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Abstract. Group signature schemes are fundamental cryptographic
tools that enable unlinkably anonymous authentication, in the same fash-
ion that digital signatures provide the basis for strong authentication
protocols. In this paper we present the first group signature scheme with
constant-size parameters that does not require any group member, in-
cluding group managers, to know trapdoor secrets. This novel type of
group signature scheme allows public parameters to be shared among
organizations. Such sharing represents a highly desirable simplification
over existing schemes, which require each organization to maintain a
separate cryptographic domain.
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1 Introduction

Group signatures allow group members to anonymously sign arbitrary messages
on behalf of the group. In addition, signatures generated from the same signer
are unlinkable, i.e., it is difficult to determine whether two or more signatures
were generated by the same group member. In case of dispute, a group manager
will be able to open a signature and incontestably show the identity of the signer.
At the same time, no one (including the group manager) will be able to falsely
accuse any other member of the group.

Group signatures were introduced by D. Chaum and E. van Heyst [16] in
1991. That was followed by several other works, but only relatively recent ones
[3,10,11] have group public keys and group signatures with sizes that do not
depend on the number of group members. (While in theory one always needs at
least log n bits to uniquely identify n different users in any system, in practice
log n is orders of magnitude smaller than the bit length of keys used in public
key cryptography.) The scheme in [3] is the most efficient one and the only
proven secure against an adaptive adversary. However, all the existing group
signature schemes providing constant-size parameters require the group manager
to know the factors of an RSA modulus. Sharing these factors among group
managers of different organizations would compromise the security and/or the
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trust assumptions of the entire scheme. This paper provides the first, affirmative
answer to the question of whether it is possible to design trapdoor-free group
signature schemes with public parameters that do not increase linearly in size
with the number of group members. We have an informal proof of security for
the scheme (along the lines of the proof in [3]), and sketch some arguments that
might lead to a formal proof in the sense of [5], in appendix §B.

1.1 Motivation

Our schemes are useful when several distinct groups or organizations must inter-
act and exchange information about individuals while protecting their privacy.
Credential transfer systems (CTS) [14,15,19,17,23,9] are examples of such envi-
ronments that can be built via group signature schemes [9]. Real-world scenarios
for the use of CTS include the health-care industry, electronic voting, and trans-
portation systems. In such cases, the added manageability and improved opti-
mization opportunities permitted by the use of a single cryptographic domain
for all participating organizations may outweigh other efficiency considerations.
A CTS allows users to interact anonymously with several organizations so that it
is possible to prove possession of a credential from one organization to another.
Different transactions cannot be linked to real identities or even pseudonyms.
It is then impossible to create profiles of users even if the organizations col-
lude and, at the same time, users cannot falsely claim to possess credentials.
Optionally, a privacy officer is able to retrieve user identities in case of dis-
putes or emergencies. Users can thus authenticate themselves with anonymous
credentials, protecting their privacy while exercising their right to vote, obtain-
ing health services or renting a GPS-tracked automobile. The efficiency of a
single signature generation or verification is measured in the human time scale.
Consequently, theoretical computational advantages become less important, and
instead the administrative complexity and related costs are likely to be the over-
whelming concern of implementers. In these situations, a scheme with shareable
parameters has a definite advantage since it eliminates the need for specialized
techniques such as the ones employed in [9].

Recently in [5], it has been shown that group signatures can be built based
on the assumption that trapdoor functions exist. It would be interesting to show
the same but based on the existence of one-way functions. Our scheme is the
first to be functionally trapdoor-free as no group member, nor even the group
manager, needs to know the trapdoor information. Even though we use an RSA
ring and we rely on the strong RSA assumption for security, the operation of
the scheme exploits only the one-wayness of the RSA function, not its trapdoor
properties.

Organization of This Paper: The next section contains the definition of group
signatures and the attending security requirements. In section §3 we give a high-
level, intuitive description of our proposed scheme, and place it in the context
of previous work. That section also introduces the cryptographic building blocks
required for the scheme. The specific construction of our scheme takes all of
section §4. A security analysis is provided in appendix §B.
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2 Definition
In this section we present our characterization of group signature schemes. In
general, a group signature scheme is defined by a family of procedures:

SETUP: A probabilistic algorithm that generates the group-specific parameters.
The input to SETUP is the set of public parameters, which includes a security
parameter, and its output are the group public key P and associated secret
key S.

JOIN: A prospective member executes this protocol (interacting with the group
manager) to join the group. The new member’s output is a membership certifi-
cate and the corresponding secret.

SIGN: A probabilistic algorithm that outputs a group signature when given
as input a message, the group public key, a membership certificate, and the
associated membership secret.

VERIFY: A boolean-valued algorithm used to test the authenticity of signatures
generated by SIGN.

OPEN: An algorithm that given as input a message, a group signature on it,
and the group secret key, extracts the membership certificate used to issue the
signature, and a non-interactive proof of the signature’s authorship.

2.1 Properties Required

A group signature scheme must satisfy the following properties:

Correctness: A properly formed group signature must be accepted by the veri-
fication algorithm.

Unforgeability: Without possession of a membership certificate, and knowledge
of associated secret, it is computationally infeasible to produce a signature that
is accepted by the verification algorithm.

Anonymity/ Unlinkability: Given a group signature on a message, it is computa-
tionally infeasible to determine which member generated the signature. More-
over, given several group signatures on the same or different messages it is com-
putationally infeasible to decide whether the signatures were issued by the same
or by different group members.

Exculpability: A signature produced by a group member cannot be successfully
attributed to another, and the group manager cannot generate signatures on
behalf of other group members (non-framing).

Traceability: The group manager is “always” (with overwhelming probability)
able to open a valid signature and determine which member signed it. Even if
a coalition of group members collaborates to produce a signature on a message,
possibly by combining their certificate secrets in some fashion, the group man-
ager will succeed in attributing the signature to one of the colluding members
(coalition-resistance) [3].
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The requirements of unforgeability and coalition-resistance are equivalent to
the requirements that group membership certificates be unforgeable under pas-
sive and active attacks, respectively, and only issuable by the group manager.
In other words, a membership certificate should contain the equivalent of a dig-
ital signature by the group manager. Similarly, the requirements of traceability
and exculpability imply that the group signature should hide a regular digital
signature issued by the member.

These listed requirements are intuitive, but somewhat redundant: For in-
stance, exculpability and traceability are clearly connected. In [5] the first for-
mal model of group signature schemes was introduced, showing the relations
between different requirements, and simplifying the task of proving the security
of a group signature scheme. In that work, the authors claim that all security
requirements of group signature schemes are derivable from two newly defined
concepts: full anonymity and full traceability.

