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Abstract. We study two closely related primitives: Broadcast Encryp-
tion and Key Predistribution Schemes (KPS). Broadcast Encryption
allows a broadcaster to broadcast an encrypted message so that only
a designated group of users can decrypt it. KPS allows a designated
group of users to establish a common key non-interactively. We discover
a generic method to construct efficient broadcast encryption schemes and
KPSs naturally from Pseudo-Random Sequence Generators (PRSG) by
observing that there are general “patterns” to do so. The two currently
best PRSG-based broadcast encryption schemes such as the “Subset Dif-
ference” (SD) scheme by Naor Naor and Lotspiech and its refinement,
the “Layered SD” (LSD) scheme by Halevy and Shamir, are indeed two
special cases of our method. We demonstrate the power of this generic
method by giving: (1) A solution to the most challenging variant of KPS:
the one which supports arbitrary number of users to form a group yet
secure against any collusion. We obtain a lower bound of the private key
size at each user for any PRSG-based KPSs in this setting and construct
a KPS that meets this bound. (2) An evidence that previous PRSG-based
BE schemes, such as SD and LSD, can be further improved without any
further assumption using this general method. We construct “Flexible
SD” and “Flexible LSD” broadcast encryption schemes, which require
less private key size while still maintain exactly the same broadcast size
compared to their original SD/LSD schemes.

1 Introduction

Our main contribution is a generic method to construct efficients schemes of the
two following closely related primitives naturally from Pseudo-Random Sequence
Generators (PRSG). The primitives are:

Key Predistribution Scheme. Key Predistribution Scheme (KPS) involves
n users. Each user is given a unique private key. For a group of users P ⊆
N = {1, ..., n}, any users in P should be able to non-interactively compute a
common key kP using only its private key while other receivers outside P should
not be able to do so even if they collude. Such a scheme is motivated by the
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scenario of secure conferences over network. KPS can be viewed as a special case
of broadcast encryption as we will see below.

Broadcast Encryption. Broadcast encryption (BE) involves 1 broadcaster
and n receivers. Each receiver is given a unique private key. The broadcaster
is given a broadcaster key. The broadcaster wishes to broadcast messages to a
designated set P ⊆ N = {1, ..., n} of receivers. Any receivers in P should be able
to decrypt the broadcast message using only its private key while other receivers
outside P should not be able to do so even if they collude. A broadcast encryption
scheme is sometimes called a Revocation Scheme, where one is interested in a
subset of non-privileged users or so-called revoked users rather than privileged
ones hence its name. Such a scheme is motivated largely by pay-TV systems, the
distribution of copyrighted material.

Relating 2 Primitives. In BE, a body of message is typical long and should
be encrypted by a key commonly known to P . We call such a key a message
encryption key Mek. To share Mek among P the broadcaster produces a header
Hdr such that given Hdr and a private key of user in P one can obtain Mek. If
the private keys are generated by KPS, each user in P already has a common
key before hand thus there is no need of Hdr in this case. In this sense, KPS is
known as zero-header BE.

Overview on Previous Works. KPSs were introduced by Blom [5] and for-
malized by Matsumoto-Imai [20]. Broadcast encryption schemes were first for-
mally studied by Fiat-Naor [13]. Since then, many variants of the basic problem
of KPSs and BEs are proposed. The relations of two primitives are also captured
in many works (see, e.g., [18]). Since a KPS can be viewed as a special case of a
BE, each variant of KPSs will be a variant of BEs (but not the converse). Keep in
mind that a KPS is a zero-header BE. Therefore it is enough to describe variants
of BEs as follows. To name just a few, the scheme might support bounded or un-
bounded number of privileged users and/or the maximum number of adversarial
coalition; the privileged subset of users can be fixed, slowly changing, rapidly
changing; the keys stored by each user can be stateful or stateless (to be up-
dated or not); it might be possible to trace a traitor who illegally leak its secret
key in the scenario so-called tracing-traitor ; the scheme might be symmetric-
key or public-key; and so on. We found that it is convenient to categorize the
relevant schemes by their approaches as follows. For BEs there are (1)combinato-
rial approaches: schemes using combinatorial design such as [6,23,19,18,17,15,4];
and schemes using tree structure such as [25,24,21,16,10,3] and (2)algebraic
approaches: schemes using secret sharing scheme on the exponent to perform
ElGamal-like encryption such as [2,22,11,12]. For KPSs almost all of them are
using combinatorial approaches. Most of the past works for KPSs can be found
in Kurosawa, et al. [18].

The Most Challenging Variant. We study the most challenging variant
of BE (and KPS) where it supports unbounded number of users in privileged
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subsets; unbounded number of revoked users allowed to form adversarial coalition
(adaptively by central adversary); the privileged subset does not depend on the
history; the private key stored by each user is stateless, i.e., it is fixed from the
initialization time. This combined variant is arguably the hardest but the most
desired one especially stateless scenario as argued explicitly first by Naor-Naor-
Lotspiech [21].

The Main Goal and Some Solutions. The main goal towards BE and KPS
problems is to construct efficient schemes satisfying the above mentioned variant
where for KPS: the private key size is small, and for BE: both the header size
and the private key size are small in the function of n, |P |, or r := n − |P |.
A BE scheme which solves above mentioned variant problem and satisfies good
efficiency in only one side is trivial. On one side, the private key size is inde-
pendent of n but the header size is linear in |P |. On the other side, the header
size is zero but the private key size is exponential in n. Note that the latter is a
trivial KPS, which is definitely inefficient, however, is considered the best known
solution for the above mention variant of KPS. As opposed to KPS, there are
many BE schemes which have efficiency far better than the trivial schemes. One
solution which is considered a ground work to many consequent works is due
to Naor-Naor-Lotspiech [21]. It associates each user with the leaf of a balanced
binary tree yielding a scheme called complete subtree (CS) in which the header
size is O(r log(n/r)) and the private key size is O(log n).

