |yi| = n − m for 1 ≤ i ≤ r. In case of tree based
construction input of Hp is written as x = x1|| · · · ||x2t−1 where |xi| = n−2m
for 1 ≤ i < 2t−1 and |xi| = n for 2t−1 ≤ i ≤ 2t − 1. In 4-dimensional
construction input of Hp is written as x = x1|| · · · ||x2t where |xi| = n− 4m
for 1 ≤ i < 2a, |xi| = n − 3m for 2a ≤ i ≤ 2a(2b − 1), |xi| = n − 2m for
2a(2b−1) < i ≤ 2a+b(2c−1), |xi| = n−m for 2a+b(2c−1) < i ≤ 2a+b+c(2d−1)
, and |xi| = n for 2a+b+c(2d − 1) + 1 ≤ i ≤ 2t. Here a, b, c, and d are such
that g(t) = (a, b, c, d).

4. In tree based construction let i ∈ Vt and x be a message of length N .
We define x(i) = xi||x2i||x2i+1||x4i||x4i+1|| . . . i.e. concatenating all xj in
ascending order of j where j runs in Tt[i]. In other words the part of the
message used in the complete binary sub-tree rooted at i.

4 Sequential Construction

The best known sequential algorithm is given by Shoup [10]. We will generalize
the idea of the construction. We also give the sufficient condition for valid se-
quential construction. Let ψ : [1, r] → [1, l] be any function called a masking
assignment. Fix a masking assignment ψ, Hp(y), the extended hash function,
is computed by the following algorithm.

1. Input: y = y0||y1|| . . . ||yr and p = k||µ1||µ2|| . . . ||µl.
2. z0 = hk(y0).
3. For 1 ≤ i ≤ r, define si = zi−1 ⊕ µψ(i) and zi = hk(si||yi).
4. Output: zr.
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We say that the sequential construction is based on the masking assignment ψ.
In Shoup’s algorithm ψ = ν2 + 1 and l = 1 + �log2r� (in his paper ν2 is masking
assignment but that makes no difference). We will write s(i, y, k, µ), z(i, y, k, µ)
for si and zi respectively (in the algorithm with input (y, p), where p = k||µ).
Now we will define some terms related with masking assignment and domain
extension.

Definition 1. We say that ψ is correct if for all 1 ≤ i ≤ r, C ∈ {0, 1}m, y ∈
{0, 1}N and for any hash function hk there is an algorithm called Mdefseq(i, y, k,
C, ψ) which outputs µ = µ1||µ2|| . . . ||µl such that s(i, y, k, µ) = C. Mdefseq(i, y,
k, C, ψ) is called a mask defining algorithm. A sequential construction based on a
correct masking assignment is called a correct domain extension. A masking as-
signment is totally correct if there is a mask defining algorithm Mdefseq(i, y, k,
C, ψ) = µ = µ1||µ2|| . . . ||µl for any i, y, k, C as above such that s(i, y, k, µ) = C
holds and µ is a random string whenever C is a random string and other inputs
are fixed.

Definition 2. We say that a domain extension algorithm is valid if {Hp}p∈P is
a UOWHF whenever {hk}k∈K is a UOWHF. In case of sequential construction
if valid domain extension algorithm is based on a masking assignment ψ then we
say that the masking assignment is valid.

Definition 3. A masking assignment ψ : [1, r] → [1, l] is strongly even-free
(or even-free) if for each [a, b] ⊆ [1, r] there exists c ∈ [a, b] such that ψ(c) occurs
exactly once (respectively, odd times) in the sequence ψ(a), ψ(a + 1), . . . , ψ(b).
Call this c (also the mask ψ(c)) a single-man for the interval [a, b].

Now we will try to characterize all valid masking assignments. From Mironov’s
paper [4] we have seen that every valid masking assignment is even-free. He also
showed that, every even-free masking assignment requires at least 1 + �log2 r�
many masks and the minimum attains if we consider the masking assignment
ψ = ν2 + 1 which is used in Shoup’s algorithm. Now we will prove that, in case
of sequential construction, every strongly even-free masking assignmentis valid.
The same masking assignment i.e. ν2 + 1 is in fact a strongly even-free masking
assignment.

To provide the sufficient condition for valid sequential extension, we will first
prove that strongly even-free implies totally correct. The proof of totally correct
implies valid is a basic idea of proving an extension is valid. In all known papers
the same idea is used for proving validness of extension. So, one can see this any
one of these papers [8,10,4]. We will give a proof in case of complete binary tree
based domain extension in Section 5.

Lemma 1. If ψ is strongly even-free then ψ is totally correct.

Proof. We will define the mask defining algorithm Mdefseq(i, y, k, C, ψ).