The new model introduces two independent group managers, one in charge of
group membership management tasks, such as adding to or removing members
from the group, and another responsible for opening group signatures – i.e., re-
vealing the identity of the signer. The first manager provides privacy by enabling
users to sign and authenticate themselves anonymously (or more properly, as ar-
bitrary group members), while the second manager provides accountability, by
tracing authorship of group signatures back to the issuer when required. Com-
promise of the first manager’s secret key permits one to enroll arbitrary signing
keys in the group and issue signatures on behalf of these non-entities. However it
does not allow one to trace authorship of signatures. Compromise of the second
manager’s secret key allows one to trace authorship of signatures, but not to add
new public keys to the group.
Definition 1. Full anonymity (cf [5]): This is defined in terms of an adversarial
game. The goal of the adversary is to defeat the anonymity by identifying the
authorship of a group signature on a message. The game takes place in two
stages. In the first (choose) stage, the adversary is given access to all members’
secret keys. It also has access to an OPEN oracle, which it can query to find
the authorship of various group signatures. The output of the first stage is two
member identities i0 and i1, a message m and some state information S. These
are given as input to the second (guess) stage, in which the adversary is also
given a group signature σ on m, which is known to have been issued by either
i0 or i1 with equal probability. The adversary can continue to query the OPEN
oracle on signatures other than σ. The output of this stage is a guess ib for the
identity of the signer. The adversary is said to win this game if it can guess the
correct signer with more than a negligible advantage over a random guess. The
group signature scheme is fully anonymous if no efficient adversary can have a
strategy for winning the game.

Definition 2. Full traceability (cf [5]): The game is played by an adversary,
also in two stages. In the first (choose) stage the adversary is given access to
the second group managers’ secret key (the signature opening key) and can adap-
tively corrupt as many group members as it wishes. Let C be the set of corrupted



250 Giuseppe Ateniese and Breno de Medeiros

members at the end of the first stage. State information (including the secret
keys of the members of C) is used as input to the guess stage, during which the
adversary attempts to produce a message m and a valid group signature σ on m,
such that if the (uncorrupted) OPEN protocol is invoked on (m, σ), it will fail to
attribute σ to any group member in the set C. (Either the OPEN protocol would
fail to produce a valid group member identity, or it would produce the identity
of a member that has not been corrupted by the adversary.) The group signature
scheme is said to be fully traceable if no efficient adversary can succeed in this
game with non-negligible probability.

Remark 1. We also require that the compromise of either/both of the keys does
not permit one to misattribute a signature issued by a legitimate group mem-
ber. (Enrolled before the keys are compromised.) This means in particular that
a group signature scheme is not a key escrow mechanism. This approaches differ
from the one taken in [5]. There, it is the case that the first group manager
escrows the users’ secret keys – in particular users can be framed by compromis-
ing the first manager’s secret key, which is equivalent to compromising all users’
secret keys.

3 Preliminaries

In the group authentication problem a holder U of a group certificate interacts
with a verifier V to prove his status as a group member without revealing his
certificate. If the interactive protocol can be made non-interactive through the
Fiat-Shamir heuristic ([20]), then the resulting algorithm will be similar to the
issuing of a group signature, except that U ’s identity may be unrecoverable from
the signature alone. The issuing of a group signature requires, in addition to a
proof of membership, that U verifiably encrypts some information about his
certificate under the group manager’s public key. U must provide the verifier
with an encrypted token and prove to V that the group manager is able to
decrypt the token to reveal U ’s authorship of the signature.

A group signature can be seen as a proof of knowledge of a group certificate
which provides evidence of membership. The group certificate can be generated
only by the group manager GM and should be difficult to forge. In other words,
the group membership certificate has the effect of a signature issued by the group
manager. In addition, it has to contain some secret information generated by the
group member and unknown to GM to avoid framing attacks in which GM signs
on behalf of other members.

3.1 Modified ElGamal Signatures

Nyberg-Rueppel signatures [25] are ElGamal-type signature variants originally
designed to provide message recovery. Instead of a one-way hash function, mes-
sage-recovery schemes use a redundancy function. The redundancy function R is
an one-to-one mapping of messages into a so-called message-signing space MS .
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The image of R, denoted MR, must be sparse within MS i.e., given a random
element of MS , there is a negligible probability of it being in MR. Otherwise,
the message-recovery scheme is vulnerable to existential forgery attacks, as re-
dundancy functions are, by definition, efficiently invertible. The following table
assumes that MS = Z∗

p. Again, the signature calls for a random input k, and
the output is a pair (r, s), where r = R(m)g−k mod p, and s is computed as
indicated in table 1.

Table 1. Nyberg-Rueppel signature variants.

Variant Signing equation Message recovery (verification)

I s = k−1(1 + xr) mod q R(m) = ryrs−1
gs−1

mod p

II s = x−1(−1 + kr) mod q R(m) = rysr−1
gr−1

mod p

III s = −xr + k mod q R(m) = ryrgs mod p

IV s = −x + kr mod q R(m) = ryr−1
gsr−1

mod p

V s = x−1(−r + k) mod q R(m) = rysgr mod p

VI s = k−1(x + r) mod q R(m) = rys−1
gs−1r mod p

If in the equations above, the redundancy function R(·) is replaced by an one-
way function then the message-recovery property is lost. On the other hand, the
requirement that the image of the function be sparse in the signing space may
also be dropped. This modified Nyberg-Rueppel scheme, as a signature scheme of
short messages only, is (loosely) reducible to the hardness of discrete logarithm
computations in the standard model. Alternatively, it is (loosely) reducible to
the discrete logarithm in the random oracle model if extended to arbitrarily
long messages through the hash-and-sign paradigm. Moreover, the form of the
modified verification equation – if the one-way function is suitably chosen –
lends itself to the construction of proofs of knowledge of signatures that are
more efficient. (When compared to similar proofs for unmodified ElGamal-type
signature variants.)

We now describe the setting of our scheme. Let G be some arithmetic group.
Not all groups G where Nyberg-Rueppel (or ElGamal) signatures make sense
have the characteristics needed by our scheme. In section §4, we outline the
specifics of the protocols in a suitable group, namely the subgroup of quadratic
residues modulo a prime p, where p is simultaneously a safe prime, i.e, p = 2q+1,
with q also prime, and a Sophie Germain prime, that is the number p̂ = 2p + 1
is prime. There are other choices for the group G, see appendix §C for a simpler
construction in certain RSA rings.

Let G be a suitable group. The order of G may be a known prime or un-
known composite number. Let g and g1 be fixed, public generators for G; it is
assumed that the discrete logarithm of g with respect to g1 (and of g1 w.r.t. g)
is unknown to group members. Let y = gx be the public key of the signer GM ,
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with associated secret x. (In the group signature scheme, y corresponds to the
certificate issuing key.) Finally, this signature scheme defines the message space
M as the set of integers modulo q in the case of known order, and the set of in-
tegers smaller than some upper bound otherwise. The signing space is MS = G,
and let the one-way function h(·) : M → MS be defined by h(m) = gm

1 . Clearly,
h(·) satisfies the requirements of a secure one-way function: h(·) is pre-image
resistant by the hardness of computing discrete logarithms in G. In the case of
known order, it is further one-to-one, hence trivially collision-resistant. In the
case of unknown order, finding a collision would reveal the order of G, i.e., it is
equivalent to factorization.

The signing and verification algorithms of the modified Nyberg-Rueppel are
as follows:

Signing: r = gm
1 g−k (in G); (1)

s = −xr + k (mod q); (2)
Verification: gm

1 = ryrgs (in G). (3)

We have placed “mod q” within parenthesis as that reduction is only com-
puted when the order of G is a known prime. These signatures are issuable only
by the signer GM , who is privy to the secret key x associated to y. Indeed, such
signatures are loosely reducible, through a standard forking lemma argument
[26], to the discrete logarithm problem. Please refer to appendix §B.