Major improvement to this idea were the subset difference (SD) method
in their same paper [21] and its refinement, layered SD method, by Halevi-
Shamir [16]. Both obtain the header size O(r). While the SD scheme obtains
the private key size O(log2 n), the LSD scheme obtains the private key size
O(log1+ε n) for small ε > 0. More recent improvement due to Asano [3] utilizes
the master key technique of Chick-Tavares [8] on balanced a-ary tree version
of CS where a > 2 (instead of binary tree). This scheme obtains the header
size O(r(loga(n/r) + 1)) and the private key size O(1). These 3 schemes are
considered the current state of the art for BE in the sense that while SD/LSD
scheme obtain less header size, utilize a weak computational assumption, obtain
much less computational cost; Asano’s scheme obtains minimum private key size.

The basic idea of the schemes above is a mechanism called subset-cover frame-
work [21]. Such a scheme in this framework varies to one another by (1) an
underlying collection of subsets of a particular form, and (2) techniques which
make use of computational assumption to enable the generation of many compu-
tational unrelated private keys. The improvements of recent works are primarily
due to sophisticated design of the underlying collection in (1) to shorten the
header size, and utilization of technique in (2) to shorten the private key size.

Shortening Private Key Size. Various methods to shorten the private key
size are depicted in Figure 1. We capture these in 4 types. For simplicity, let
us consider KPS where N = {1, 2, 3}. Each user u is supposed to be able to
compute the common key kS of set S ⊆ N where u ∈ S. In the trivial KPS,
user u ∈ N just stores {kS : u ∈ S ⊆ N} as the private key set. The goal now
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Fig. 1. Various methods to shorten key size: type 1-4 from left to right.

is to reduce the number of elements in the private key set (recall that KPS is
zero-header BE thus we do not worry about reducing header for now).

A natural way to do so is to let each user keep one master key which can be
used to derive all common keys that he is supposed to be able to compute. This
method is shown as type 1 in Figure 1. We denote by A → B where A ⊂ B ⊆ N
a one-way computation which takes as input kA outputs kB , i.e., one can easily
compute kB given kA but given kB it is hard to compute kA. Note that this arrow
notation applies to all types in the figure. Observe that every method in type
2 in fact also falls into type 1. The good functionality of one-way computation
of these first 2 types is that: for any different inputs which are intractable to
compute given one another, one can design a one-way computation such that it
results in the same output. This functionality give these first 2 types the very
short private key as one master key: k{u} for each user u.

The master key trick is originally introduced by Akl-Taylor [1] and Chick-
Tavares [8] and brought to the context of BE first by Asano [3]. This trick uses the
RSA assumption and falls into type 2. Another elegant trick for mastering key
is proposed recently by Boneh-Silverberg [7]. Their scheme utilizes multilinear
forms and assumes the Diffie-Hellman inversion assumption. This trick falls into
type 1. Now that we have BEs with zero-header and the private key size as
minimum as possible, so does this mean that we are done? The answer is no.
The reasons are as follows. For the trick using multilinear form, unfortunately
there is no known concrete construction of such forms up to date and it is
believed that it is hard to find ones as argued by the authors themselves. For
the trick using RSA, it turns out that such a scheme requires a large number of
primes as O(2n) which is extremely inefficient both for storing and for generation.
Note that, however, the trick using RSA works fine for non-zero-header BEs [3].
Nonetheless, for the trick using RSA in all cases, a critical disadvantage besides
the issue of primes is a heavy computation due to the modular exponentiation
with the exponent being products of many primes without knowing the order.

Type 3 is implicitly mentioned first in Akl-Taylor [1]. In this type the func-
tionality of one-way computation as opposed to the first 2 types allows only one
input per one output. User u just stores kB whenever u ∈ B ⊆ N and u �∈ A
where A → B and A appears just before B in the diagram. The method of type
3 just makes use of any length-preserving one-way functions. A natural way to
generalize this idea is to use any one-way functions that expand the length of
inputs such as pseudo-random sequence generator (PRSG) Gd(), d ∈ Z

+ which
d-ples the input, i.e., whose the bit length of the output is d times that of the
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input so that from one key, d many keys can be derived. This idea falls into type
4. The schemes which implicitly use this type of method in the context of BE
are the SD [21] and LSD [16] method. Note that there is no KPS constructed by
using this technique before. Shortening the private key size using only PRSG in
type 4 has an obvious advantage over the one using RSA in type 2 since it needs
no prime and its computation is much more efficient. Moreover, and perhaps
more critical, is that the existence of PRSG is considered a weak assumption.
Basing a cryptographic system only on a weak assumption is always preferred.

Motivation. The question is how one can use the method of type 4, shortening
the private key size by utilizing PRSG, at its most beneficial. We take a look
back into the schemes which implicitly utilize this method: the SD and LSD
schemes. Although the balance tree representation which is used in SD/LSD has
good properties since it somehow captures the nature of PRSGs in the sense
that it utilizes PRSG by letting some values related to some parent nodes input
to a PRSG so that a PRSG outputs some values related to their child nodes.
However, the strict structure of subset difference is too rigid to capture the good
properties from PRSGs thus the optimality of LSD scheme which argued by
Halevi-Shamir [16] in their work is worked only for their structure. To obtain
the most beneficial from PRSG, more flexible generalization of the idea must be
rigorously captured.

