
A Calculus of Bounded Capacities�

Franco Barbanera1, Michele Bugliesi2,
Mariangiola Dezani-Ciancaglini3, and Vladimiro Sassone4

1 Università di Catania, Viale A.Doria 6, 95125 Catania (Italy)
barba@dmi.unict.it

2 Università “Cà Foscari”, Via Torino 155, 30170 Venezia (Italy)
michele@dsi.unive.it

3 Università di Torino, Corso Svizzera 185, 10149 Torino (Italy)
dezani@di.unito.it

4 University of Sussex, Falmer, Brighton BN1 9RH UK
vs@susx.ac.uk

Abstract. Resource control has attracted increasing interest in foundational re-
search on distributed systems. This paper focuses on space control and develops
an analysis of space usage in the context of an ambient-like calculus with bounded
capacities and weighed processes, where migration and activation require space.
A type system complements the dynamics of the calculus by providing static
guarantees that the intended capacity bounds are preserved throughout the com-
putation.

Introduction

Emerging computing paradigms, such as Global Computing and Ambient Intelligence,
envision scenarios where mobile devices travel across domains and networks bound-
aries. Current examples include smart cards, embedded devices (e.g. in cars), mobile
phones, PDAs, and the list keeps growing. The notion of third-party resource usage will
raise to a central role, as roaming entities will need to borrow resources from host net-
works and, in turn, provide guarantees of bounded resource usage. This is the context of
the present paper, which focuses on space consumption and capacity bound awareness.

Resource control, in diverse incarnations, has recently been the focus of founda-
tional research. Topics considered include the ability to read from and to write to a
channel [15], the control of the location of channel names [18], the guarantee that dis-
tributed agents will access resources only when allowed to do so [8, 14, 1, 6, 7]. Specific
work on the certification of bounds on resource consumption include [9], which intro-
duces a notion of resource type representing an abstract unit of space, and uses a linear
type system to guarantee linear space consumption; [4] where quantitative bounds on
time usage are enforced using a typed assembly language; and [11], which puts forward
a general formulation of resource usage analysis.
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We elect to formulate our analysis of space control in an ambient-like calculus,
BoCa, because the notion of ambient mobility is a natural vehicle to address the in-
tended application domain. Relevant references to related work in this context include
[5], which presents a calculus in which resources may be moved across locations pro-
vided suitable space is available at the target location; [17], which uses typing systems
to control resource usage and consumption; and [3], which uses static techniques to
analyse the behaviour of finite control processes, i.e., those with bounded capabilities
for ambient allocation and output creation.

BoCa relies on a physical, yet abstract, notion of “resource unit” defined in terms
of a new process constructor, noted (read “slot”), which evolves out of the homonym
notion of [5]. A slot may be interpreted as a unit of computation space to be allocated
to running processes and migrating ambients. To exemplify, the configuration

P ||| ||| . . . |||
︸ ︷︷ ︸

k times

represents a system which is running process P and which has k resource units available
for P to spawn new subprocesses and to accept migrating agents willing to enter. In both
cases, the activation of the new components is predicated to the presence of suitable
resources: only processes and agents requiring cumulatively no more than k units may
be activated on the system. As a consequence, process activation and agent migration
involve a protocol to “negotiate” the use of resources with the enclosing, resp. receiving,
context (possibly competing with other processes).

For migrating agents this is accounted for by associating each agent with a tag
representing the space required for activation at the target context, as in ak[[[ P ]]]. A notion
of well-formedness will ensure that k provides a safe estimate of the space needed
by a[[[ P ]]]; namely, the number of resource units allocated to P. Correspondingly, the
negotiation protocol for mobility is represented formally by the following reductions
(where k is short for ||| . . . ||| , k times):

ak[[[ in b...P ||| Q ]]] ||| b[[[ k ||| R ]]] ↘↘↘ k ||| b[[[ ak[[[ P ||| Q ]]] ||| R ]]]
k ||| b[[[ P ||| ak[[[ out b...Q ||| R ]]] ]]] ↘↘↘ ak[[[ Q ||| R ]]] ||| b[[[ P ||| k ]]]

In both cases, the migrating agent releases the space required for its computation at the
source site and gets corresponding space at the target context. Notice that the reductions
construe both as a representation of the physical space available at the locations of
the system, and as a particular new kind of co-capability.