3.2 High Level Description of the Scheme

A prospective new member U who wishes to join the group must have first
secured a digital signature certificate with some certification authority. U starts
the join protocol by choosing a random, secret value u and computing IU = gu

1 .
More precisely, U and GM interact so that both contribute to the randomization
of u, while its value remains secret from the GM . Then U constructs a zero-
knowledge proof (of knowledge) of the discrete logarithm of the pseudonym IU

with respect to g1. U signs the pseudonym and the proof of knowledge of the
pseudonym secret, and sends it to the GM to request a group membership
certificate.

GM verifies the signature against U ’s public certificate and the correctness
of the zero-knowledge proof. If both are well-formed, GM responds with the
signature pair (r, s) on IU , which is technically GM ’s signature on an message
u known only to U . This is safe from the GM ’s viewpoint because both GM
and U contribute to the choice of the value u. It is imperative, however, that
only U knows the value u, as it is in effect the secret key allowing U to use
the membership certificate to issue signatures. The equations used by GM to
generate (r, s) are:

r = IUg−k (in G); s = −xr + k (mod q), (4)

where k is a random parameter of GM ’s choice, and the reduction modulo q is
applied only in the case of known order. U verifies the signature, checking that:

IU = ryrgs (in G). (5)
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The scheme must permit U to prove knowledge of this certificate pair (r, s)
without revealing any linkable function of r, s, or u. It must also allow GM
to open the proof and show the identity of the group member. Both problems
can be solved by employing a verifiable encryption of digital signature schemes.
However, unlinkability between different protocol executions is not a requirement
of verifiable encryption schemes, and indeed existing protocols for ElGamal-type
signature schemes do not provide it. Hence, it would be possible to link two or
more verifiable encryptions, which is equivalent to linking two or more group
signatures from the same signer. This is because, in existing schemes, the first
value r of the signature pair (r, s) is revealed and the actual protocol is applied
only to the second value s, reducing then the problem of verifiable encryption
of a digital signature to the simpler problem of verifiably encrypting a discrete
logarithm (see [8,1,22,2] for details).

To solve this issue, it is necessary to ElGamal encrypt the value r as well,
and prove in zero-knowledge that a Nyberg-Rueppel signature is known on a
secret value u. More concretely, every time the group member must use the
certificate, she encrypts the inverse of the value r, to get the ElGamal pair
(R1, R2) = (r−1y�

2, g
�
2). This encryption is under the second public key y2 = gz

2 of
the group manager, used for opening group member signatures, with associated
secret z.

The group member also encrypts his pseudonym: (Y1, Y2) = (IUy�′
2 , g�′

2 ). No-
tice that the product cipher is:

(R1Y1, R2Y2) = (IUr−1y�+�′
2 , g�+�′

2 ) = (yrgsy�+�′
2 , g�+�′

2 ) (6)

In order to prove knowledge of a membership certificate, the member U
releases the above ElGamal encrypted pairs (R1, R2) and (Y1, Y2) and proves
that the product cipher encrypts some information which the signer can write
in two ways, i.e., as the product IUr−1 for pseudonym IU (for which the signer
knows the corresponding pseudonym secret) and value r, and also as yrgs, for
the same value r and some s known to the signer. In other words, the signer
shows that an equation like (6) holds for the product cipher.

To proceed, we must overcome a difficulty with equation (6): The value in
the exponent is reduced modulo the order of the group G, while the encrypted
value r is an element of G itself. The reduction function does not preserve group
operations, it is not multiplicative; and the method for proving equality between
an ElGamal-encrypted value and a logarithm, due to Stadler [28], cannot be
directly applied. The solution is to employ a technique due to Boudot [7] that
permits efficient comparison between logarithms in different groups. So we use
an auxiliary group F of order compatible with the operations in G. We release
a commitment to the value r as an exponent of an element of F , and we show
that it equals (up to modular reduction), the exponent of y in the representation
with respect to the basis {y, g} of the value ElGamal encrypted in the product
cipher (R1Y1, R2Y2). Next, we use Stadler’s technique to prove the equality of
the encrypted value r (in the pair R1, R2 of G), with the value committed as an
exponent in F .
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To complete the sign protocol, the signer proves knowledge of the discrete
logarithm to basis g of the value IU which is ElGamal encrypted in the pair
(Y1, Y2). This shows that the group manager will be able to open the signature
with just an ElGamal decryption operation.

Proofs of Knowledge. In this paper we make use of several types of proofs
of knowledge about various relations between secrets. All these proofs of knowl-
edge have been presented elsewhere. In order to harmonize the notation, which
varies from author to author, and make the paper self-contained, we include an
appendix (§A) in which we reproduce these various results.

4 The Scheme

We now describe the scheme more concretely, starting with T , the set of shared
public parameters. T specifies security parameters δ, ε, σ, σ2, and τ , and a
secure hash function H that maps bit-strings of arbitrary length into bit-strings
of fixed length τ . A typical set of choices would be δ = 40, σ = 40, σ2 = 552,
τ = 160, and H(·) = SHA-1(·). The parameter ε should be larger than 1 by
a non-negligible amount. These security parameters impact the security and
efficiency of the various proofs of knowledge used in the scheme. (Notation as in
appendix §A.) T also specifies an arithmetic group G and three generators g, g1
and g2 of G.

In this section we assume that G is the quadratic residues subgroup of the
multiplicative residues module p, where p is simultaneously a safe prime, i.e.,
and p = 2q +1, with q also prime, and a Sophie Germain prime, i.e., the number
p̂ = 2p + 1 is prime. Primes p̂ such that p̂ = 2p + 1, and p = 2q + 1, with p
and q also prime are called strong primes. (More generally, if p̂ = mp + 1 and
p = nq + 1 with small m, and n, are also called strong primes, but m = n = 2
gives the most efficient scheme.) See [18,21] for efficient methods to generate
such primes. In order to choose g it is enough to pick a random element g′ in
Z∗

p and set g ≡ g′2 mod p, provided that g �≡ 1 mod p. The same procedure
should be used to obtain g1 and g2.

The scheme also requires an auxiliary group F of order p, which in this section
will be chosen as the quadratic subgroup of the multiplicative residues modulo
p̂. Furthermore, the scheme requires a second auxiliary group E of unknown
composite order n̂. A trusted party generates a composite modulus n, plus a
proof P that n is the product of two safe primes. The group E is defined as the
quadratic residue subgroup of the multiplicative residues modulo n. The order
of E is the universally unknown number φ(n)/4. Group managers of competing
organizations may all share the same modulus n, as the operation of the scheme
does not require anybody to know the RSA trapdoor associated to n, and the
trusted party may safely forget the factorization at its discretion.

The above public parameters can be further certified if so desired. A proof
of primality can be provided for each of the primes; as for g, g1 and g2, anybody
can verify their correct generation by testing that each is not congruent to 0 or 1
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Table 2. Shared and group specific parameters.

