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Abstract. Simulation of soft tissue deformation is a critical part of sur-
gical simulation. An important method for this is finite element (FE)
analysis. Models for FE analysis are typically derived by extraction of
triangular surface meshes from CT or MRI image data. These meshes
must fulfill requirements of accuracy, smoothness, compactness, and tri-
angle quality. In this paper we propose new techniques for improving
mesh triangle quality, based on the SurfaceNets method. Our results
show that the meshes created are smooth and accurate, have good tri-
angle quality, and fine detail is retained.
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1 Introduction

In recent years, endoscopic surgery has become well established practice in per-
forming minimally-invasive surgical procedures. In training, planning, and per-
forming procedures, pre-operative imaging such as MRI or CT can be used to
provide an enhanced view of the restricted surgical field. Simulation of intra-
operative tissue deformation can also be used to increase the information pro-
vided by imaging. However, accurate simulation requires patient-specific model-
ing of the mechanical behavior of soft tissue under the actual surgical conditions.

To derive an accurate and valid model for intra-operative simulation, we
propose a five-stage process:
1. Image data acquisition (MRI, CT)
2. Image segmentation
3. Deformable tissue model generation
4. Intra-operative simulation of tissue deformation, guided by actual surgical

conditions and/or intra-operative measurements conditions
5. Enhanced intra-operative visualization
In order to simulate tissue deformation, many authors have proposed finite

element (FE) analysis of the relevant structures (see for example [2, 1, 8]). The
FE models are commonly initialized by supervised segmentation of preoperative
image data, resulting in a classification accurate to the pixel level. Using a surface
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extraction technique such as the Marching Cubes algorithm [9], the result is
converted into a set of triangular meshes representing the surfaces of relevant
organs. Such a representation can then be imported into an environment for FE
analysis.

For optimal mechanical modelling and visualization, the triangular surface
models should meet the following requirements :
– Accuracy: the representation of the organ surface geometry should be suffi-
ciently accurate;

– Smoothness: the model should conform to the smooth organ boundaries.
Sharp corners should be avoided as these can cause disturbing artifacts such
as stress concentrations;

– Compactness: to achieve fast response times, the number of elements (tri-
angles) in the model should be minimal; the resolution of the triangle mesh
should be considerably lower than the medical image, with minimal loss of
accuracy;

– Triangle quality: the shape of the triangles in the mesh should be as near as
possible to equilateral to avoid FE errors and visualization artifacts.

Segmentation commonly results in a binary image (i.e., classification at pixel
level). Extracting a surface from these binary data results in a triangulated sur-
face model that does not meet all of the requirements above. The smoothness
of the mesh can be poor due to quantization effects, showing ridges or terraces.
Some solutions to this problem are inadequate. For example, Gaussian prefilter-
ing of the binary image (before surface extraction) reduces accuracy, and sig-
nificant anatomical detail (such as narrow ridges and clefts) may be lost, while
insufficient smoothness is achieved [7].

In addition, the number of triangles generated by surface extraction may be
very large. Compactness may be improved using mesh decimation techniques [5,
10], but these techniques are usually most effective with smooth meshes. Thus,
smoothing of a surface mesh with minimal loss of accuracy is useful to avoid
errors in FE analysis and for reducing mesh size. Exploiting the original greyscale
data rather than binary segmented data can help to achieve this.

Recently, a technique called SurfaceNets was proposed to optimize a triangle
mesh derived from binary data [6]. In this paper, the SurfaceNets method is
extended to incorporate greyscale data. Several new techniques are examined
and compared with Marching Cubes.

The paper is organized as follows. Section 2 briefly describes the basic Sur-
faceNets method, the extension to incorporate grey-scale data and new tech-
niques for achieving smoothness, accuracy, and good triangle quality. In Section 3
these techniques are evaluated with respect to the requirements for mechanical
modeling and visualization listed above. Finally, Section 4 summarizes our find-
ings and draws conclusions.

2 Techniques

This section presents a brief explanation of the original SurfaceNet method
(largely following [6]) which assumes that a binary segmentation of the original
data exists. Then, two techniques will be introduced that utilize the greyscale
image data during relaxation of the SurfaceNet.
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(a) Before linking the
nodes.

(b) After linking the
nodes.

Fig. 1. Building a SurfaceNet. The white squares represent voxels, the thick
black line represents the edge of an object and the grey squares are cells with
nodes represented by white circles in the center.