Our Main Results. We observe that there are general “patterns” to construct
broadcast encryption schemes and KPSs naturally from PRSGs. We call such
a pattern a sequential key derivation pattern. We demonstrate the power
of this general patterns by giving:

1. A solution to the most challenging variant of KPS: the one which supports
arbitrary number of users to form a group yet secure against any collusion.
We obtain a lower bound of the private key size at each user for any PRSG-
based KPSs in this setting. This lower bound of the private key size appears
to be O(1/n) times that of information-theoretically secure KPS in the same
setting [9]. We then propose an optimal construction of KPS which meets
the bound. This construction makes use of a new combinatorial structure
which is of an independent interest.

2. An evidence showing that previous best PRSG-based BE schemes, SD and
LSD, can be further improved without any further assumption by using this
general method. To do this, we construct “Flexible SD”(FSD) and “Flexible
LSD”(FLSD) broadcast encryption schemes. Such schemes require, although
asymptotically the same, less exact private key size while still maintain ex-
actly the same broadcast size compared to the original SD/LSD schemes.
More concretely, the number of private keys are reduced at most log n from
the original schemes. This reduction depends on the user index. In particu-
lar, in the FSD and FLSD scheme, there are exactly n/2 users and n/2

√
log n

users who store exactly log n fewer keys than that of the SD and (Basic)
LSD scheme respectively.
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Table 1. Summary of results compared to previous works. The parameter in each KPS
is the storage size at user: the first term in the addition is private key size, the second
term is non-secret storage. The parameters in each BE consists of the private key size
(in terms of the exact number of elements) in the upper row, and the header size (in
terms of bound on the exact number of elements) in the lower row. The parameter
wu, zu are functions of user index u, for u ∈ N (see Theorem 2 and 3 for detail).

Based on → Multilinear form RSA PRSG
(type 1) (type 2) (type 4)

Generic
utilization [7] [8] (This work)
of technique
KPS [7] [3](implicitly),[4] (This work)

O(1) + O(n) O(1) + O(2n log n) O( 2n

n
) + 0

BE -
[3]
1
r(loga(n

r
) + 1)

SD[21]
keySD = (log2 n + log n)/2 + 1
2r − 1
(Basic)LSD[16]
keyLSD = log3/2 n + 1
4r − 2
FSD(This work)
keySD − wu, 0 ≤ wu ≤ log n, u ∈ N
2r − 1
FLSD(This work)
keyLSD − zu, 0 ≤ zu ≤ log n, u ∈ N
4r − 2

2 Definitions

Definition 1 (Broadcast Encryption, BE). A Broadcast Encryption
Scheme ( BE) is a 3-tuple of polynomial-time algorithms (Keygen, Encrypt,
Decrypt), where:

BE.Keygen(1λ, n): Takes as input a security parameter 1λ, the number of users
n. It outputs n sets of receiver keys I1, ..., In and a sender key T .

BE.Encrypt(P, T, Mek): Takes as input a subset P ⊆ N := {1, ..., n} of privi-
leged users, the sender key T , and a message encryption key Mek. It outputs
a header Hdr of the ciphertext.

BE.Decrypt(P, Hdr, Iu): Takes as input a subset P ⊆ N , a header Hdr, and a
receiver key Iu. It outputs the message encryption key Mek that was sent if
u was in the set P , or the special symbol ⊥ otherwise.

In practice, it is used in conjunction with a symmetric encryption algorithm F
to encrypt the message body M under the message encryption key Mek resulting
in a broadcast body CM . The broadcast to receivers consists of (P, Hdr, CM ).

The security notion for broadcast encryption that we concern here is the
one considered by Naor, et al. [21], where the security against chosen-ciphertext
attack with adaptive user-corruption is defined.

In the same paper [21], the authors presented the subset-cover algorithm as
a sufficient condition to construct such a broadcast encryption scheme. Here we
recap its definition as the following. Notice that it is slightly different in context
from the original one.
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Definition 2 (Subset-Cover Algorithm, SC) A subset cover algorithm SC
is a 2-tuple of polynomial time algorithms (DefineSet, Cover), where:

SC.DefineSet(n) :Takes as input the number of users n. It outputs a family S
of subsets of N and a user structure Γ (for example, a binary tree of users).

SC.Cover(P,S) :Takes as input a privileged subset P of users, the family S
defined from DefineSet. It outputs a partition SP := {Si1 , Si2 , ..., Sim :
Sij ∈ S} of P , i.e., P =

⊔m
j=1 Sij , such that the number of subsets in its is

the minimum among all possible partitions of P by S.

A broadcast encryption in the subset-cover framework is a broadcast encryp-
tion scheme that makes use of subset-cover algorithm as its subalgorithm as
follows.

BE.Keygen(1λ, n) Run SC.DefineSet(n) to get (S, Γ ). From Γ , it determines
subset key k(Si) for each Si ∈ S. Then it defines Iu to be the set of λ-bits
strings containing the minimal elements yet still being sufficient to easily
deduce each subset key k(Si) where u ∈ Si from Iu. The broadcaster key T
is the set consisting of all the subset keys.

BE.Encrypt(P, T, Mek) Run SC.Cover(P,S) to obtain {Si1 , Si2 , ..., Sim}. The
Mek is encrypted by an encryption scheme E by each subset key k(Sij ), j =
1, ..., m yielding a Hdr:

〈(i1, Ek(Si1 )(Mek)), ..., (im, Ek(Sim )(Mek))〉

BE.Decrypt(P, Hdr, Iu) Parse Hdr as 〈(i1, c1), ..., (im, cm)〉, it finds ij such that
u ∈ Sij (in case u �∈ P the result is null). Denote D the decryption algorithm
corresponding to E. It uses Iu to derive k(Sij ) then computes Dk(Sij

)(cj) to
obtain Mek.