Shared parameters
Security parameters: δ, ε, σ, σ2, τ;

Secure hash function: H(·) : {0, 1}∗ −→ {0, 1}τ;
p̂, p, q, primes s.t. p̂ = 2p + 1 and p = 2q + 1;

G = {x ∈ Z∗
p : ∃ a ∈ Z∗

p s.t. x ≡ a2 mod p};
F = {x ∈ Z∗

p̂ : ∃ a ∈ Z∗
p̂ s.t. x ≡ a2 mod p̂};

E = {x ∈ Z∗
n : ∃ a ∈ Z∗

n s.t. x ≡ a2 mod n};
g, g1, and g2, generators of G.

Group-specific parameters
S, a string including y and y2;

CA’s signature: CERTCA(S).

Table 3. The JOIN protocol

U −→ GM : JU = Im mod p
GM −→ U : a, b mod q

U −→ GM : SigU (IU = Ja
Ugb

1, PK[u : IU = gu
1 ])

GM −→ U : r = IUg−k mod p, s = −xr + k mod q

modulo p, and then verifying that each is a square, by computing the Legendre
symbol and checking that:

(
g
p

)
=

(
g1
p

)
=

(
g2
p

)
= 1.

In order to setup a group using the shared parameters above, the group
manager GM chooses x and z at random among the numbers [1, q − 1] and set
the public keys y = gx, and y2 = gz

2 . The group manager should proceed to
register these group-specific parameters with some certification authority. The
GM would prepare a statement S containing (minimally) a description of the
group signature algorithms, a reference to the shared parameters, GM ’s name,
the group-specific parameters y, y1, and y2, and some timed information, such
as start and expiration dates. The GM should obtain a certificate CERTCA(S)
from the CA establishing the group-specific parameters.

Let Sig
U
(·) denote U ’s signature algorithm. To join the group, a prospective

member U chooses a random secret m in the interval [1, q − 1], computes JU =
gm
1 , and sends this value to GM , who responds with two values a, and b in

[1, q − 1]. U computes his pseudonym as IU = Ja
Ugb

1, and its associated secret
u = am + b mod q. Next, U constructs a non-interactive proof of knowledge
of the logarithm to basis g1 of this pseudonym (see appendix A), and also his
signature S = Sig

U
(IU , PK) on both the pseudonym and the proof-of-knowledge

just constructed. U forwards to the GM this signature S.
The GM now verifies that the pseudonym incorporated his contribution, i.e.,

IU = Ja
Ugb

1. This step is important because u is unknown to GM , who must
sign it. Since the GM contributed to u’s randomness, that does not constitute
a threat to the GM ’s signature algorithm. The GM also verifies the correctness
of the proof-of-knowledge and U ’s signature. If satisfied, the GM generates a
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random k mod q, and computes r = IUg−k mod p, checking that r < c, where
c equals:

c = p − 2σ+τ/2+2√p, (7)

and repeating the process of computing other random k and r until such an r
is found. Note that r < c with overwhelming probability in a single attempt,
because since the quadratic residues are nearly uniformly distributed in the
interval [1, p − 1], we have that r < c with probability close to 1 − 2σ+τ/2+2√

p >

1 − 2−645 if the security parameters have the typical values δ = 40, τ = 160 and
p has at least 768 significant bits. This very minor restriction on the possible
values of r reflects requirements of the proof of equality of discrete logarithms
in distinct groups, as we shall see later. After a suitable r is found, U computes
s = k − xr mod q, and sends the certificate (r, s) to U . The GM also records
the signature S, which ties U ’s identity to the certificate’s pseudonym. U verifies
that the certificate (r, s) satisfies the verification equation, and if so, accepts it
as valid.

We now describe the protocol SIGN. One goal of this protocol is that U
convince a verifier V of its knowledge of a membership certificate (r, s) as above.
As in section §3, the signer chooses random �, and �′, with 0 < �, �′ < q. U
releases the ElGamal encrypted pairs:

(Y1, Y2) = (IUy�′
2 , g�′

2 ); (R1, R2) = (r−1y�
2, g

�
2);

Next, U demonstrates that the pseudonym IU is encrypted by the pair (Y1, Y2),
and proves knowledge of the pseudonym secret u, by executing PK[u, �′ : Y1 =
gu
1 y�′

2 ∧ Y2 = g�′
2 ]. This step is crucial to prevent framing attacks against U , as

not even the group manager can execute it without knowledge of u.
Continuing with the SIGN protocol, U generates a fresh, random generator χ

of the group F , and computes a (computationally zero-knowledge) commitment
to the value r as E1 = E1(r, 0) = χr. In the language of appendix §A, this is
a (degenerate) commitment to the value r in the group F , with respect to the
generator χ.

U also generates a commitment to r in the auxiliary group E of unknown
order. For that, U uses two generators β and γ of E , where β and γ are provably
randomly generated, so that U cannot know their relative discrete logarithm. For
instance, γ and β can be generated as the squares of two consecutive values of a
secure pseudo-random number generator SPRNG. The commitment is computed
as E2 = E2(r, s2) = γrβs2 , where s2 is a random parameter of U ’s choice:
s2 ∈ [−2κ+τ+1, 2κ+τ+1], where 2κ−1 ≤ |E| < 2κ. Notice that the value R1Y1 =
IUr−1y�+�′

2 = yrgsy�+�′
2 is also a commitment to the value r in the group G, with

generators y, g, and y2. Denote it by E3 = R1Y1.
In the next step, U reveals the commitments E1, E2, and the respective

generators γ, β, and χ. (In the case of γ and β, U must also reveal the seed
of the SPRNG that leads to the computation of γ and β.) U then shows
that E1, E2 and E3 all are commitments to the same value r. (Notice that
we are following the efficient construction found in [7], repeated in detail here
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for reasons of convenience.) U executes two proofs of equality of two com-
mitted values (def. 10). In the first proof U sends V a triple (c′, D′, D′

1) sat-
isfying: c′ = H(χ||γ||β||E1||E2||χD′

E−c′
1 mod p̂||γD′

βD′
1E−c′

2 mod n). Again,
refer to def. (10) for how to build these proofs. In agreement with the no-
tation in appendix §A,we denote the above by PK[r, s2 : E1 = E1(r, 0) ∧
E2 = E2(r, s2)]. Then U sends V a quintuple (c, D, D1, D2, D3) satisfying:
c = H(γ||β||y||g||y2||E2||E3||γDβD1E−c

2 mod n||yDgD2yD3
2 E−c

3 mod p||gD3
2 (Y2

R2)−c mod p). Denote that by PK[r, s, s2, t : E2 = E2(r, s2)∧E3 = E3(r, s, t)∧
Y2R2 = gt