2.1 Generating a SurfaceNet from Binary Data

The goal of the SurfaceNet approach is to create a globally smooth surface that
retains the fine detail present in the original data. Generation of the surface net
for binary data consists of the following four steps [6]:

1. Identify nodes of the SurfaceNet;
2. Create links between the nodes;
3. Relax node positions while maintaining constraints on node movement;
4. Triangulate the SurfaceNet for visualization and FE analysis.
The first step in creating a SurfaceNet is to locate the cells that contain the

surface. A cell is formed by 8 neighbouring voxel centers in the binary segmented
data (Figure 1 presents the 2D case as illustration). If all eight voxels have the
same binary value, then the cell is either entirely inside or entirely outside of
the object. If, however, at least one of the voxels has a binary value that is
different from its neighbours, then the cell is a surface cell. The net is initialized
by placing a node at the center of each surface cell (step 1). Subsequently, links
are created with nodes that lie in adjacent surface cells (step 2). Assuming only
face connected neighbours, each node can have up to 6 links (corresponding to
right, left, top, bottom, front and back neighbours). Once the SurfaceNet has
been defined, each node is moved to achieve better smoothness and accuracy
(“relaxation”, step 3) subject to the constraint that each node must remain
within its original cell. The relaxation process is described in more detail in the
next section.

2.2 Improving Smoothness

Once a SurfaceNet has been defined, the node positions are adjusted to improve
the smoothness of the surface. This is often desirable to remove furrows and
terraces due to the binary segmentation. Let us first only consider the smoothness
of the net.

One way to smooth the surface is to move every node to the average position
of its linked neighbours [4]. The vector �a pointing from the current position of
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the node �pold to the average position is calculated as:

�a =
1
N

N∑

i=1

�pi − �pold (1)

where �pi corresponds to the position of a linked neighbour and N is the total
number of neighbours of this node.

It may well be that the average position is outside the original cube and
therefore diverges from the initial segmentation. To impose conformance, the
relocation vector �a is constrained to stay within the boundaries of the original
cell by the function c (see Figure 2):

�pnew = �pold + c (�a) . (2)

Here, c is defined to satisfy the �a

�pold

c (�a)

Fig. 2. Position constraint of a node. If
�pold+�a is outside the cell boundary, the
function c is used such that �pold + c(�a)
is on the cell boundary.

proper constraint of the node position
such that �pnew is always within the
boundaries of the cell. Note that this
approach is different from the origi-
nal SurfaceNet method which simply
clips the new position’s x, y, and z co-
ordinates to cell boundaries when the
new position falls outside the cell.

The relaxation is implemented in
an iterative manner by considering each node in sequence and calculating a
relocation vector for that node. The SurfaceNet is updated only after each node
in the net has been visited. This procedure is repeated until the number of
iterations has reached a preset threshold, or when the largest relocation distance
is less than a given minimum value.

2.3 Increasing Accuracy Using Greyscale Data

The technique described above ignores all greyscale information in the dataset
after building the SurfaceNet. The nodes shrink-wrap around the object without
trying to conform to an iso-surface of the data. This is reasonable when the
binary segmentation is the best estimate of the object. However, if the object
surface can be estimated to lie at an iso-surface of the image data, this iso-surface
can be used to increase the accuracy of the SurfaceNet.

Let us assume that the true object surface can be obtained by drawing an
iso-surface (at Iiso) in the original greyscale data. For instance, in many CT
based applications the Marching Cubes algorithm is used to approximate the
object shape in this way. By definition, at a given point the greyscale gradient
vector is perpendicular to the iso-surface through that point. Thus, to enhance
accuracy; a node can be displaced along the gradient vector to the iso-surface
(see Figure 3(a)). This is expressed as:

�g = SIGN (Iiso − I (�pold))∇�pold . (3)



808 P.W. de Bruin et al.

(a) Using the gradient method (b) Combining the methods

Fig. 3. Using the gradient method for relaxation the nodes (white circles) are
projected onto the iso-surface (thick line, left). The combined relaxation tech-
nique also spaces out the nodes along the iso-surface (right).

Here, SIGN is a function that returns the sign of its argument, I(�pold) is the
interpolated intensity and ∇�pold is the normalized gradient vector at �pold. The
latter vector is obtained either by a central difference gradient method or by
convolution with Gaussian derivatives.

The node position is updated by:

�pnew = �pold + c (d�g) . (4)

In this equation, d is a scaling parameter representing the distance to the iso-
surface. The value of d can be estimated by assuming a linear image field near
the iso-surface and interpolating the greyscale values at the node and at a point
sampled along the vector �g. As in Equation 2, c imposes a position constraint
on the node to stay within the boundaries its cell.