Also in the same paper [21], they define a security notion for broadcast en-
cryption in the subset-cover framework namely, Key Indistinguishability (kIND)
and prove that BE in the subset-cover framework is a secure broadcast encryp-
tion if it holds kIND and the corresponding encryption scheme E and F are
IND-CCA1 secure. Therefore when proving the security of such a BE which is
constructed in this framework, we just prove that it holds kIND. Informally,
kIND says that any polynomial-time adversary can but with a negligible prob-
ability distinguish the subset key of privileged subset P of its choice from a
random string of the same length even getting to know all private keys of users
outside P .

Definition 3 (Key Predistribution Scheme, KPS). A Key Predistribution
Scheme KPS consists of a polynomial-time algorithms KeyGen, where:

KPS.Keygen(1λ, n) Takes as input a security parameter 1λ, the number of users
n. It outputs n sets of user keys I1, ..., In such that for S ⊆ N and S �= ∅, a
conference key k(S) can be derived from Iu if and only if u ∈ S.
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Observe that we can use KPS.Keygen for BE.Keygen resulting in a broadcast
encryption in the subset-cover framework in which S is a collection of all non-
empty subsets of N . Consequently, we just let BE.Encrypt(P, T, Mek) output
nothing (zero-header) and let Mek to be k(P ). In this sense, KPS can be viewed
as zero-header BE. Therefore, the security notion for KPS is indeed the key
indistinguishability notion mentioned before.

3 Broadcast Encryption from PRSG

3.1 Generic Broadcast Encryption

We formally capture the nature of broadcast encryption scheme which is con-
structed from pseudo-random sequence generator into a general “pattern”. We
call such a pattern Sequential Key Derivation Pattern or SKDP. This pat-
tern was actually explained briefly in the introduction as the type 4 method
to shorten the private key size. We formalize it here. We begin by giving the
definition of this pattern first and explain later.

Definition 4 (Sequential Key Derivation Pattern, SKDP). Let N :=
{1, 2, ..., n}. Let Γ be a forest of rooted trees in which each node is labelled a
different subset of N . We say that (N, Γ ) is a sequential key derivation pattern
if:

1. The label at each node which is not a root in each tree is a superset of the
label at its parent node.

2. For every subset S of N , S can be partitioned into a disjointed union of
subsets labelled at some nodes in Γ .

Notation. A forest Γ is specified by a set of nodes and a set of edges. Since
each node is labelled a different subset of N , we represent a node as its label.
One edge is defined by an ordered pair of nodes directed toward from their root.
A path from root to leaf is defined by an ordered set of nodes on that path
directed toward from their root. We will call a path from root to leaf a rl-path.
The set of all rl-paths in Γ is denoted by Path(Γ ). An i-th node from root in
rl-path a is denoted by a[i]. Observe that for a ∈ Path(Γ ) it is true from the
property 1 that a[i−1] ⊂ a[i], thus we denote a[i]\a[i−1] by 
a[i] and call it a
differential label at node a[i] for i ≥ 1. Let 
a[0] = a[0]. For a ∈ Path(Γ ) define
a differential path 
a as an ordered set of all differential labels in the rl-path a.
Denote the set of all differential paths in Γ by DPath(Γ ). Denote � the opposite
operation of 
, i.e., if p = 
a then �p = a for a ∈ Path(Γ ),p ∈ DPath(Γ ). For
clarity, note that �p[i] = (�p)[i]. Denote a�i the ordered set in which elements
are taken from the first i elements of a in the same order. Also we often call a
label an absolute label to distinguish it from a differential one.

An example of SKDP is the one shown as type 4 in Figure 1. A path 2 →
12 → 123 is an example of rl-path. We represent it as a = ({2}, {1, 2}, {1, 2, 3}).
The corresponding differential path is thus 
a = ({2}, {1}, {3}).
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Intuitively, each node is assigned a subset key of its label (recall that its label
is a subset of N). Informally, the property 1 in the above definition allows the
one-way computation from a subset key of a node say v to subset keys of its child
nodes say v1, ..., vd. The property 2 makes sure that the subset-cover algorithm
can be used. Note that in the following generic scheme, we will not use subset
key to compute another subset key directly but will use an intermediate key as
we will see later.

The cryptographic primitive that is used for one-way computation is pseudo-
random sequence generator Gd(), d ∈ Z

+ that d-ples the input, i.e., whose output
length is d times the length of the input. We say that Gd : {0, 1}λ → {0, 1}dλ

is a pseudo-random sequence generator if no polynomial-time adversary can
distinguish the output of Gt on a random chosen seed from a truly random
chosen string of similar length.

Generic Construction. Now we will formally describe the generic broad-
cast encryption in the subset-cover framework that makes use of SKDP (N, Γ ).
It is enough to specify only SC.DefineSet, SC.Cover, and BE.Keygen since
BE.Encrypt and BE.Decrypt can be applied transparently from the last section.

SC.Defineset(n) It defines S as the sets of labels at all nodes in Γ . It also
output Γ as given from SKDP.

SC.Cover(P,S) Due to the property 2 of SKDP, each subset P of N can be
partitioned into a disjointed union of subsets labelled at some nodes in Γ ,
thus a disjointed union of subsets in S. It partitions the set P into SP :=
{Si1 , Si2 , ..., Sim : Sij ∈ S} with the minimum numbers of subsets.

BE.Keygen(1λ, n) Before specify the algorithm, the definitions of intermediate
key, subset key, and their relation are specified first as follows:
Intermediate Key. Each subset Si ∈ S is assigned an intermediate key

t(Si). Each user in Si, say u, should be able to derive t(Si) from Iu.
Subset key. Each subset Si ∈ S is assigned a subset key k(Si). A subset

key k(Si) can be derived from the intermediate key t(Si). We say that
a node is assigned a subset key k(Si) if that node is labelled Si.