1. If i = 1 then define µψ(1) = C ⊕ hk(y0) and define all yet undefined masks
randomly and quit.
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2. If i > 1 then choose any c which is a single-man for the interval [1, i].
Compute j ← i− c, If j = 0 then goto step 4.

3. Let ψ′ : [1, j] → [1, l] be a masking assignment such that ψ′(n) = ψ(n + c)
where n ∈ [1, j]. Take a random string D and then define, y′ = y′

0|| . . . ||y′
j

where, y′
n = yn+c when n ≥ 1 and y′

0 = D||yc. Run Mdefseq(j, y′, k, C, ψ′).
4. Define all yet undefined masks except µψ(c) (i.e. after running Mdefseq some

masks may not be defined as ψ′ may not be onto or j can be 0) randomly.
Compute µψ(c) = z(c− 1, y, k, µ)⊕D and quit.

Note that to compute z(c− 1, y, k, µ) we do not need the mask µψ(c) as c is
a single-man and the above recursive algorithm will always stop as j < i. The
masking assignment ψ′ is nothing but ψ restricted at [c, i]. So, if s(c, y, k, µ) = D
then by induction s(i, y, k, µ) = C. But, s(c, y, k, µ) = D is true by definition of
µψ(c). It proves the correctness of ψ. If C is a random string then all masks µ is
a random string as they are randomly defined (in step-4) or they are obtained
by XOR-ing with a random string (in step-1). So, it is totally correct.

Theorem 1. (Sufficient Condition for Valid Sequential Extension)
If a sequential domain extension is based on a strongly even-free masking assign-
ment ψ then the domain extension is valid.

Proof. By the above lemma ψ is totally correct. The proof of totally correct
implies valid is given in case of complete binary tree domain extension in Section
5. The same idea will carry through in case of sequential construction. So, we
omit this proof.

Remark: Strongly even-free is sufficient condition for correct masking assign-
ment. For example ν2 + 1. One can feel that the condition may be necessary.
So, we may conjecture that, if a masking assignment is correct for any arbitrary
hash function then it should be strongly even-free.

5 Complete Binary Tree Based Construction

In the previous section we study about sequential construction. Now, we will
first define the generic algorithm based on complete binary tree of height t.
Let Tt = (Vt, Et) be the full binary tree where Vt = {1, 2, . . . , 2t − 1} and Et =
{ei; 2 ≤ i ≤ 2t−1}, ei = (i, �i/2�). Let any function ψt : Et → [1, l] be a masking
assignment. (Note that we use Et for domain of ψt.) Let x = x1|| . . . ||x2t−1 be
the input message of length N . Given ψt, x, and p = k||µ, Hp(x) is computed
by the following algorithm.

1. Input: x = x1||x2|| . . . ||x2t−1 and p = k||µ1||µ2|| . . . ||µl.
2. If 2t−1 ≤ i ≤ 2t − 1 then zi = hk(xi) else if 1 ≤ i < 2t−1 then zi =
hk(s2i||s2i+1||xi), where si = zi ⊕ µψt(ei).

3. Output: z1.

Note that the input of ith node is s2i||s2i+1||xi and output of node i zi. We
say that the above complete binary tree based domain extension is based on



New Parallel Domain Extenders for UOWHF 217

the masking assignment ψt. We will write s(i, x, k, µ, t) and z(i, x, k, µ, t) for si
and zi in the above algorithm, respectively. Like sequential algorithm we say
that ψt is correct if for each 1 ≤ i < 2t−1, there is a mask defining algorithm
Mdeftree(i, x, k, t, r0, r1, ψt) where |r0| = |r1| = m which outputs µ = µ1|| . . . ||µl
such that s(2i, x, k, µ, t) = r0 and s(2i+ 1, x, k, µ, t) = r1. ψt is totally correct
if the output µ of the mask defining algorithm is random string provided r0, r1
are random strings and other inputs are fixed.

Definition 4. A masking assignment ψt : Et → [1, l] is a level uniform
masking assignment if there are two functions αt, βt : [2, t] → [1, l] such that
ψt(ei) = αt(j) if i is odd and ψt(ei) = βt(j) if i is even, where j = htt(i) + 1.

We will first briefly state some standard binary tree based constructions all of
which are based on level-uniform masking assignment.

1. Bellare-Rogaway [1]: αt(i) = i−1 and βt(i) = t+ i−2. In [1] it was shown
that ψt is valid. Here, we need 2(t− 1) masks.

2. Sarkar [8]: αt(i) = i− 1 and βt(i) = t+ ν2(i− 1). In [8] it was shown that
ψt is valid. Here, we need t+ �log2t	 − 1 masks.

Now, we will propose our binary tree based construction which needs lesser
number of masks than Sarkar’s. Like above examples our domain extension is
also based on level uniform masking assignment. So, it is enough to define these
two functions αt and βt. This construction can be found more detail in [5].