2.4 A Combined Approach

Combining the methods presented in Section 2.2 and Section 2.3, we obtain
a surface that fits the iso-surface of the data and is also globally smooth. To
combine these features, a node should be displaced to obtain better smoothness
within the iso-surface. The combination is made by first calculating the projec-
tion �ap of the averaging vector �a on the plane perpendicular to the gradient �g
(cf. Equation 1, Equation 3):

�ap = �a − �g (�a · �g) . (5)

Subsequently, the combined displacement function is defined as:

�pnew = �pold + c (�ap + d�g) . (6)

This formula combines relocation towards the iso-surface with smoothing in
the orthogonal plane (i.e., on the surface). This can be seen in Figure 3 where
the nodes are first projected onto the line and then evenly spaced out along the
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(a) (b) (c) (d)

Fig. 4. Three possible configurations for a quadrilateral. For each main direction
only the top right corner has to be checked for a quadrilateral (right).

line by the averaging. Again, c ensures that the new position of each node is
always within the boundaries of its original surface cell. Note that there may be
some tension between the goals of a smooth SurfaceNet and one that fits the iso-
surface. One of these goals can be favored over the other either by weighting the
independent contributions differently or by applying them sequentially rather
than simultaneously; ending with the favored goal.

2.5 Triangulation

After relaxation the SurfaceNet is triangulated to form a 3D polygonal surface.
We have simplified the original triangulation process described in [6]. Instead of
directly building the triangles, first quadrilaterals are identified. There are three
sets of four links of a node that lie in a plane (e.g., the left, right, top, and bottom
links of a node lie in a plane) (see Figure 4). In each plane the connected nodes
form quadrilaterals and each node is a vertex of at most four quadrilaterals. In
order to find all quadrilaterals it is sufficient to check in each plane one “corner”
of a node. For example, in Figure 4(d), all quadrilaterals are found by checking
the upper right region of a node.

After relaxation each quadrilateral is triangulated using either a shortest
diagonal or a Delaunay criterion [4]. Either of these criteria creates triangles
that result in a smoother shape than choosing a fixed configuration. The resulting
triangle mesh can be rendered using standard 3D graphics techniques.

3 Results

To evaluate the relative effectiveness of the presented techniques, the SurfaceNet
is compared to Marching Cubes, which is the standard iso-surface extraction tool
[9]. The effectiveness of each technique will be tested against the requirements
listed in Section 1. Each of these requirements is measured as follows.

– A measure expressing the local smoothness of a polygon mesh is given in [11].
As a first step, the angles αi of all triangles around a vertex are summed.
If all triangles connected to a vertex are coplanar this sum is equal to 2π.
A measure of the local smoothness at a vertex is defined by 2π − ∑

αi, the
absolute value of which is then averaged over all vertices.
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– A simple and direct measure for triangle quality is found upon division of
the smallest angle of each triangle by its largest angle. If the triangle is
equilateral this expression is equal to 1.

– The accuracy is expressed by the unidirected modified Hausdorff distance
that represents the mean distance of the generated mesh to a reference
shape [3]:

Have(S1, S2) = 1/N
∑

p∈S1
e(p, S2) (7)

where e is the minimum distance between a point and a surface, and S1 and
S2 are two surfaces.

Using these measures, the following experiments are conducted. Two vol-
umes, containing greyscale images of distance maps of respectively a plane and
a sphere were created, where the greyscale values were stored as floats. An iso-
surface is extracted using Marching Cubes (MC), a SurfaceNet with averaging
(SNA) and a SurfaceNet with the combined technique (SurfaceNet with Ex-
tended Relaxation and Triangulation SNERT) as presented in Section 2. These
surfaces are compared to the exact reference shape. The results of this compar-
ison are shown in Table 1.

Table 1. Measured results on the Plane and the Sphere. Methods are Marching
Cubes (MC), SurfaceNet Averaging only (SNA) and SurfaceNet with Extended
Relaxation and Triangulation (SNERT). The accuracy is measured respectively
at the vertices and at the centers of the faces.