Derivation. Let Si be a subset labelled at a node which is not a leaf in
Γ . Suppose that the outdegree of this node is d. Let Si1 , Si2 , ..., Sid

be
subsets labelled at its children and i1 < ... < id. The derivation is defined
as:

t(Si1)||t(Si2)||...||t(Sid
)||k(Si) := Gd+1(t(Si))

where |t(Si1)| = ... = |t(Sid
)| = |k(Si)| = λ bits and || is concatenation.

This recurrence relation is well defined if all the initial values, which in
fact are all the intermediate keys assigned at root of unconnected trees
of the forest, are defined.

Now we will specify BE.Keygen. It randomly chooses λ-bits strings in ex-
actly the same number as the number of unconnected trees in Γ . It then
assigns each string to be the intermediate key assigned at the root of each
unconnected tree respectively. User u should be given the intermediate key
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assigned at the node whose label contains u, say node v, which appears first
when looking from root to leaf in such a rl-path so that u can derive all the in-
termediate keys assigned at v’s descendants, whose labels are some supersets
of label at v; but not the ones assigned at v’s ancestors, whose labels do not
contain u. That is, Iu is the set of all intermediate keys at nodes whose dif-
ferential labels contain u. Formally Iu = {t(a[i]) : u ∈ 
a[i],a ∈ Path(Γ )}.

Theorem 1 The above generic broadcast encryption scheme from SKDP satis-
fies the kIND property assuming secure pseudo-random sequence generator.

Remark 1: A Note on Public Key Extension. Public-key extension of our
generic broadcast encryption from SKDP can be constructed directly by utilizing
Hierarchical Identity-Based Encryption [14] with the hierarchical tree obtained
by connecting all roots of unconnected tree in Γ of SKDP to a new central root.
This is indeed the same method as proposed by Dodis-Fazio [10], but we believe
that our interpretation provides a better understanding.

3.2 Flexible SD/LSD Broadcast Encryption

We construct schemes called Flexible SD/LSD to demonstrate the power of our
generic method. In general, the following mechanism is just one example of
conversion from any PRSG-based broadcast encryption schemes into schemes
which yielding less private key size while maintaining exactly the same header
size. Moreover, with a further adaptation, we can reduce also the header size
by trading off the computational cost. In particular, we apply this conversion to
the SD scheme [21] and the LSD scheme [16] to get the Flexible SD and LSD
schemes (FSD/FLSD) respectively. We call them flexible since their structures
came from a flexible generalization of the idea by our general method.

We assume that the reader is familiar with the SD/LSD scheme. Observe
that the SD/LSD schemes are indeed two such patterns of SKDP. The SKDP
which implicitly used in SD is shown explicitly in Figure 2(left). The SKDP for
LSD scheme is just an adaptation of SD scheme with the absence of some labels
from SD scheme.

The conversion is very simple. Intuitively we just split the differential label
of each node which is not a singleton subset of N in the original scheme into a
union of differential labels which are singleton subsets and connect them in an
appropriate order (step 1). After step 1, some of rl-paths will become sub-paths
(from root) of some other rl-paths. Observe that such repetition parts represent
the same sets of absolute labels. Therefore we can delete those sub-paths from
the collection of all rl-paths since doing this does not affect the collection of
absolute labels, and thus also the header size. These deletions reduce the private
key size. In step 3, absolute labels which are not absolute labels in the original
schemes are combined until there is no such case. We do this since these labels
are not needed for subset-cover algorithm. They would only make rl-paths too
long, consequently increase the computational cost. However, as we will see later,
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step 3 can be skipped and we will obtain a scheme which beside the private key
size, the header size is also reduced. Note that the procedures in the following
description are somewhat made redundant for a better understanding.

The FSD and FLSD Scheme. Let X be SD or LSD scheme. Let (N, ΓX) be
a SKDP for X scheme. The conversion from X scheme to FX scheme is done as
follows:

Step 1 For each p ∈ DPath(ΓX), let |p| = p and |p[i]| = ki and do the following:
1. For i : 0 ≤ i ≤ p−1, parse p[i] as {ai,1, ..., ai,ki

} where ai,1 < · · · < ai,ki
.

2. Define f(p) = ({a0,1}, ..., {a0,k0}, {a1,1}, ..., {a1,k1}, ..., {ap,1}, ...,
{ap,kp

}).
After all, let A = {f(p) : p ∈ DPath(ΓX)}.

Step 2 For any v,w ∈ A such that v = w�|v|, we decrement A to be A \ {v}.
Repeat this until there is no such case.

Step 3 For each q ∈ A, if there is j such that �q[j] �∈ SX then renew q to be
(q[0], ...,q[j −1],q[j]∪q[j +1],q[j +2], ...,q[|q|−1]). Repeat this until there
is no such case.

Step 4 Finally we let DPath(ΓFX) = A.
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Fig. 2. Differential path representation of SKDP for SD (left) and FSD (right).

Theorem 2 For 1 ≤ u ≤ n − 1, let xu := max{k : 2k | u}. Then

|Iu,FSD| = |Iu,SD| − log n + xu,

and |In,FSD| = |In,SD|. Recall that |Iu,SD| = (log2 n+log n)/2+1 for all u ∈ N .