64x
µ2

µ1

128x

128

129x

129

32x
µ4

µ3

16x 8x 4x 2x 1x

µ1

µ5

µ2

µ6

µ1

µ7

µ8

µ9

µ1

µ10

65

3264

33

16

17

8

9

4

5

2

3

1

Fig. 1. The right most part of the complete binary tree when you place the root
of the tree (i.e. vertex 1) in top. (t = 8 and |x1| = · · · = |x127| = n − 2m, and
|x128| = · · · = |x255| = n. · means hk(·).)

5.1 Improved Binary Tree Based Construction

Define two sequences {lk}k≥0 and {mt}t≥2 as follow: lk+1 = 2lk+k + lk where,
l0 = 2 and m2 = 2 and if k ≥ 1, mt = t + k for all t ∈ [lk−1 + 1, lk]. Note
that, both lk and mt are strictly increasing sequences and if t = lk for some
k then mt+1 = mt + 2 and if for some k, lk < t < lk+1 then mt+1 = mt + 1.
Later, we will see that mt is the number of masks of our algorithm for binary
tree of height t and mt ≤ t + k till t ≤ lk. Intuitively, k = O(log∗

2(lk)) so,
mt = t + O(log∗

2t). The level uniform masking assignment ψt is based on the
functions αt, βt : [2, t] → [1,mt], t ≥ 2 where they are defined as follow (See
Figure 1 where a right most part of the tree is drawn which will completely
determine the functions αt and βt.):
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1. α2(2) = 2 and β2(2) = 1.
2. For t ≥ 3, αt(i) = αt−1(i) and βt(i) = βt−1(i) whenever 2 ≤ i ≤ t− 1.
3. If t ≥ 3 and t − 1 = lk for some k then αt(t) = αt−1(t − 1) + 2 and
βt(t) = αt−1(t− 1) + 1 and if lk < t− 1 < lk+1 then αt(t) = αt−1(t− 1) + 1
and βt(t) = ν2(t− 1− lk) + 1.

Theorem 2. For t ≥ 2, αt and βt map into [1,mt]. Moreover, αt(t) = mt and
αt([2, t]) ∪ βt([2, t]) = [1,mt]. So, we need mt many masks.

Proof. For 2 ≤ i ≤ t, αt(i) = mi can be easily proved by induction. Also
note that, when i = lk + 1 for some k, then βt(i) = mi−1 + 1 < mi and when
lk + 1 < i ≤ lk+1, βt(i) = ν2(i− lk) + 1 ≤ lk + k = mlk < mi. So, it proves that
αt and βt map into [1,mt]. To prove the last part let 1 ≤ j ≤ mt. So we have
some i so that j = mi or j = mlk + 1. If j = mi then αt(i) = mi = j otherwise
βt(lk + 1) = mlk + 1 = j. So, we have that αt([2, t]) ∪ βt([2, t]) = [1,mt].

Now, we will prove that the above ψt is totally correct for all t ≥ 2. For this
we need to define Mdeftree(i, x, k, t, r0, r1, ψt). We will define the mask defining
algorithm for i = 1 otherwise we can consider the complete binary tree rooted at i
(i.e. Tt[i]) and define Mdeftree(i, x, k, t, r0, r1, ψt) by Mdeftree(1, x′, k, t′, r0, r1, ψ′)
where, t′ = htt(i), x′ = x(i) i.e. the part of the message involved in the subtree
Tt[i] and ψ′ is ψt restricted at Tt[i] which is same as ψt′ (it can be checked easily
as ψt is level uniform). So, we can assume that i = 1.

1. If t = lk + 1 for some k then
(a) Define µ by random string.
(b) Compute µmt−1 = z(2, x, k, µ, t) ⊕ r0 and µmt = z(3, x, k, µ, t) ⊕ r1. To

compute z(2, x, k, µ, t) and z(3, x, k, µ, t) we actually need only µ[mt−2]
as µmt−1 and µmt appear only on edges e2 and e3.

2. If lk + 1 < t ≤ lk+1 for some k then
(a) Let the set A = {2i+1 + 1 : 0 ≤ i ≤ r} ∪ {2r+1} where, r = t− (lk + 1).
(b) Choose bi randomly for all i ∈ A− {3} such that, |bi| = m and b3 = r1.
(c) Let y = y0||y1|| . . . ||yr where, y0 = b2r+1 ||b2r+1+1||x2r and yj = b2r+1−j+1
||x2r−j for 1 ≤ j ≤ r.