Making the weight of an ambient depend explicitly on its contents allows a clean
and simple treatment of the open capability: opening does not require resources, as
those needed to allocate the contents are exactly those taken by the ambient as such.

opn a...P ||| a[[[ opn...Q ||| R ]]] ↘↘↘ P ||| Q ||| R

Notice that in order for these reductions to provide the intended semantics of re-
source negotiation, it is crucial that the redexes are well-formed. Accordingly, the dy-
namics of ambient mobility is inherently dependent on the assumption that all migrating



A Calculus of Bounded Capacities 207

agents are well-formed. As we shall discuss, this assumption is central to the definition
of behavioural equivalence as well.

Resource management and consumption does not concern exclusively mobility, as
all processes need and use space. It is natural then to expect that “spawning” (activating)
processes requires resources, and that unbounded replication of processes is controlled
so as to guard against processes that may consume an infinite amount of resources.
The action of spawning a new process is made explicit in BoCa by introducing a new
process construct, k� , whose semantics is defined by the following reduction:

k� P ||| k ↘↘↘ P

Here k� P is a “spawner” which launches P provided that the local context is ready to
allocate enough fresh resources for the activation. The tag k represents the “activation
cost” for process P, viz. its weight, while k � P, the “frozen code” of P, weighs 0:
again here the hypothesis of well-formedness of terms is critical to make sense of the
spawning protocol. The adoption of an explicit spawning operator allows us to delegate
to the “spawner” the responsibility of resource control in the mechanism for process
replication. In particular, we restrict the replication primitive “!!!" to 0-weight processes
only. We can then rely on the usual congruence rule that identifies !!!P with !!!P ||| P, and
use !!!(k � P) to realise a resource-aware version of replication. This results in a system
which separates process duplication and activation, and so allows a fine analysis of
resource consumption in computation.

BoCa is completed by two constructs that provide for dynamic allocation of re-
sources. In our approach resources are not “created” from the void, but rather acquired
dynamically – in fact, transferred – from the context, again as a result of a negotiation.

ak+1[[[ put...P ||| ||| Q ]]] ||| bh[[[ get a...R ||| S ]]] ↘↘↘ ak[[[ P ||| Q ]]] ||| bh+1[[[ R ||| ||| S ]]]

put↓...P ||| ||| ak[[[ get↑...Q ||| R ]]] ↘↘↘ P ||| ak+1[[[ ||| Q ||| R ]]]

Resource transfer is realised as a two-way synchronisation in which a context offers
some of its resource units to any enclosed or sibling ambient that makes a corresponding
request. The effect of the transfer is reflected in the tags that describe the resources
allocated to the receiving ambients. We formalise slot transfers only between siblings
and from father to child. As we shall see, transfers across siblings make it possible to
encode a notion of private resource, while transfer from child to parent can easily be
encoded in terms of the existing constructs.

The semantic theory of BoCa is supported by a labelled transition systems which
gives rise to a bisimulation congruence adequate with respect to barbed congruence.
Besides enabling powerful co-inductive characterizations of process equivalences, the
labelled transition system yields an effective tool for contextual reasoning on process
behavior. More specifically, it enables a formal representation of open systems, in which
processes may acquire resources and space from their enclosing context. Due to the
lack of space, here we only discuss the notion of barb, leaving the presentation of the
transition system to the forthcoming full version of the paper. We will focus, instead,
on BoCa’s capacity types, a system of types that guarantees capacity bounds on com-
putational ambients. Precisely, given lower and upper bounds for ambients capacities,
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the system enables us to certify statically the absence of under/over-flows, potentially
arising from an uncontrolled use of dynamic space allocation capabilities.