Proof. It is enough to show how many differential paths containing u are
deleted in step 2. We put the label N away for a while. For 1 ≤ k ≤ log n, let Bk

be the collection of all k-length differential paths of SD. Wlog, we consider the
deletions in B1, ..., Blog n−1 respectively. By inspection, for each k, differential
path p ∈ Bk will satisfy f(p) = f(p′)�|f(p)| for some p′ ∈ Bk′ , k′ > k iff

f(p) = ({q2k + 1}, {q2k + 2}, ..., {q2k + 2k − 1}),
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for some q ∈ Z
+. Thus there will be no deletion for user u iff 2k | u. Hence in

the last step, when considering k = log n − 1, the number of deletions for u will
be log n − 1 − max{k : 2k | u} = log n − 1 − xu. Finally, if u �= n, then there is
one more deletion from the label N thus the reduction will be log n − xu. �

To illustrate this theorem, one can verify from Figure 2 that: in FSD, for
u = 1, 3, 5, 7 : |Iu| = 4, for u = 2, 6 : |Iu| = 5, and |I4| = 6,|I8| = 7; while in SD,
|Iu| = 7 for all u ∈ N . The following corollary follows directly from Theorem 2.

Corollary 1 In the FSD scheme, for 1 ≤ j ≤ log n, there are exactly n/2j users
whose the number of keys is |Iu,SD|− log n− 1+ j. And only one remaining user
has |Iu,SD| keys.

In the following theorem, we concern only the basic LSD (bLSD) scheme for
simplicity. The results for general LSD schemes can be obtained similarly.

Theorem 3 For 1 ≤ u ≤ n − 1, let xu := max{k : 2k | u}. Then

|Iu,FbLSD| = |Iu,bLSD| − log n + xu + yu,

where

yu = |{j : 1 ≤ j ≤ log n,
√

log n � j, 2j −2� j√
log n

�√
log n +1 ≤ u mod 2j ≤ 2j −1}|,

and |In,FbLSD| = |In,bLSD|. Recall that |Iu,bLSD| = log3/2 n + 1 for all u ∈ N .

Intuitively, the term yu comes from the number of differential labels contain-
ing u that were in SSD and would have been deleted in step 2, but are not in
SbLSD. Note that yu ≤ log n − xu since we just add back what we would have
deleted if it were SD scheme.

Analogous to Corollary 1, in the FbLSD scheme we could indeed show the
exact number of users in the function of the number of keys. However, it turns
out that the expressions are quite complex. We thus state only a particular case
when the number of keys is the fewest to give some intuition as the following.

Corollary 2 In the FbLSD scheme, there are exactly n/2
√

log n users whose the
number of keys is |Iu,bLSD| − log n.

Theorem 4 The FSD/FLSD scheme require the same header size as the origi-
nal scheme for every instance and the computational cost bounded by O(log2 n).

We briefly prove this theorem. First, the header size is remain unchanged
since SX = SFX. Second, it can be shown that the longest rl-path contains
(log2 n + log n)/2 edges which is O(log2 n).

Remark 2: On Reducing the Header Size. If we skip step 3, then there are
some labels which are in SFX but not in SX. This means that in the FX scheme
we have more choices to cover any privileged subsets hence the header size will
be reduced for some instances of broadcast. On the down side, the longest rl-
path will have length n resulting in increasing computational cost. Nevertheless,
to skip or not to skip step 3 are the two extreme cases on the spectrum. In this
sense, we can trade off the header size and the computational cost.
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4 Key Predistribution Scheme from PRSG

4.1 Lower Bound

Theorem 5 Every PRSG-based KPS satisfies maxu∈N |Iu| ≥ �(2n − 1)/n�.

Note that this is O(1/n) less than the lower bound in the information-
theoretically secure KPS in the same setting in which such a bound is 2n−1 [9].

A further fact from the proof of this theorem is that two necessary conditions
to make an equality holds are: (i) The differential label at each node must be a
singleton set. (ii) For each u ∈ N , |Iu| is equal to �(2n − 1)/n� or �(2n − 1)/n�.

4.2 An Optimal Construction

Intuition. To design a set of differential path DPath(Γ ) to represent a SKDP
for an optimal KPS, we have to make sure the following requirements1:

– It really represents a SKDP: the (absolute) labels at any two different nodes
are different. For example, there is no such path from root (not necessary to
leaf) 1 → 12 and 2 → 12 appear simultaneously; that is to say there is no
differential path 1 → 2 → · · · and 2 → 1 → · · · at the same time.

– It can be used for KPS: the set of (absolute) labels at all nodes completes
the set of non-empty subsets of N .

– It is optimal: for each u ∈ N the number of differential labels which u appears
is �(2n − 1)/n� or �(2n − 1)/n�.
Consider the case where n is a prime larger than 2. When n is not a prime,

a construction can be achieved similarly but is more complex. Theorem 5 can
be intuitively interpreted as the following: First due to the fact (i), for each
nonempty S ⊆ N it must be that t(S) ∈ Iu for only one unique u. If we put
t(N) away for a while. All other 2n−2 intermediate keys for non empty-subset of
N must be distributed equally to each u so that |Iu| = �(2n−1)/n� = (2n−2)/n.
Note that this is an integer due to the Fermat’s little theorem. Finally we pick
one unlucky user say v and increment Iv to be Iv ∪ {t(N)} so that only v,
|Iv| = �(2n − 1)/n� = (2n − 2)/n + 1 and we will be done since this is optimal.