2].
If all of the commitments E1, E2, and E3 took place within the same group

the above would be a proof of equality of the committed exponent in each of the
commitments. However, as the order of the groups differ, we have only proved
knowledge of an integer value r which satisfies

r ≡ r1 mod p, and r ≡ r3 mod q, (8)

where r1 and r3 are, respectively, the exponents committed in E1 and E3, while r
is the exponent committed in E2. (As U does not know the order of E , it cannot
set up a modular equation that the exponent of E2 should satisfy, and must use
the full integer value r.) U could cheat and pass the “proof” above for any two
different values r1 and r3, by setting r in E2 to equal the solution, computed via
the Chinese Remainder Theorem, to the pair of modular equations in (8). Thus,
a non-member U ′ would be able to forge the proof of knowledge of a certificate,
by choosing r3 and s arbitrarily, computing the value r1 that would make the
certificate equation work, and then solving the pair of equations (8) for an r that
reduces to r1 mod p and r3 mod q, respectively. In the cheating case, however,
because r1 �≡ r3 mod q, U ′ computes a value r > p as the solution of 8. Thus, if
U ′ is required to prove that the value r2 committed in E2 is within an interval
of width at most p, this forgery attack is prevented; and the commitments must
all hide the same value. So to complete the “proof of equality of commitments in
different groups,” U must construct a proof that the value r is restricted to an
interval of width at most p. For that, U uses the fact that r < c, and constructs
the proof of knowledge that a committed value lies in a slightly larger interval,
def. (13): PK[r, s2 : E2 = E2(r, s2) ∧ r ∈ [−2δ+τ/2+1√c, c + 2δ+τ/2+1√c]].
To observe that the interval in question has width smaller than p, notice that
its width equals c + 2δ+τ/2+2√c < c + 2δ+τ/2+2√p = p, by choice of c (see
equation 7).

Finally, U must show that the exponent committed in E1 equals the value
encrypted in the pair (R1, R2), by executing (definition 14): PK[r, t : E1 =
χr ∧ R1 = r−1yt

2 ∧W2 = gt
2]. The actual protocol SIGN combines all the proofs

of knowledge into a single signature of knowledge. This is done by simultaneously
committing to all the inputs of the proofs and using the resulting challenge in
all the verification equations (à la Fiat-Shamir). In addition, the message M to
be signed is used as an extra input of the hash function.

The protocol is summarized in table 4. Moreover, algorithm VERIFY can be
derived immediately from the above formal description of SIGN as a proof of
knowledge of a group certificate.
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Table 4. The SIGN protocol

Proof arguments:

Y1, Y2, R1, R2, χ, γ, β, E1, and E2.

Signature of knowledge:

SPK[u, �′, �, r, s, s2, t : Y1 = gu
1 y�′

2 ∧ Y2 = g�′
2

∧ E1 = E1(r, 0) = χr ∧ R1 = r−1y�
2 ∧ R2 = g�

2

∧ E2 = E2(r, s2) = γrβs2 ∧ r ∈ [−2δ+τ/2+1√c, c + 2δ+τ/2+1√c]

∧ E3 = E3(r, s, t) = Y1R1 = yrgsyt
2 ∧ Y2R2 = gt

2 ](M)

As for OPEN, it is enough that the group manager decrypts the pair (Y1, Y2)
to obtain the value IU and the corresponding group membership certificate.
GM constructs a proof that IU is indeed the value encrypted in (Y1, Y2) without
revealing the group secret x: PK[x : Y1I

−1
U = Y x

2 ∧ y2 = gx
2 ], a publicly verifiable

proof of authorship of the signature.

5 Conclusions

In this paper we introduced the first group signature scheme with constant-size
parameters that does not require any group members, including group managers,
to know trapdoor secrets. Our scheme is not bound to a specific setting but it
can work in various groups where the Decision Diffie-Hellman assumption holds:
The appendix §C contains a simpler construction in an RSA ring.

Our scheme is less efficient than the state-of-the-art scheme in [3]. However,
the scheme in [3] requires the group manager to know trapdoor information
which cannot be shared with other group managers, thus making it difficult to
enable collaboration among distinct groups.
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A Proofs of Knowledge

All the proofs of knowledge listed in this section have been proved zero-knowledge
in a statistical or computational sense within the random oracle model, under
the Decisional Diffie-Hellman assumption, and the Strong RSA assumption, ex-
plained below.

Notation 1 (Groups and generators).

– J stands for an arithmetic group, such as an RSA ring with composite
modulus n or the group Z∗

p of non-zero (multiplicative) residues modulo p.
– g stands for an element of J of unknown composite order or known prime

order. Let q be the order of g.
– Let κ be the smallest integer such that 2κ is larger than q. We assume that

κ is known, even if q is not.
– g generates the subgroup G of J .

Let H stand for a secure hash function which maps arbitrarily long bit-strings
into bit-strings of fixed length τ . Let ε denote a second security parameter.

Definition 3 (Decisional Diffie-Hellman assumption (DDH)). Let J be
a group and g an element of known prime, or unknown composite, order q in
J . Let G = 〈g〉 be the subgroup generated by g in J . The DDH assumption
for G is then there is no efficient (randomized, probabilistic) algorithm that can
distinguish between the two following distributions in G:

{(h, i, j), where h, i, j are independently randomly distributed (i.r.d.) in G}

and

{(h′, i′, j′), where h′ = gx, i′ = gy, j′ = gxy for i.r.d. x, y with 0 ≤ x, y < q}

A triple of group elements such as (h′, i′, j′) above is called a Diffie-Hellman
triple. The DDH assumption is thus the statement that there is no efficient
algorithm to distinguish between Diffie-Hellman triples and randomly generated
triples.
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Definition 4 (Strong RSA assumption (SRSA)). Let n = pq be a compos-
ite modulus, where p and q are two large primes. The strong RSA assumption
states that there is no efficient (randomized, probabilistic) algorithm that, given
as input n and an integer y, but not the factorization of n, can produce two other
integers u and e, where e > 1 and ue ≡ y mod n.

SRSA underlies the security of the proof of equality of logarithms in distinct
groups (10).

Definition 5 (Proof of knowledge of a discrete logarithm). U can prove
to a verifier V his knowledge of an integer x in {0, . . . , 2κ −1}, such that h = gx,
by releasing integers s and c, with s in {−2ε(τ+κ)+1, . . . , 2ε(τ+κ)+1 − 1} and c
in {0, . . . , 2τ − 1}, s.t. c = H(g||h||gshc), where the symbol || denotes string
concatenation.

In order to compute the pair (s, c), U generates a random integer k in {−2ε(τ+κ),
. . . , 2ε(τ+κ) − 1} and sets c = H(g||h||gk), and s = k − cx (as integer). Denote it
by (notation introduced in [11]): PK[x : h = gx].

This proof of knowledge can be transformed into a digital signature, with x
being the secret key associated with public key h. To sign an arbitrary bitstring
m, we instead compute c as: c = H(g||h||gshc||m). Denote this signature of
knowledge ([11]) by: SPK[x : h = gx](m).

Returning to the notation in definition (5), if the order q of the group G is
known, then operations on the exponents should be computed modulo q, and
some statements about the size of parameters can be simplified. In the above we
would substitute:

x ∈ {0, . . . , 2κ − 1} by x ∈ {0, . . . , q − 1},
s ∈ {−2ε(τ+κ)+1, . . . , 2ε(τ+κ)+1 − 1} by s ∈ {0, . . . , q − 1}, and

s = k − cx (in Z) by s = k − cx mod q.
In the following definitions we assume the group order q is unknown; as above,

it is straightforward to adapt them to the case of known order.