We remark that our approach is typical of a way to couple language design with
type analysis very useful in frameworks like Global Computing, where it is ultimately
unrealistic to assume acquaintance with all the entities which may in the future interact
with us, as it is usually done for standard type systems. The openness of the network and
its very dynamic nature deny us any substantial form of global knowledge. Therefore,
syntactic constructs must be introduced to support the static analysis, as e.g., our “ne-
gotiation” protocols. In our system, the possibility of dynamically checking particular
space constraints is a consequence of the explicit presence of the primitive . A further
reason to avoid resource control mechanisms in ambient-like calculi mainly based on
static typing systems is that they tend, as perfectly illustrated in [17], to require 3-way
synchronisations which, as explained in [16], make the calculus cumbersome.

Structure of the paper. In §1 we give the formal description of BoCa and its operational
semantics, and we illustrate it with a few examples. The type system for the calculus is
illustrated in §2. In §3 we discuss the issue of resource interference, and we extend the
calculus to deal with private resources in the form of named slots.

1 The Calculus BoCa

The calculus is a conservative extension of the Ambient Calculus. We presuppose two
mutually disjoint sets: N of names, and V of variables. The set V is ranged over
by letters at the end of the alphabet, typically x,y,z, while a,b,c,d,n,m range over N .
Finally, h,k and other letters in the same font denote integers. The syntax of the calculus
is defined below, with π and W types as introduced in §2.

Definition 1 (Preterms and Terms). The set of process preterms is defined by the
following productions (where we assume k ≥ 0):

Processes P ::= | 000 | M ...P | P|||P | Mk[[[ P ]]] | !!!P | (νννa : π)P | k� P | (x : W )P | 〈M〉P
Capabilities C ::= in M | out M | opn M | get M | get↑ | opn | put | put↓

Messages M ::= nil | a ∈ N | x ∈ V |C | M ...M

A (well-formed) term P is a preterm such that w(P) 	= ⊥, where w : Processes ⇀ ω is
the partial weight function defined as follows:

w(000) = 0 w( ) = 1 w(P ||| Q) = w(P)+ w(Q)

w(M.P) = w((x : χ)P) = w(〈M〉P) = w((νννa : π)P) = w(P)

w(ak[[[ P ]]]) = if w(P) is k then k else ⊥
w(k� P) = if w(P) is k then 0 else ⊥

w(!!!P) = if w(P) is 0 then 0 else ⊥
We use the standard notational conventions for ambient calculi. We omit types when
not relevant; we write a[[[ P ]]] instead of ak[[[ P ]]] when the value of k does not matter; we
use k as a shorthand for ||| . . . |||

︸ ︷︷ ︸

k

and similarly Ck as a shorthand for C... . . ....C
︸ ︷︷ ︸

k
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1.1 Reduction

The dynamics of the calculus is defined as usual in terms of structural congruence and
reduction (cf. Figure 1). Unlike other calculi, however, in BoCa both relations are only
defined for proper terms, a fact we will leave implicit in the rest of the presentation.

Structural Congruence: (|||,000) is a commutative monoid.

(νννa)(P ||| Q) ≡ (νννa)P ||| Q (a 	∈ fn(Q)) (νννa)a0[[[ 000 ]]] ≡ 000

(νννa)000 ≡ 000 (νννa)(νννb)P ≡ (νννb)(νννa)P

!!!P ≡ P ||| !!!P a[[[ (νννb)P ]]] ≡ (νννb)a[[[ P ]]] (a 	= b)

Reduction: E ::= {·} | E ||| P | (νννm)E | mk[[[ E ]]] is an evaluation context

ak[[[ in b...P ||| Q ]]] ||| b[[[ k ||| R ]]] ↘↘↘ k ||| b[[[ ak[[[ P ||| Q ]]] ||| R ]]](ENTER)

k ||| b[[[ P ||| ak[[[ out b...Q ||| R ]]] ]]] ↘↘↘ ak[[[ Q ||| R ]]] ||| b[[[ P ||| k ]]](EXIT)

opn a...P ||| a[[[ opn...Q ||| R ]]] ↘↘↘ P ||| Q ||| R(OPEN)

ak+1[[[ put...P ||| ||| Q ]]] ||| bh[[[ get a...R ||| S ]]] ↘↘↘ ak[[[ P ||| Q ]]] ||| bh+1[[[ R ||| ||| S ]]](GETS)

put↓...P ||| ||| ak[[[ get↑...Q ||| R ]]] ↘↘↘ P ||| ak+1[[[ ||| Q ||| R ]]](GETD)

k� P ||| k ↘↘↘ P(SPAWN)