The question now is how to distribute 2n − 2 values of t(S), S ⊂ N, S �∈ ∅
equally to each Iu,u ∈ N . We accomplish this by first constructing a structure
called block. One block contains n fix-length differential paths in which labels
are all different. Each block has a property that the number of differential labels
which u appears is equal for every u ∈ N . Thus we just let DPath(Γ ) to be
composed of many blocks so that we would accomplish the task. However, the
difficulty arises since we have to make sure also that any absolute labels from
different blocks of the same length are different (as the requirement 1) and the
set of all differential paths of length i completes the set of i-subsets of N (as
requirement 2). This turns out to be a non-trivial task. We achieve this by
1 Figure 4(lower part) should be helpful to get some insight.
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defining an equivalence relation between blocks of the same length: informally
two blocks are said to be equivalent if the set of labels from two blocks are the
same. Therefore we just pick one block from each equivalence class into which
this relation partitioned to completes DPath(Γ ) and we will be done. However,
to pick a i-length block, it has to be consistent with some a (i − 1)-length block
picked previously in the sense that all absolute labels of the first i nodes away
from the root in each path in two blocks are the same. To accomplish this, we
define a relation called splitting relation between every two complete collections
of classes in which length of blocks are consecutive, say i−1 and i. This relation
will imply a set of chains that relate from block of length 1 to that of length 2
and so on. Consequently, instead of picking up a block, we will pick up a chain
and we will be done. Note that due to (i), wlog, from now on we consider each
differential label as an element in N instead of a singleton subset of N .

Building Blocks. Now we will formally define the structure “block” and its
equivalence relation. Each block is generated by a vector from the space Dk :=
{(d1, ..., dk) ∈ (N∗)k : ∀a < b,

∑b
j=a dj �≡ 0 (mod n)} where we let N∗ =

{1, ..., n − 1}. Figure 4(upper part) shows examples of block.

Definition 5 (Block) For a set F ⊆ N and a vector d = (d1, ..., dk−1) ∈
Dk−1, we define a block generated by d over F as

〈d〉F = {(a, a + d1, a + d1 + d2, ..., a + d1 + · · · + dk−1) mod n : a ∈ F},

and denote it as 〈d〉F . When F = N , we simply denote 〈d〉.
Recall that each element in a block is a differential path whose all differential

labels are singleton subset of N so we can treat such a differential path as a vector
for simplicity. Furthermore one can verify that if n is prime, no absolute labels
from any different differential paths in the same block are the same.

Definition 6 (Equivalence Relation ≡) For vectors d, e ∈ Dk−1, we say
that d is equivalent to e over set F , and write d ≡F e, if

{�p : p ∈ 〈d〉F } = {�p : p ∈ 〈e〉F },

and when F = N , we simply denote d ≡ e.

It is easy to verified that ≡ is an equivalence relation on the set Dk−1, i.e., it
has reflexivity, symmetry, and transitivity. So what will the equivalence classes
into which the relation ≡ partitions Dk−1 be like? First, we consider the following
lemma. Let Πk denote a set of all permutations of (0, 1, ..., k − 1).

Lemma 1 For d = (d1, ..., dk−1), e = (e1, ..., ek−1) ∈ Dk−1 let d0 := n −
∑k−1

j=1 dj mod n, e0 := n − ∑k−1
j=1 ej mod n, we have d ≡ e if and only if there

exists (r0, r1, ..., rk−1) ∈ Πk such that for all 0 ≤ i ≤ k−1, ei =
∑ri+1−1 mod k

j=ri
dj

mod n, where we let rk := r0 and
∑a

j=b dj := db +db+1+ · · ·+dk−1+d0+ · · ·+da

when a < b.
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Definition 7 For r ∈ Πk, d′ = (d0, ..., dk−1) ∈ (N∗)k such that
∑k−1

j=0 dj ≡ 0
(mod n), let

d′ � r := (
r1−1 mod k∑

j=r0

dj ,

r2−1 mod k∑

j=r1

dj , ...,

r0−1 mod k∑

j=r(k−1)

dj) mod n.

Lemma 1 implies that such an equivalence class is of the form [d′] := {d′ �r :
r ∈ Πk}. To see the concrete classes, we first consider d′, e′ such that

∑k−1
j=1 dj =

∑k−1
j=1 ej = n. One can verify that [d′] = [e′] if and only if d′ is a cyclic permuta-

tion of e′. Next observe that for an arbitrary d ∈ Dk−1 there will be r ∈ Πk and
v = (v0, ..., vk−1) ∈ (N∗)k where

∑k−1
j=1 vj = n such that d ∈ [v � r]. Therefore

the complete collection of these equivalence classes is the collection of classes [v]
where each v is a cyclic positive k-partition of n. We denote this collection of
equivalence classes as En,k. For example, E6,3 = {[411], [321], [312], [222]}.

From now, if we write [v] ∈ En,k it is to be understood that v = (v0, ..., vk−1)
∈ (N∗)k and

∑k−1
j=0 vj ≡ n (mod n) unless something else specified; in addition

we will say that v is a representative vector of class [v].

Definition 8 (Splitting Relation) A splitting relation Spltk ⊂ En,k×En,k+1
is defined as Spltk := {([v], [y]) : [v�k−1‖(vk−1 − a mod n, a)] = [y], a ∈ Zn−1}.

This definition is well defined: we do not aware which representative vector
of such a class is to be splitted, i.e., we claim the following lemma:

Lemma 2 For any w such that w = v�r for some r ∈ Πk there will be s ∈ Πk+1
and b ∈ {1, ..., n − 1} such that w�k−1‖(wk−1 − b mod n, b) = (v�k−1‖(vk−1 −
a mod n, a)) � s.

To prove this Lemma, choose s = r‖(k) and b = wk−1 − vk−1 + a mod n.

Lemma 3 For 2 ≤ k ≤ �n/2� there exists onto function fn,k : En,k
onto→ En,k−1

such that for all [v] ∈ En,k, (fn,k([v]), [v]) ∈ Spltk−1. For �n/2�+1 ≤ k ≤ n− 1

there exists one-to-one function gn,k : En,k
1−1→ En,k−1 such that g−1

n,k ⊂ Spltk−1.