(d) Run Mdefseq(r, y, k, r0, ψ′) = µ[l′] where, l′ = �log2r� + 1 ≤ lk + k =
mlk and ψ′ is same as ψ restricted at the path e2r , e2r−1 , . . . , e2. More
precisely, ψ′(i) = ψ(e2r+1−i). So, if µ is computed such a way that,
s(i, x, k, µ, t) = bi for all i ∈ A then by definition of Mdefseq we will have
s(2, x, k, µ, t) = r0.

(e) Define remaining masks randomly and for i ∈ A (in descending order)
compute µi = z(i, x, k, µ, t)⊕ bi.

When t = lk + 1 the correctness of ψt easily follows from the definition of
µmt−1 and µmt . Note that, to compute z(j, x, k, µ, t) for j ∈ A in step-2(e), we
do not need the masks µψ(ej′ ) for all j′ ∈ A, j′ > j. So, s(i, x, k, µ, t) = bi for all
i ∈ A and hence Mdeftree is correct. If r0 and r1 are random strings then so is
the output µ and hence ψt is totally correct for all t. So, we have the following
theorem:
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Theorem 3. The masking assignment ψt based on two functions αt and βt as
above is totally correct.

Now we will prove the statement totally correct implies valid for binary tree
based masking assignment. The same idea will carry through for the other con-
structions.

Theorem 4. (Validness of domain extension) In case of binary tree based
domain extension a totally correct masking assignment is always valid. More
precisely, we have that, if there is an (ε, η) winning strategy A for {Hp}p∈P then
there is also an ( ε

2t−1 , η + 2(2t − 1))-strategy B for {hk}k∈K whenever {Hp}p∈P
is based on totally correct masking assignment.

Proof. We describe the two stages of the strategy B as follows.

Algorithm Bguess= (y, s):
Run Aguess to obtain x ∈ {0, 1}N and state information s′. Choose an i ∈R
{1, . . . , 2t− 1}. If 2t−1 ≤ i ≤ 2t− 1, set y = xi; r0, r1 to be the empty string and
s = (s′, i, r0, r1, x). Output (y, s) and stop. If 1 ≤ i ≤ 2t−1 − 1, then choose two
strings r0 and r1 uniformly at random from the set {0, 1}m. Set y = r0||r1||xi
and s = (s′, i, r0, r1, x). Output (y, s) and stop. At this point the adversary is
given a k which is chosen uniformly at random from the set K = {0, 1}K . The
adversary then runs Bfind which is described below.

Algorithm Bfind(y, k, s) = y′: (Note s = (s′, i, r0, r1, x).)
Define the masks µ1, . . . , µmt by executing algorithm Mdeftree(i, x, k, t, r0, r1).
This defines the key p = k||µ for the function Hp. Run Afind(x, p, s′) to obtain
x′. Let y′ be the input of ith node corresponding to the string x′. Output y′.

We now lower bound the probability of success. By totally correctness p is
a randomly chosen key from the set P. Suppose x and x′ (x �= x′) collide for
the function Hp. Then there must be a j in the range 1 ≤ j ≤ 2t − 1 such that
at vertex j there is a collision for the function hk. (Otherwise it is possible to
prove by a backward induction that x = x′.) The probability that j = i is 1

2t−1
where i is a random number lying between 1 and 2t − 1. Hence if the success
probability of A is at least ε, then the success probability of B is at least ε

2t−1 .
Also the number of invocations of hk by B is equal to the number of invocations
of hk by A plus at most 2(2t − 1). This completes the proof.

Theorem 5. The speed-up of our algorithm over the sequential algorithm in
Section 4 is by a factor of 2t−1

t .

Proof. This algorithm hashes a message of length n(2t − 1)−m(2t − 2) into a
digest of length m using t parallel rounds. The time taken by a single parallel
round is proportional to the time required by a single invocation of the hash
function hk. The sequential construction require 2t − 1 invocations of the hash
function hk on a message of length n(2t−1)−m(2t−2). Hence, the speed-up of
the binary tree algorithm over the sequential algorithm is by a factor of 2t−1

t .
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Fig. 2. 4-dimensional parallel algorithm (t = 6 and x = x1|| . . . ||x26 . Note that g(6) =
(2, 2, 1, 1) and |x1| = · · · = |x3| = n − 4m, |x4| = · · · = |x12| = n − 3m, |x13| = · · · =
|x16| = n − 2m, |x17| = · · · = |x32| = n − m, and |x33| = · · · = |x26 | = n. · means
hk(·).)

Remark: The speed-up achieved by our algorithm is substantial even for mod-
erate values of t. Such speed-up will prove to be advantageous for hashing long
messages.

Theorem 6. The number of masks for this algorithm is t+O(log∗
2t).