Quality Smoothness Accuracy (vertices) Accuracy (face centers)

Plane Sphere Plane Sphere Plane Sphere Plane Sphere

MC 0.64 0.54 0.25 10−6 0.0028 5.59 10−6 2.92 10−3 4.81 10−6 0.028

SNA 0.92 0.74 16.2 10−3 0.0108 0.092 0.204 0.788 0.426

SNERT 0.93 0.75 0.15 10−6 0.0028 20.9 10−6 12.3 10−3 12.5 10−6 0.043

Comparing the quality of the triangles for each method shows that both SNA
and SNERT produce triangles of a higher quality than MC for the plane as well
as the sphere. Also, in the case of the plane the MC and SNERT method produce
a smoother (=flatter) surface than SNA. The sphere has a constant curvature
that corresponds to the smoothness outcome of MC and SNERT. SNA shrinks
the mesh and pulls the nodes away from the iso-surface accounting for the lower
smoothness and accuracy. The accuracy of the SNERT surface is lower than MC
because the nodes are placed according to the trilinearly interpolated values.
However, the error at the vertices for SNERT is smaller than the error at the
face centers for the Marching Cubes generated sphere.

To illustrate the effectiveness of our technique a graphical example is shown
in Figure 7. Clearly, the SNERT surface is as flat as the MC surface and the
triangles have higher quality. Figure 6 shows the mesh generated by MC and
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Fig. 5. Histogram of triangle quality for meshes generated using Marching Cubes
and a SurfaceNet. The mesh was generated from a CT scan of an ankle. The
peak at 0.5 indicates that many right triangles are generated (quality measure
is smallest angle divided by largest angle of a triangle).

SNERT on a dataset containing two overlapping spheres. The average triangle
quality for the Marching Cubes mesh is 0.64, for the SNERT mesh this number
is equal to 0.93.

In addition to the results presented, several experiments were done on true
greyscale MRI and CT data. Figure 5 shows a histogram of triangle quality for
meshes generated by MC and SNERT from a greyscale CT dataset containing
part of a human ankle. It can be seen that the SNERT mesh contains less low
quality triangles and contains more high quality triangles. Figure 8 shows the
meshes generated from a CT-scan of a human ankle. Lastly, Figure 9 shows a
close-up of the bladder extracted from a 256x256x61MRI dataset of the abdomen
of a female patient.

4 Conclusions

Finite element analysis is a standard way to simulate soft tissue deformation. For
proper modelling, triangular mesh models must satisfy requirements of accuracy,
smoothness and triangle quality. Several approaches proposed in the literature
do not meet these requirements (e.g., Marching Cubes in combination with low
pass filtering).

In this paper we extending the SurfaceNet method, and evaluated two vari-
ants. Optimization of a triangle mesh was performed by averaging vertices, step-
ping in the direction of the gradient to the iso-surface, and a combined approach.

From visual inspection of test objects, the meshes generated by a SurfaceNet
appear to be of similar quality as those created by Marching Cubes. This is
backed up by measurements. The SurfaceNet meshes are more suitable for finite
element modelling as they are significantly smoother and have a low number of
poor quality triangles.

We conclude that SurfaceNet creates a globally smooth surface description
that retains fine detail.
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Fig. 6. Two spheres partly overlapping. Meshes generated by Marching Cubes
(left) and SNERT (right). Both meshes have the same number of triangles.

Fig. 7. Generated mesh using Marching Cubes (left) and SurfaceNets (smooth-
ing+gradient) (right). A view of a plane is shown.

Future research will focus on improving the performance of the SurfaceNets
technique and developing suitable mesh reduction techniques for finite element
analysis.
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ulating facial surgery using finite element models. In Proc. ACM SIGGRAPH 96
(1996), pp. 421–428. New Orleans, USA, August 4-9 1996, Computer Graphics
Proceedings.

[9] Lorensen, W., and Cline, H. Marching cubes: a high resolution 3D surface
construction algorithm. In Proc. ACM SIGGRAPH’87 (July 1987), pp. 163–169.

[10] Montani, C., Scateni, R., and Scopigno, R. Decreasing isosurface
complexity via discrete fitting. Tech. Rep. xx, Istituto per l’Elaborazione
dell’Informazione - Consiglio Nazionale delle Ricerche, Pisa, Italy, Dec. 1997.
http://vcg.iei.pi.cnr.it.

[11] Veron, P., and Leon, J. Shape preserving polyhedral simplification with
bounded error. Computers & Graphics 22, 5 (1998), 565–585.

http://www.cs.cmu.edu/~garland/quadrics/
http://www.merl.com/reports/TR99-24/
http://www.merl.com/reports/TR99-25/
http://vcg.iei.pi.cnr.it

	Introduction
	Techniques
	Generating a SurfaceNetxspace from Binary Data
	Improving Smoothness
	Increasing Accuracy Using Greyscale Data
	A Combined Approach
	Triangulation

	Results
	Conclusions