For the functions denoted above, when fn,k([vk]) = [vk−1] (2 ≤ k ≤ �n/2�) or
gn,k([vk]) = [vk−1] (�n/2�+1 ≤ k ≤ n−1), we will represent it as [vk−1] → [vk].
Let C = {fn,2, ..., fn,
n/2�, gn,
n/2�+1, ..., gn,n−1}. A chain [vk1 ] → [vk1+1] →
· · · → [vk2 ] is said to be induced by C if every → in the chain is taken from a
mapping in a function in C. Such a chain is said to be (k1, k2) − terminated if
there is no → directed into [vk1 ] and no → directed from [vk2 ]. Since fn,k is onto
function, each terminated chain is (1, k)-terminated for some �n/2� ≤ k ≤ n−1.
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The Optimal Construction

Step 1 Find a set of functions A = {fn,k : En,k
onto→ En,k−1|2 ≤ k ≤ �n/2�} and

B = {gn,k : En,k
1−1→ En,k−1|�n/2� + 1 ≤ k ≤ n − 1} which satisfy Lemma 3.

Step 2 For each terminated chain [v1] → [v2] → · · · → [vk], we converts for
j : 1 ≤ j ≤ k each representation vector vj to wj so that [vj ] = [wj ] and
for j : 1 ≤ j ≤ k − 1,

wj
�j−1‖(wj

j−1 − aj mod n, aj) = wj+1,

for some aj ∈ {1, ..., n − 1}. Note that we can do this due to Lemma 2 and
the fact that there is only one → directed into [vj+1] because a function
mapped from it determines the → directed into it.

Step 3 Recall that A∪B induces only (1, k)-terminated chains for some �n/2� ≤
k ≤ n − 1. Let ChnLst be a set of all the last terms of terminated chains.
Now we construct Γ by letting

DPath(Γ ) =
⊔

[x]∈ChnLst
〈x�(|x|−1)〉.

Step 4 Pick one (n − 1)-length differential path in DPath(Γ ), say p. Increment
it to p||(a) where a �∈ �p.

Theorem 6 For Γ above, we have that (N, Γ ) is an SKDP with maxu∈N |Iu| =
�(2n − 1)/n� and the set of all labels of nodes completes the collection of all
non-empty subsets of N .

An Example. n = 7. The diagram of chains induced by A∪B in step 1 is shown
in Figure 3(left). After conversion in step 2 we have a diagram in Figure 3(right).
DPath(Γ ) defined in step 3 is 〈(1, 1, 1, 1, 1)〉�〈(3, 5, 5, 6)〉�〈(2, 1, 1, 2)〉�〈(3, 1, 2)〉�
〈(2, 2, 1)〉. Lastly we pick (1, 2, 3, 4, 5, 6) ∈ DPath(Γ ) and increment it to be
(1, 2, 3, 4, 5, 6, 7). This yields |Iu| = �(27 − 1)/7� = 18 for u �= 7 and |I7| = 19.

[7] [511]

[421]
[412]
[331]
[322]

[61]
[52]
[43]

[4111]
[3112]
[3211]
[3121]
[2221]

[31111]
[22111]
[21211]

[211111] [7] [115]

[214]
[356]
[313]
[223]

[16]
[25]
[34]

[1114]
[3551]
[2113]
[3121]

[2212]

[11113]
[35562]
[21121]

[111112]
7,1 7,2 7,3 7,4 7,5 7,6 7,1 7,2 7,3 7,4 7,5 7,6

Fig. 3. Diagram of chains induced by A∪B in step 1(left) and its conversion after step
2(right). Recall that the direction of → is opposite to the way functions are mapped.
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p1,1 = (1, 2, 3, 4, 5, 6, 7)






p1,2 = (2, 3, 4, 5, 6, 7)
p1,3 = (3, 4, 5, 6, 7, 1)
p1,4 = (4, 5, 6, 7, 1, 2)
p1,5 = (5, 6, 7, 1, 2, 3)
p1,6 = (6, 7, 1, 2, 3, 4)
p1,7 = (7, 1, 2, 3, 4, 5)






= 〈(1, 1, 1, 1, 1)〉 \ {(1, 2, 3, 4, 5, 6)}






p2,1 = (1, 4, 2, 7, 6)
p2,2 = (2, 5, 3, 1, 7)
p2,3 = (3, 6, 4, 2, 1)
p2,4 = (4, 7, 5, 3, 2)
p2,5 = (5, 1, 6, 4, 3)
p2,6 = (6, 2, 7, 5, 4)
p2,7 = (7, 3, 1, 6, 5)






= 〈(3, 5, 5, 6)〉






p3,1 = (1, 3, 4, 5, 7)
p3,2 = (2, 4, 5, 6, 1)
p3,3 = (3, 5, 6, 7, 2)
p3,4 = (4, 6, 7, 1, 3)
p3,5 = (5, 7, 1, 2, 4)
p3,6 = (6, 1, 2, 3, 5)
p3,7 = (7, 2, 3, 4, 6)






= 〈(2, 1, 1, 2)〉






p4,1 = (1, 4, 5, 7)
p4,2 = (2, 5, 6, 1)
p4,3 = (3, 6, 7, 2)
p4,4 = (4, 7, 1, 3)
p4,5 = (5, 1, 2, 4)
p4,6 = (6, 2, 3, 5)
p4,7 = (7, 3, 4, 6)






= 〈(3, 1, 2)〉






p5,1 = (1, 3, 5, 6)
p5,2 = (2, 4, 6, 7)
p5,3 = (3, 5, 7, 1)
p5,4 = (4, 6, 1, 2)
p5,5 = (5, 7, 2, 3)
p5,6 = (6, 1, 3, 4)
p5,7 = (7, 2, 4, 5)






= 〈(2, 2, 1)〉
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Fig. 4. DPath(Γ ) (upper part) and its differential path representation (lower part) of
SKDP for optimal KPS.
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