Proof. From the recurrence relation it is clear that 22lk > lk+1 > 2lk . So,
log∗

2(lk) + 1 ≤ log∗
2(lk+1) ≤ log∗

2(lk) + 2 and hence log∗
2(lk) = θ(k) i.e. log∗

2(lk)
and k are of same order. So, for all lk ≤ t < lk+1, mt − t = k = O(log∗

2t).

6 Non-complete l-Ary Tree Based Construction

Our first new construction IBTC is based on the complete binary tree. In this
section we present a new parallel construction for a UOWHF based on a 4-ary
directed tree which is not complete.
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We will first define the generic algorithm based on the 4-ary directed tree
Tt = (Vt, Et) for t ≥ 4 (See this notation in Section 3). For t = 2 and t = 3, we
can define the algorithm based on the binary and 3-ary tree based construction
(See Section 6.3), respectively.

Like previous constructions, any function ψt : Et → [1, l] is a masking assign-
ment. Let x = x1||x2|| . . . ||x2t be the input message of length N . Given ψt, x,
and p = k||µ, Hp(x) is computed by the following algorithm. This is depicted in
Figure 2. In this section a, b, c and d denote the output of g(t).

1. Input: x = x1||x2|| · · · ||x2t and p = k||µ1||µ2|| . . . ||µl.
2. If 2a+b+c(2d − 1) < i ≤ 2t then zi = hk(xi).
3. If d = 1 then goto step 4.

(a) For j = 2d − 2 down to 1 do
For j2a+b+c < i ≤ (j + 1)2a+b+c, zi = hk(si+2a+b+c ||xi) where si =
zi ⊕ µψt(ei) (This notation is also same in the following procedure).

4. For 2a+b(2c − 1) < i ≤ 2a+b+c, zi = hk(si+2a+b+c ||xi).
5. If c = 1 go to step 6.

(a) For j = 2c − 2 down to 1 do
For j2a+b < i ≤ (j + 1)2a+b, zi = hk(si+2a+b ||si+2a+b+c ||xi).

6. For 2a(2b − 1) < i ≤ 2a+b, zi = hk(si+2a+b ||si+2a+b+c ||xi).
7. If b = 1 go to step 8.

(a) For j = 2b − 2 down to 1 do
For j2a < i ≤ (j + 1)2a, zi = hk(si+2a ||si+2a+b ||si+2a+b+c ||xi).

8. For i = 2a, zi = hk(si+2a ||si+2a+b ||si+2a+b+c ||xi).
9. For i = 2a − 1 down to 1, zi = hk(si+1||si+2a ||si+2a+b ||si+2a+b+c ||xi).

10. Output: z1.

We say that, the above non-complete 4-ary tree based construction is based
on the masking assignment ψt. Here, we need some definitions in order to con-
sider the correctness of ψt.

1. We will write s(i, x, k, µ, t), z(i, x, k, µ, t) for si and zi, respectively.
2. ε means the empty string.
3. For each node 1 ≤ i ≤ 2a+b+c(2d − 1),

(a) Define s0(i, x, k, µ, t) as s(i + 1, x, k, µ, t) for 1 ≤ i < 2a and as ε for
2a ≤ i ≤ 2a+b+c(2d − 1).

(b) Define s1(i, x, k, µ, t) as s(i+ 2a, x, k, µ, t) for 1 ≤ i ≤ 2a(2b − 1) and as
ε for 2a(2b − 1) < i ≤ 2a+b+c(2d − 1).

(c) Define s2(i, x, k, µ, t) as s(i+2a+b, x, k, µ, t) for 1 ≤ i ≤ 2a+b(2c−1) and
as ε for 2a+b(2c − 1) < i ≤ 2a+b+c(2d − 1).

(d) Define s3(i, x, k, µ, t) as s(i+2a+b+c, x, k, µ, t) for 1 ≤ i ≤ 2a+b+c(2d−1).

Therefore the input of ith node can be represented by s0(i, x, k, µ, t) ||s1(i, x, k, µ,
t)||s2(i, x, k, µ, t)||s3(i, x, k, µ, t)||xi for 1 ≤ i ≤ 2a+b+c(2d − 1).

We will say that ψt is correct if, for each 1 ≤ i ≤ 2a+b+c(2d − 1), there
is an algorithm Mdef4dim(i, x, k, t, r0, r1, r2, r3, ψt), where r0 is a m-bit string if
1 ≤ i < 2a and ε if 2a ≤ i ≤ 2a(2b − 1), r1 is a m-bit string if 1 ≤ i ≤ 2a(2b − 1)
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and ε if 2a(2b− 1) < i ≤ 2a+b(2c− 1), r2 is a m-bit string if 1 ≤ i ≤ 2a+b(2c− 1)
and ε if 2a+b(2c − 1) < i ≤ 2a+b+c(2d − 1), and r3 is a m-bit string for 1 ≤ i ≤
2a+b+c(2d − 1) which outputs µ = µ1|| · · · ||µl such that sj(i, x, k, µ, t) = rj for
0 ≤ j ≤ 3. ψt is totally correct if the output µ of the mask defining algorithm
is random string provided r0, r1, r2 and r3 are random strings and other inputs
are fixed.