Definition 6 (Proof of knowledge of a common discrete logarithm). U
can prove to a verifier V his knowledge of an x (with 0 ≤ x < 2κ) s.t. two lists
g1, g2, . . . , g� and h1, h2, . . . , h� (of elements of G) satisfy hi = gx

i , i = 1 . . . �, by
releasing s and c (−2ε(τ+κ)+1 ≤ s < 2ε(τ+κ)+1 and 0 ≤ c < 2τ ) s.t.

c = H(g1|| . . . ||g�||h1|| . . . ||h�||(g1 . . . g�)s(h1 . . . h�)c).

U computes c = H(g1|| . . . ||g�||h1|| . . . ||h�||(g1 . . . g�)k) for a randomly chosen k
( −2ε(τ+κ) ≤ k < 2ε(τ+κ)), and sets s = k − cx. Denote it by: PK[x : h1 =
gx
1 ∧ · · · ∧ h� = gx

� ].

Definition 7 (Proof of knowledge of a representation). U can prove his
knowledge of elements x1, . . . , x� (with 0 ≤ xi < 2κ) s.t. a given element A
satisfies A = gx1

1 · · · gx�

� , by releasing si and c (−2ε(τ+κ)+1 ≤ si < 2ε(τ+κ)+1; 0 ≤
c < 2τ ) s.t. c = H(g1|| . . . ||g�||A||gs1

1 . . . gs�

� Ac).
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Again, U computes c = H(g1|| . . . ||g�||A||gk1
1 . . . gk�

� ) for randomly chosen
ki(−2ε(τ+κ) ≤ ki < 2ε(τ+κ)), and sets si = ki−cxi. Denote it by: PK[x1, . . . , x� :
A = gx1

1 · · · gx�

� ].
The next two proofs of knowledge assert that a committed value lies in an

interval. The first one was introduced in [12], and corrected in [13]. The second
one, which uses the first as building block, was introduced in [7], and is used in
our scheme.

Let g, h be two elements of G. Assume that g and h are constructed in a
provably random way, for instance as consecutive images of a secure pseudo-
random generator. Generating g and h in such a way ensures that no one knows
the discrete logarithm of g to basis h, or that of h to basis g.

Definition 8 (Commitment to a secret value). Let x be a secret value
held by U . Let g and h be two provably random generators of G. We say that
E = E(x, r) = gxhr is a commitment to the value x in G, where r is a randomly
generated value, 0 < r < q.

If q is unknown, then one must choose r in a larger interval, say −2κ+τ+1 < r <
2κ+τ+1, to ensure that all elements in the interval [0, q − 1] are sampled nearly
uniformly. The commitment reveals nothing about r in a statistical sense.

Let E be a distinct arithmetic group of unknown composite order n. For
instance, E can be chosen as the subgroup of quadratic residues in an RSA ring.
Let g = g1, g2, h = h1, and h2 be provably random generators of E . We assume
that the smallest integer λ s.t. 2λ > n is known. Assume U has published two
commitments, E = E1(x, r) = gx

1hr1
1 in G, and a second commitment E2(x, r2) =

gx
2hr2

2 .
Let δ, σ and σ2 be other security parameters. Assume further that x < b.

Definition 9 (Proof of knowledge of a committed value). U can prove in
ZK to a verifier V knowledge of a number x committed through E = E(x, r) =
gxhr, by sending V a triple (c, D, D1) satisfying: c = H(g||h||E||gDhD1E−c

mod n).

U generates random t ∈ [1, 2δ+τ/2b + 1] and s ∈ [1, 2δ+τ/2+σn − 1]; computes
W = gths mod n; computes c = H(g||h||E||W ); and finally computes D =
t + cx, D1 = s + cr (in Z).

Definition 10 (Proof of equality of two committed values). U can prove
in ZK to a verifier V that two commitments E1 = E1(x, r1) and E2 = E2(x, r2)
hide the same exponent x, by sending V a quadruple (c, D, D1, D2) satisfying: c =
H(g1||h1||g2||h2
||E1||E2||gD

1 hD1
1 E−c

1 mod n||gD
2 hD2

2 E−c
2 mod n).

U generates the random values t ∈ [1, 2δ+τ/2b + 1], s1 ∈ [1, 2δ+τ/2+σn − 1], and
s2 ∈ [1, 2δ+τ/2+σ2n − 1]. Next, U computes W1 = gt

1h
s1
1 mod n, W2 = gt

2h
s2
2

mod n; and sets c = H(g1||h1||g2||h2||E1||W1||W2). Finally, U computes D =
t + cx, D1 = s1 + cr1, D2 = s2 + cr2 (in Z). Denote this by PK[x, r1, r2 : E1 =
E1(x, r1) ∧ E2 = E2(x, r2)].
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Definition 11 (Proof that a committed number is a square). U can
convince a verifier V that the commitment E = E(x2, r1) = gx2

hr1 mod n
(r1 ∈ [−2σn + 1, 2σn − 1]) contains the square of a number known to U , by
sending V the quintuple (F, c, D, D1, D2), where c = H(g||h||E||F ||FDhD1E−c

mod n||gDhD2F−c mod n).

Indeed, U generates a random r2 in [−2σn + 1, 2σn − 1], and sets F = gxhr2 .
Notice now that U can rewrite E in the basis {F, h} as E(x, r3) = F xhr3 mod n,
where r3 = r1 − r2x, and r3 ∈ [−2σbn + 1, 2σbn − 1]. It is enough then for
U to use the previous proof of equality of the exponent x committed though
E1 = F = E(x, r2) and E2 = E = E(x, r3), i.e., execute PK[x, r2, r3 : F =
gxhr2 ∧ E = F xhr3 ]. Denote this by PK[x, r1 : E = E(x2, r1)].

Definition 12 (Proof that a committed number lies in a larger inter-
val). A prover U can convince a verifier V that a number x ∈ [0, b] which is com-
mitted in E = E(x, r) = gxhr mod n (r ∈ [−2σn+1, 2σn−1]), lies in the much
larger interval [−2σ+τ/2b, 2σ+τ/2b], by sending V the triple (C, D1, D2), where
D1 ∈ [cb, 2δ+τ/2b − 1], and C = H(g||h||E||gD1hD2E−c); c = C mod 2τ/2.

U generates randoms s ∈ [0, 2δ+τ/2b − 1], t ∈ [−2δ+τ/2+σn + 1, 2δ+τ/2+σn −
1]; computes W = gsht mod n; computes C = H(g||h||E||W ), and c = C
mod 2τ/2; and sets D1 = s + cx, D2 = t + cr, repeating the procedure from the
beginning if D1 �∈ [cb, 2δ+τ/2b − 1]. We denote the above by PKCFT [x, r : E =
E(x, r) ∧ x ∈ [−2δ+τ/2b, 2δ+τ/2b]].

Definition 13 (Proof that a committed number lies in a slightly larger
interval). A prover U can convince a verifier V that a number x ∈ [a, b], com-
mitted in E = E(x, r) = gxhr mod n (r ∈ [−2σn+1, 2σn−1]) lies in the slightly
larger interval [a−α, b+α], where α = 2δ+τ/2+1

√
b − a, by releasing Ẽ1, Ē1, and

proving: PK[x, r : E = E(x, r)], PK[x̃1, r̃1 : Ẽ1 = E(x̃2
1, r̃1)], PK[x̄1, r̄1 : Ē1 =

E(x̄2
1, r̄1)], PKCFT [x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧ x̃2 ∈ [−α, α]], where Ẽ2 = E

gaẼ1

mod n, PKCFT [x̄2, r̄2 : Ē2 = E(x̄2, r̄2)∧x̄2 ∈ [−α, α]], where Ē2 = gb

EĒ1
mod n.