(x : χ)P ||| 〈M〉Q ↘↘↘ P{x := M} ||| Q(EXCHANGE)

P ≡ P′ P′ ↘↘↘ Q′ Q′ ≡ Q =⇒ P↘↘↘ Q(STRUCT)

P↘↘↘ Q =⇒ E{P}↘↘↘ E{Q}(CONTEXT)

Fig. 1. Structural Congruence and Reduction

The reduction relation ↘↘↘ is defined according to the intuitions discussed in the
introduction; we denote with ↘↘↘∗ the reflexive and transitive closure of ↘↘↘. Structural
congruence is essentially standard. The assumption of well-formedness is central to
both relations. In particular, the congruence !!!P ≡ P ||| !!!P only holds with P a proper term
of weight 0. Thus, to duplicate arbitrary processes we need to first “freeze” them under
k� , i.e. we decompose arbitrary duplication into “template replication” and “process
activation.” We define !!!k� !!!k� , which gives us !!!kP ||| k ↘↘↘ !!!kP ||| P.

A few remarks are in order on the form of the transfer capabilities. The put capa-
bility (among siblings) does not name the target ambient, as is the case for the dual
capability get. We select this particular combination because it is the most liberal one
for which our results hold. Of course, more stringent notions are possible, as e.g. when
both partners in a synchronisation use each other’s names. Adopting any of these would
not change the nature of the calculus and preserve, mutatis mutandis, the validity of our
results. In particular, the current choice makes it easy and natural to express interesting
programming examples (cf. the memory management in §1.3), and protocols: e.g., it
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enables us to provide simple encoding of named (and private) resources allocated for
spawning (cf. §3). Secondly, a new protocol is easily derived for transferring resources
“upwards” from children to parents using the following pair of dual put and get.

get↓a...P � (νννm)(opn m...P ||| m[[[ get a...opn ]]]), and put↑ � put

Transfers affect the amount of resources allocated at different nesting levels in a sys-
tem. We delegate to the type system of §2 to control that no nesting level suffers from
resource over- or under-flows. The reduction semantics itself guarantees that the global
amount of resources is preserved, as it can be proved by an inspection of the reduction
rules.

Proposition 1 (Resource Preservation). If w(P) 	=⊥, and P↘↘↘∗ Q, then w(Q) = w(P).

Two remarks about the above proposition are in order. First, resource preservation is a
distinctive property of closed systems; in open systems, instead, a process may acquire
new resources from the environment, or transfer resources to the environment, by exer-
cising the put and get capabilities. Secondly, the fact that the global weight of a process
is invariant through reduction does not imply that the amount of resources available for
computation also is invariant. Indeed, our notion of slot is an economical way to convey
the three different concepts of a resource being free, allocated, or wasted , according to
the context in which occurs during the computation. Unguarded slots, as in a[[[ ||| P ]]],
represent resources available for spawning or mobility at a given nesting level; guarded
slots, like M ... , represent allocated resources, which may potentially be released and
become free; and unreachable slots, like (νννa)in a. k or (νννa)ak[[[ k ]]], represent wasted
resources that will never be released.

Computation changes the state of resources in the expected ways: allocated re-
sources may be freed, as in opn a. ||| a[[[ P ]]]↘↘↘ ||| P; free resources may be allocated, as
in ||| 1 � M. ↘↘↘ M. , or wasted as in put↓ ||| ||| (νννa)a[[[ get↑ ]]]↘↘↘ (νννa)a[[[ ]]]. No further
transition for wasted resource is possible: in particular, it may never become free, and
re-allocated. Accordingly, while the global amount of resources is invariant through
reduction, as stated in Proposition 1, the computation of a process does in general con-
sume resources and leaves a non-increasing amount of free and allocated resources. We
leave to our future work the development of a precise analysis of resource usage based
on the characterization we just outlined, and focus on the behavioural semantics of the
calculus instead.