6.1 4-Dimensional Domain Extender

Our second new parallel construction uses the following masking assignment
ψt : Et → [1, t]. The map represents the assignment of masks to the directed
edges. Here we present our definition of ψt which needs t masks for 4-dimensional
construction. Intuitively, the map ψt is made from expanding the mask assigning
method of Shoup’s sequential construction into four directions. At first, we define
four functions αt, βt, γt, and δt as follows.

1. αt : [1, 2a − 1]→ [1, a] is defined by αt(i) = 1 + ν2(2a − i).
2. βt : [1, 2b − 1]→ [a+ 1, a+ b] is defined by βt(i) = a+ 1 + ν2(2b − i).
3. γt : [1, 2c−1]→ [a+b+1, a+b+c] is defined by γt(i) = a+b+1+ν2(2c− i).
4. δt : [1, 2d−1]→ [a+b+c+1, t] is defined by δt(i) = a+b+c+1+ν2(2d− i).

Our masking assignment ψt(ei) is defined as follow:

1. ψt(ei) = αt(j) if 2 ≤ i ≤ 2a and j = i− 1.
2. ψt(ei) = βt(j) if 2a < i ≤ 2a+b and j2a < i ≤ (j + 1)2a.
3. ψt(ei) = γt(j) if 2a+b < i ≤ 2a+b+c and j2a+b < i ≤ (j + 1)2a+b.
4. ψt(ei) = δt(j) if 2a+b+c < i ≤ 2t and j2a+b+c < i ≤ (j + 1)2a+b+c.

Now we will prove that the above ψt is totally correct.

Theorem 7. The masking assignment ψt based on four functions αt, βt, γt and
δt as above is totally correct.

Proof. We will define the mask defining algorithm Mdef4dim.
Input: k, x, i, r0, r1, r2, r3, ψt
output: µ = µ1|| . . . ||µt such that sj(i, x, k, µ, t) = rj for 0 ≤ j ≤ 3.

We can define Mdef4dim for each case j ∈ {1, 2, 3, 4} where

1. 1 ≤ i < 2a.
2. 2a ≤ i ≤ 2a(2b − 1).
3. 2a(2b − 1) < i ≤ 2a+b(2c − 1).
4. 2a+b(2c − 1) < i ≤ 2a+b+c(2d − 1).

But we will present the specific procedure of Mdef4dim for only case 1 since the
other cases are very similar and much simpler than case 1. Let 1 ≤ i < 2a.



New Parallel Domain Extenders for UOWHF 223

1. (a) Let D = 2d − 1. Let ψ′ : [1, D] → [1, t] be a masking assignment such
that ψ′(j) = ψt(ei+(D+1−j)2a+b+c) where j ∈ [1, D].

(b) Let y3 = y3
0 ||y3

1 || . . . ||y3
D where, y3

v = xi+(D−v)2a+b+c for 0 ≤ v ≤ D − 1
and y3

D = r0||r1||r2||xi. Note that |y3
0 | = n and |y3

j | = n−m for 1 ≤ j ≤
D.

(c) Run Mdefseq(D, y3, k, r3, ψ
′) to get an output µ[a+ b+ c+ 1, t].

(d) Set µ = µ[t] = µ′[a+ b+ c]||µ[a+ b+ c+ 1, t], where µ′[a+ b+ c] is the
m(a+ b+ c)-bit zero string.

2. (a) Let C = 2c − 1. Let ψ′′ : [1, C] → [1, t] be a masking assignment such
that ψ′′(j) = ψt(ei+(C+1−j)2a+b) where j ∈ [1, C].

(b) Let y2 = y2
0 ||y2

1 || . . . ||y2
C , where y2

v = s3(i + (C − v)2a+b, x, k, µ, t)||
xi+(C−v)2a+b , for 0 ≤ v ≤ C − 1 and y2

C = r0||r1||r3||xi.
(c) Run Mdefseq(C, y2, k, r2, ψ

′′) to get an output µ[a+ b+ 1, a+ b+ c].
(d) Set µ = µ[t] = µ′[a+ b]||µ[a+ b+ 1, a+ b+ c]||µ[a+ b+ c+ 1, t], where

µ′[a+ b] is the m(a+ b)-bit zero string.
3. (a) Let B = 2b − 1. Let ψ′′′ : [1, B] → [1, t] be a masking assignment such

that ψ′′′(j) = ψt(ei+(B+1−j)2a) where j ∈ [1, B].
(b) Let y1 = y1

0 ||y1
1 || . . . ||y1

B , where y1
v = s2(i+ (B − v)2a, x, k, µ, t)|| s3(i+

(B−v)2a, x, k, µ, t)||xi+(B−v)2a , for 0 ≤ v ≤ B−1 and y1
B = r0||r2||r3||xi.