U computes Ẽ = E/ga mod n, Ē = gb/E mod n; sets x̃ = x−a and x̄ = b−x;
computes x̃1 = 


√
x − a�, x̃2 = x̃ − x̃2

1, x̄1 = 

√

b − x�, x̄2 = x̄ − x̄2
1; generates

random r̃1 and r̃2 in [−2σn + 1, 2σn − 1] s.t. r̃1 + r̃2 = r, and similarly r̄1, r̄2
s.t. r̄1 + r̄2 = −r; computes the commitments Ẽ1 = E(x̃2

1, r̃1), Ẽ2 = E(x̃2, r̃2),
Ē1 = E(x̄2

1, r̄1), and Ē2 = E(x̄2, r̄2); and executes the proofs of knowledge listed
in the above definition. We denote the above proof of knowledge by PK[x, r :
E = E(x, r) ∧ x ∈ [a − α, b + α].

The last cryptographic building block we need is the verifiable ElGamal en-
cryption of an exponent.

Definition 14 (Verifiable ElGamal encryption of an exponent). Assume
U holds a secret r, and has published the value ω = χr. Here χ is a generator of
a group F of order n, where n may be prime or composite, and 0 < r < n. We
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assume that the DDH assumption holds in F . It is possible for U to prove in zero-
knowledge that a pair (A = r−1ya, B = ga) mod n, is an ElGamal encryption
under public key y of the exponent of ω to basis χ.

We denote it by: PK[r : ω = χr ∧A = r−1ya ∧B = ga]. The proof can be found
in [28], and we repeat it here for convenience. For i in {1, . . . , ν}, U generates
random ti, and computes gi = gti , yi = yti , and ωi = χyi . Next, U computes

c = H(χ || ω || A || B || g1 || ω1 || · · · || gν || ων). (9)

Next, U computes si = ti − cia, where ci stand for the ith-bit of c. The proof
consists of c and si, i = 1, . . . , ν. In order to verify, V recomputes gi = gsiBci ,
y′

i = ysiAci , and ωi = ωy′
i , and checks that (9) holds. The rationale for the proof

is that, when ci = 0, the verifier checks that gi and ωi are correctly constructed;
when ci = 1, the verifier checks that (A, B) is the ElGamal Encryption of the dis-
crete logarithm of ω to basis χ, provided that gi and ωi are constructed correctly.
If the statement were false, U could pass only one of the verification equations,
for each i. In the random oracle model, the probability of U successfully proving
a false statement is 2−ν .

B Security Analysis

Before the introduction of a formal model of security of group signature schemes
[5], it was common practice to prove the security of a scheme by showing that it
would satisfy the various informal requirements listed in section §2. Of course, it
is impossible to be sure that any such list is complete, and in fact early schemes
failed to identify the need for resistance against coalition/collusion attacks (see
[4] for a discussion about this issue).

Thanks to the formal model, a clearer picture about the complete security
requirements of group signatures has now emerged; a scheme proven to satisfy
“full anonymity” and “full traceability” can be trusted to provide security – at
least as long as the particular computational assumptions underlying the cryp-
tographic primitives (digital signatures, encryption, proofs-of-knowledge) used
in the scheme hold up. Unfortunately it is challenging to provide a proof in the
new model. The only example of such a proof is for the general construction
given in [5] itself. While that construction shares similar design principles with
ours, their proof works in a different model of computation. In particular, secu-
rity conditions for the proofs-of-knowledge are defined in the Common Reference
String model. On the other hand, the primitives used in our scheme are provably
secure only in the Random Oracle Model (ROM). Indeed, ALL primitives based
on discrete logarithms (which we must use if the scheme is to be functionally
trapdoor-free) are only proven secure in the ROM model. Thus, in order to pro-
vide a formal security proof, we would have to adapt the framework of [5] to the
ROM setting. We plan to pursue this direction in a future journal publication
of this work. In this section we will give some arguments on how such a formal
proof would work for our scheme. Before we proceed, however, we would like
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to remark that it is simple to prove the security of our scheme by going over
each property in §2. In fact, the only requirement that is not clear from the
construction is security against coalition attacks. Equivalently, it is not obvious
whether group membership certificates are unforgeable even if some (or all) the
group members conspire to share their secrets, because our scheme uses a new,
modified Nyberg-Rueppel signature for certificate issuance. Indeed, certificate
unforgeability is equivalent to the property that this signature be existentially
unforgeable under active attacks. We now prove the security of the modified
Nyberg-Rueppel.

Proposition 1 (Forking lemma for modified Nyberg-Rueppel). Let A
be an adversary which attempts to forge modified Nyberg-Rueppel signatures on
messages issued under the public key y = gx. Assume A has a non-negligible
probability of success, as computed over the sample space of messages m, random
tapes r and random bases g1. Then A has a non-negligible probability of success
of computing relative discrete logarithms in the group G.

Proof. Since A has non-negligible success probability over sample triples (m, r,
g1), a standard product sample argument can be used to show that for a non-
negligible set of choices of values for the first two components, (i.e., values for the
message m and random tape r) the algorithm has a non-negligible probability
of success over choices for the remaining component (the basis g1 in G). Now
consider the following reduction to the relative discrete logarithm problem. Given
two arbitrary values g2 and g3 in G, choose (with non-negligible probability of
success) values m and r such that A can forge signatures on message m with
random tape r for a non-negligible subset of bases g1 in G. Then, with non-
negligible probability, both g2 and g3 will belong to that subset. But this implies
that A can compute a pair (m, r) and values s and s′ such that gm

2 = ryrgs

and gm
3 = ryrgs′

. Dividing the equations, we get
(

g2
g3

)m

= gs−s′
, which implies

dlogg3
(g2) = s−s′

m .

Proposition 2. The modified Nyberg-Rueppel signature scheme, as a signature
scheme on short messages, is existentially unforgeable under chosen message
attacks, if the discrete logarithm problem is hard in G.

Proof. Since we are considering short messages only, there is no need to use the
random oracle model. The previous proposition reduces such forgeries to the
hardness of discrete logarithm computations. Of course the reduction is “loose”
by a factor of 2: If you can forge signatures with probability at least p, the
probability of successful computation of discrete logarithms is at least p2.

Notice that the SIGN protocol is a Schnorr-type signature scheme, in the
sense that it binds all the signature parameters in a single hash computation,
and the signer’s secret is a discrete logarithm. In fact, the signature itself includes
a proof of knowledge of discrete logarithm of the signer’s public key with respect
to a fixed basis (also tied in the hash computation). Such constructions can be
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proven secure in the random oracle model [26]. In other words, individual group
member signatures are secure against existential forgery by adaptively chosen
message attacks.