1.2 Behavioural Semantics

The semantic theory of BoCa is based on barbed congruence [13], a standard equality
relation based on reduction and a notion of observability. As usual in ambient calculi,
our observation predicate, P ↓a, indicates the possibility for process P to interact with
the environment via an ambient named a. In Mobile Ambients (MA) this is defined as
follows:

(1) P ↓a � P ≡ (νm̃)(a[[[ P′ ]]] ||| Q) a 	∈ m̃
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Since no authorisation is required to cross a boundary, the presence of an ambient a
at top level denotes a potential interaction between the process and the environment
via a. In the presence of co-capabilities [12], however, the process (νννm̃)(a[[[ P ]]] ||| Q)
only represents a potential interaction if P can exercise an appropriate co-capability.
The same observation applies to BoCa, as many aspects of its dynamics rely on co-
capabilities: notably, mobility, opening, and transfer across ambients. Correspondingly,
we have the following reasonable choices of observation (with a 	∈ {m̃}):

P ↓opn
a � P ≡ (νννm̃)(a[[[ opn...P′ ||| Q ]]] ||| R)(2)

P ↓slt
a � P ≡ (νννm̃)(a[[[ ||| Q ]]] ||| R)(3)

P ↓put
a � P ≡ (νννm̃)(a[[[ put...P′ ||| ||| Q ]]] ||| R)(4)

As it turns out, definitions (1)–(4) yield the same barbed congruence relation. Indeed,
the presence of 0-weighted ambients makes it possible to rely on the same notion of
observation as in MA, that is (1), without consequences on barbed congruences. We
discuss this in further detail below.

Our notion of barbed congruence is standard, except that we require closure by well-
formed contexts. Say that a relation R is reduction closed if PR Q and P ↘↘↘ P′ imply
the existence of some Q′ such that Q ↘↘↘∗ Q′ and P′R Q′; it is barb preserving if PR Q
and P↓a imply Q⇓a, i.e. Q↘↘↘∗↓a.

Definition 2 (Barbed Congruence). Barbed bisimulation, noted �, is the largest sym-
metric relation on closed processes that is reduction closed and barb preserving. Two
processes P and Q are barbed congruent, written P ∼= Q, if for all contexts C [·], preterm
C [P] is a term iff so is C [Q], and then C [P] � C [Q].

Let then ∼=i be the barbed congruence relation resulting from Definition 2 and from
choosing the notion of observation as in (i) above (with i ∈ [1..4]).

Proposition 2 (Independence from Barbs). ∼=i = ∼= j for all i, j ∈ [1..4].

Since the relations differ only on the choice of barb, Proposition 2 is proved by just
showing that all barbs imply each other. This can be accomplished, as usual, by exhibit-
ing a corresponding context. For instance, to see that ∼=3 implies ∼=2 use the context
C [·] = [·] ||| opn a.b1[[[ ]]], and note that for all P such that b is fresh in P one has P ⇓opn

a

if and only if C [P] ⇓slt
b .

The import of the processes’ weight in the relation of behavioural equivalence is
captured directly by the well-formedness requirement in Definition 2. In particular,
processes of different weight are distinguished, irrespective of the their “purely” be-
havioral properties. To see that, note that any two processes P and Q of weight, say, k
and h with h 	= k, are immediately distinguished by the context C [·] = ak[[[ [·] ]]], as C [P]
is well-formed while C [Q] is not.

1.3 Examples

We complete the presentation of the calculus with some encodings of systems and ex-
amples in which space usage and control is modelled.
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Recovering Mobile Ambients. The Ambient Calculus [2] is straightforwardly embed-
ded in (an untyped version of) BoCa: it suffices to insert a process !!!opn in all ambients.
The relevant clauses of the embedding are as follows:

[[[[[[a[[[ P ]]]]]]]]] � a0[[[ !!!opn ||| [[[[[[P]]]]]] ]]], [[[[[[(νννa)P]]]]]] � (νννa)[[[[[[P]]]]]]

and the remaining ones are derived similarly; clearly all resulting processes weigh 0.