(c) Run Mdefseq(B, y1, k, r1, ψ
′′′) to get an output µ[a+ 1, a+ b].

(d) Set µ = µ[t] = µ′[a]||µ[a+1, a+b]||µ[a+b+1, a+b+c]||µ[a+b+c+1, t],
where µ′[a] is the ma-bit zero string.

4. (a) Let u = 2a − i and A = 2a − 1. Let ψ′′′′ : [1, A] → [1, t] be a masking
assignment such that ψ′′′′(j) = ψt(eA+2−j) where j ∈ [1, A].

(b) Let y0 = y0
0 ||y0

1 || . . . ||y0
A where, y0

v = s1(A + 1 − v, x, k, µ, t)||s2(A +
1 − v, x, k, µ, t)||s3(A + 1 − v, x, k, µ, t)||xA+1−v for 0 ≤ v ≤ A − 1 and
y0
A = 13m||x1.

(c) Run Mdefseq(u, y0, k, r0, ψ
′′′′) to get an output µ[a].

5. Output µ[t] = µ[a]||µ[a+ 1, a+ b]||µ[a+ b+ 1, a+ b+ c]||µ[a+ b+ c+ 1, t].

It is easy to check that sj(i, x, k, µ, t) = rj for 0 ≤ j ≤ 3. Therefore Mdef4dim is
correct for 1 ≤ i ≤ 2a − 1. If r0, r1, r2, and r3 are random strings then so is the
output µ and hence ψt is totally correct for 1 ≤ i ≤ 2a − 1. The other cases are
very similar. So we omit the proof for these cases.

The following theorem shows that if {hk}k∈K is a UOWHF, then so is
{Hp}p∈P . Using the fact that ψt is totally correct, we can prove this theorem in
a much similar way in the proof of Theorem 4. So we omit this proof.

Theorem 8. (Validness of domain extension) In case of 4-dimensional
domain extension a totally correct masking assignment is always valid. More
precisely, if there is an (ε, η)-extended strategy for {Hp}p∈P then there is an
( ε2t , η+2t+1)-strategy for {hk}k∈K whenever {Hp}p∈P is based on a totally correct
masking assignment.

We now show the speed-up of 4-dimensional construction over the sequential
construction. For the sake of simplicity we do not describe the case of t �≡
0 mod 4.
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Theorem 9. The speed-up of 4-dimensional construction over the sequential
construction in Section 4 is by a factor of 2t

22+t/4−3 if t ≡ 0 mod 4 .

Proof. 4-dimensional construction hashes a message of length n2t −m(2t − 1)
into a digest of length m using 2a + 2b + 2c + 2d − 3 parallel rounds. Therefore,
if t ≡ 0 mod 4 then 4 × 2t/4 − 3 parallel rounds are need to hash a message of
length n2t−m(2t−1). The time taken by a single parallel round is proportional
to the time required by a single invocation of the hash function hk. The sequen-
tial construction requre 2t invocations of the hash function hk on a message of
length n2t −m(2t − 1). Hence, the speed-up of the 4-dimensional construction
over the sequential construction is by a factor of 2t

22+t/4−3 if t ≡ 0 mod 4.

By the definition of the masking assignment of 4-dimensional construction,
the following theorem is clear.

Theorem 10. The number of masks for 4-dimensional construction is t.

6.2 Optimality of the 4-Dimensional Domain Extender

in [4] Mironov proved that among all the sequential algorithms Shoup’s algorithm
reuses the masks as much as possible. This means that among all the sequential
algorithms there is no algorithm which has a more smaller key expansion than
Shoup’s algorithm.

As Mironov did in [4], we can also ask whether the masks can be re-used even
more in the 4-dimensional domain extender. But, luckily, we can easily answer
the question using the recent result of Sarkar [8]. Furthermore, using the result,
we can prove that the key length expansion of the 4-dimensional domain extender
is the minimum possible for any algorithms in a large class of “natural” domain
extending algorithms including all the 4-dimensional type algorithms and all the
previously proposed algorithms.

In [8] Sarkar provided a generic lower bound on the key length expansion
required for securely extending the domain of a UOWHF. He first defined the
large class A of “natural” domain extending algorithms. Then he proved that
for any A ∈ A such that A is correct for s invocations of hk the number of masks
required by A is at least �log2s	. (Details can be found in section 4 of [8].) Note
that Shoup’s algorithm is an element of the class A. Therefore, it follows that
Shoup’s algorithm is optimal for the class A.