Consider now the anonymity game. The attacker has corrupted all secret
keys of all group members. It is allowed to query an OPEN oracle for opening
arbitrary valid signatures. After possibly some interaction with the oracle it can
choose two identities i0 and i1 and a message m. The adversary challenge σ is
then a valid group signature on m that is known to have been issued by either
i0 or i1 with equal probability. The adversary is allowed to further interact with
the OPEN oracle, but is now restricted not to query the oracle with the challenge
(m, σ).

Claim (Reduction to passive attacks). Assume that the group member signature
is secure against existential forgery by adaptively chosen message attacks, and
that it implements a sound zero-knowledge proof of knowledge of a certificate
on a pseudonym and its associated secret. If there is an efficient attacker that,
upon interacting with an OPEN oracle, can guess the identity of the signer on
the challenge with non-negligible advantage over a random guess, then there is
an efficient attacker without access to an OPEN oracle that can similarly guess
the identity of the signer with non-negligible advantage over a random guess.

Argument. The idea for the proof is as follows: Let A0 be an attacker with
access to the oracle, and A1 an attacker that has full access to ALL the group
members for all time – i.e., it is able to see the internal state of the group
members that lead to computation of group signatures (except that he cannot
see the computation of the challenge). However, A1 is not given access to the
oracle. Let Q be some query made by A0 to the oracle. If the oracle accepts
and decrypts the message, then it means that either the query included a valid
group member signature or that the proof of knowledge was forged. Since we
assume the proof of knowledge is sound, this second case can only happen with
negligible probability. Therefore, with overwhelming probability the adversary
either submitted a signature previously computed by some group member, or A0
constructed a new signature using his knowledge of one of the group member’s
secret key. In the latter case, A0 already knew what the response of the oracle
would be and could have continued the computation without need of the query
Q. In the former case, A0 does acquire knowledge through the interaction, but
this knowledge is available to A1 through its access to the internal state of all
group members through time. So with overwhelming probability we can reduce
a computation of A0 to one of A1.

Claim (Full anonymity). Under the assumptions of the previous proposition, and
assuming further that the signature of knowledge composes well with ElGamal
encryption, our group signature scheme provides full anonymity.

Argument. Since the identity of the signer is encrypted using ElGamal, which
is semantically secure, it is safe against passive attacks on the encryption scheme,
as long as the proofs of knowledge compose well with it. But from the previous
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proposition, we know that an adversary does not gain any significant advantage
from accessing the OPEN oracle, i.e., from staging active attacks against the
encryption scheme.

Remark 2. Such a result may sound surprising, specially in view of the proof
in [5], which implies that in order for a group signature scheme to be secure
in the formal model it is required that the cipher used be secure against chosen
ciphertext attacks, whereas our scheme uses ElGamal, which is only semantically
secure. Still, in light of results such as [27], it is at least conceivable that semantic
security is sufficient if the proofs of knowledge are non-malleable.

Moreover, our scheme can be easily modified to use Cramer-Shoup encryp-
tion instead of ElGamal. This will only require adding the authenticating tags
to each of the two ElGamal encrypted pairs (Y1, Y2) and (R1, R2) and verifying
such tags during signature verification as well as before decrypting within the
signature opening algorithm. (Notice that the authenticating tags can be shown
well-constructed without requiring knowledge of the Cramer-Shoup scheme’s pri-
vate keys.)

The second property we should prove is the full traceability.
Claim (Full traceability). Under the assumptions of the previous claims, and
using the fact that the modified Nyberg-Rueppel signature is unforgeable under
chosen message attacks, our group signature scheme is fully traceable.

Argument. To prove such a claim one must show the impossibility of an ad-
versary to produce a signature that, when opened, reveals either an invalid
pseudonym or a valid pseudonym whose secret is unknown to the attacker. In
each case, the attacker must either be capable of forging the proof of knowledge
of a certificate on a pseudonym and associate secret, or must be able to produce
certificates for new, invalid users. ( Forging a new certificate for a valid, uncom-
promised user would NOT suffice, for the adversary would still have to prove
knowledge of the pseudonym secret. ) The latter case is not possible because the
modified Nyberg-Rueppel is existentially unforgeable under chosen message at-
tacks. The former case would violate the assumption that the Schnorr signature
implements sound proofs-of-knowledge.

C An Alternative Construction in the RSA Ring

In this appendix we briefly describe another possible realization of the scheme.
Much of the notation and procedures are the same as in section 4. The shared
parameters are chosen differently. We define G to be the group of quadratic
residues in the RSA ring generated by a composite modulus which is a product
of safe primes. Namely, a trusted party generates two safe primes p, q, and
publishes n = pq. After constructing a proof that n is formed correctly, the third
party may forget its factorization, as it is not needed for the scheme. The group
F is chosen as a group of order n. For that, one searches for a prime p̂ so that
p̂ = mn + 1, where m is a small number. One then sets F to be the subgroup of
m-powers in the group Z∗

p̂. The group-specific parameters are the same.
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The JOIN protocol is little changed. There are no restrictions on the value
of r = IUg−k mod n, where k is chosen in the interval [−2τ+2κ, 2τ+2κ − 1]; as
before, κ stands for the bitlength of |G|. The terms a, b, and s cannot be reduced
modulo the unknown order of G, which is unknown.

Table 5. Shared and group specific parameters.

Shared parameters

Security parameters δ, ε, σ1, σ2, τ (integers);

Secure hash function H(·) : {0, 1}∗ −→ {0, 1}τ;

n, a composite integer, the product of safe primes;

p̂, a prime satisfying p̂ = mn + 1, where m is small;

G = {x ∈ Z∗
n : ∃ a ∈ Z∗

n s.t. x ≡ a2 mod n};
F = {x ∈ Z∗

p̂ : ∃ a ∈ Z∗
p̂ s.t. x ≡ am mod p̂};

P, an (optional) proof that n is a product of safe primes;

g, g1, and g2, generators of G;
P ′, an (optional) proof that g, g1, and g2 are quadratic residues.

Group-specific parameters

S, a string including y and y2;

CA’s signature CERTCA(S).

Table 6. The JOIN protocol.

U −→ GM : JU = Im mod n

GM −→ U : a, b ∈ [−2τ/2+κ, 2τ/2+κ − 1]
U −→ GM : Sig

U
(IU = Ja

U gb
1 mod n, PK[u : IU = gu

1 ])
GM −→ U : r = IU g−k mod n,

s = −xr + k ∈ [−22κ+τ+1, 22κ+τ+1 − 1]

Table 7. The SIGN protocol.

Proof arguments:

Y1, Y2, R1, R2, χ, E1.

Signature of knowledge:

SPK[u, �′, �, r, s, t : Y1 = gu
1 g�′ ∧ Y2 = g�′

2

∧ E1 = E1(r, 0) = χr ∧ R1 = r−1y�
2 ∧ R2 = g�

2

∧ E2 = Y1R1 = E2(r, s, t) = yrgsyt
2 ∧ Y2R2 = gt

2](M)

The SIGN protocol can be considerably simplified. There is no need for an
extra commitment in a group of unknown order, as the order of the group G is
itself unknown. Moreover, there is no need to prove that the r in the commitment
E1 is bounded in a certain interval, as a cheating U could not find a value
that reduces to different values r1 mod n and r2 mod φ(n) while satisfying the
signature equation, because φ(n) is unknown to U .

Protocol OPEN is unchanged from the previous case.
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