On the other hand the 4-dimensional domain extender is also an element of
the class A. And note that for 2t invocations of hk the 4-dimensional domain
extender uses t(= �log22t	) masks to securely extend the domain of a UOWHF.
Hence this shows that the 4-dimensional domain extender is also optimal for the
class A.

6.3 l-Dimensional Domain Extender

In the above we provided the 4-dimensional domain extender and considered the
security and optimality of key length expansion. In fact the construction idea
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Table 2. Specific comparison of domain extenders for UOWHF.

Parameter Shoup [10] l-DIM(l ≥ 2) IBTC Sarkar [8]
seq/par sequential parallel parallel parallel

message length 2tn 2tn (2t − 1)n (2t − 1)n
−(2t − 1)m −(2t − 1)m −(2t − 2)m −(2t − 2)m

# invocations of hk 2t 2t 2t − 1 2t − 1
# masks t t t+ O(log∗

2t) t + �log2t� − 1
# rounds 2t l2t/l − l + 1(t ≡ 0 mod l) t t

speed-up 1 2t

l2t/l−l+1
(t ≡ 0 mod l) 2t−1

t
2t−1

t

can be generalized to any l-dimensional domain extender (l ≥ 2). If n ≥ lm,
we can define the l-dimensional domain extender. We can start to define the
l-dimensional domain extender with setting the function g(t) = (a1, · · ·, al) ex-
actly in the similar way as we did for 4-dimensional. And the whole specification
of l-dimensional domain extender can be similarly defined by using the descrip-
tion method of the 4-dimensional domain extender. We can also consider the
security and optimality of the l-dimensional domain extender as in the case of
4-dimensional domain extender.

7 Comparison to Known Algorithms

In Table 2 we compare the specific performance of the different known algo-
rithms with l-dimensional domain extender and Improved binary tree based
construction. Note that the message length which can be handled varies with
each of the known algorithms. For example, Shoup’s and l-DIM can handle a
2tn−(2t−1)m bits message, however, Sakar’s and IBTC can not handle the same
length message. Therefore, we can not fix a message length in order to compare
the different known algorithms with l-DIM and IBTC. Instead, we separately
describe the message length for each of the algorithms as shown in Table 2.

The algorithms use one key for the base hash function and some number
of m-bit mask keys. The number of masks described in Table 2 refers to the
latter. The number of invocations of hk is the total cost. The number of rounds
reflects the parallelizability arising via tree-based constructions, and indicates
the total time to completion. In Shoup’s sequential construction it is equal to
the number of invocations of hk. Speed-up (over the sequential algorithm or
Shoup) is the ratio of the number of invocations of hk to that of rounds. For the
sake of simplicity we do not describe the case of t �≡ 0 mod l in the positions of
the number of rounds and speed for our l-DIM.

Table 2 shows the key length expansion of l-DIM is the same as that of
Shoup’s and it doesn’t have the same parallalizable performance with IBTC
and Sarkar’s construction. But if l is getting larger, then the speed of the l-
DIM is also getting near to the speed of IBTC and Sarkar. On the contrary, the
parallalizable performance of IBTC is the same as that of Sarkar’s and it doesn’t
have the same key length expansion with l-DIM and Shoup’s construction.
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8 Conclusion

In this paper we have provided two parallel domain extenders, IBTC and l-DIM,
for UOWHF. Each of them has an important theoretical meaning in the study
of efficient domain extanding method for UOWHF.

IBTC has the most efficient key length expansion among all the previously
known complete l-ary (l ≥ 2) tree based parallel constructions. But IBTC need
slightly more key length expansion than Shoup’s sequential construction. On the
other hand, l-DIM has the same key length expansion as Shoup’s. Furthermore,
l-DIM and Shoup’s construction are the minimum possible for any algorithms in
a large class of ”natural” domain extenders including all the previously proposed
constructions. But l-DIM does not have the same parallelizability performance
as complete l-ary (l ≥ 2) tree based constructions.

This paper has concerned the efficient parallel construction. Of course, it
would be very nice to have a parallel construction which has the optimal key
length expansion and the same or more efficient parallelizability than complete
tree based constructions simultaneously. But at this point, we do not have any
such algorithm. Hence, in our opinion, we should separately consider both the
key length expansion and the parallelizability with the same importance. And we
would like to stress that the present work is important in regarding the former
and the latter point of views, respectively.

We have also given a sufficient condition for valid domain extension for se-
quential extension and it is likely that the condition is necessary. So, that will
characterize the valid domain extension for sequential construction.

It is likely that l-DIM has maximum parallelizability with optimal key length
expansion. So one can try to prove whether this parallelizability is maximum
among all the constructions with optimal key length expansion or not.
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