Encoding Father-Son Swap. In BoCa, like in any situation where ambient weighs,
this swap is possible only in case the father and child nodes have the same weight. We
present it for example in the case of weight 1. Notice the use of the primitives for child
to father slot exchange that we have defined in §1.

b1[[[ get↓a...put... in a...get↑ ||| a1[[[ put↑ ...out b...get b...put↓ ||| ]]] ]]]↘↘↘∗ a1[[[ b1[[[ ]]] ]]]

Encoding Ambient Renaming. We can represent in BoCa a form of ambient self-
renaming capability. First, define spwabk[[[ P ]]] � exp0[[[ out a...opn...k� bk[[[ P ]]] ]]] and then
use it to define

a bekb...P � spwabk[[[ k ||| opn a ]]] ||| in b...opn...P

Since opn exp ||| k ||| ah[[[ spwabk[[[ P ]]] ||| Q ]]]↘↘↘∗ bk[[[ P ]]] ||| ah[[[ Q ]]] where k, h are the weights
of P and Q, respectively, we get

ak[[[ a bekb...P ||| R ]]] ||| k ||| opn exp↘↘↘∗ bk[[[ P ||| R ]]] ||| k

So, an ambient needs to borrow space from its parent in order to rename itself. We
conjecture that renaming cannot be obtained otherwise.

A Memory Module. A user can take slots from a memory module MEM_MOD using
MALLOC and release them back to MEM_MOD after their use.

MEM_MOD � mem[[[ 256MB |||
256MB

︷ ︸︸ ︷

opn m ||| . . . ||| opn m ]]]

MALLOC � m[[[ out u... in mem...opn...put...get u...opn m ]]]

USER � u[[[ . . ....MALLOC ||| . . ....get mem . . .put ||| . . . ]]]

2 Bounding Resources, by Typing

In this section we discuss a type system that provides static guarantees for a simple
behavioural property, namely the absence of space under- and over-flows arising as a
result of transfers during the computation. To deal with this satisfactorily, we need to
take into account that transfer (co)capabilities can be acquired by way of exchanges.
The type of a capability will hence have to express how it affects the space of the
ambient in which it can be performed.
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2.1 The Types

We use Z to denote the set of integers, and note Z+ and Z− the sets of non-negative
and non-positive integers respectively. We define the following domains:

Intervals ι ∈ ℑ � {[n,N] | n,N ∈ Z+, n ≤ N}
Effects ε ∈ E � {(d, i) | d ∈ Z−, i ∈ Z+}

Thread Effects φ ∈ Φ � E → E

Intervals and effects are ordered in the usual way, namely: [n,N] ≤ [n′,N′] when n′ ≤ n
and N≤ N′ and (d, i) ≤ (d′, i′) when d′ ≤ d and i≤ i′ . It is also convenient to define the
component-wise sum operator for effects: (d, i)+(d′, i′) = (d+d′, i+ i′), and lift it to Φ
pointwise: φ1 + φ2 = λε.φ1(ε)+ φ2(ε).

The syntax of types is defined by the following productions:

Message Types W ::= Amb〈ι,ε,χ〉 | Cap〈φ,χ〉
Exchange Types χ ::= Shh |W

Process Types π ::= Proc〈ε,χ〉
Type Proc〈ε,χ〉 is the type of processes with ε effects and χ exchanges. Specifically, for
a process P of type Proc〈(d, i),χ〉, the effect (d, i) bounds the number of slots delivered
(d) and acquired (i) by P as the cumulative result of exercising P’s transfer capabilities.

Type Amb〈ι,ε,χ〉 is the type of ambients with weight ranging in ι, and enclosing
processes with ε effects and χ exchanges. As in companion type systems, values that can
be exchanged include ambients and (paths of) capabilities, while the type Shh indicates
no exchange. As for capability types, Cap〈φ,χ〉 is the types of capabilities which, when
exercised, unleash processes with χ exchanges, and compose the effect of the unleashed
process with the thread effect φ. The functional domain of thread effects helps compute
the composition of effects. In brief, thread effects accumulate the results from gets and
puts, and compose these with the effects unleashed by occurrences of opn.

We introduce the following combinators (functions in Φ) to define the thread effects
of the put, get and open capabilities.

Put = λ(d, i).(d−1,max(0, i−1))

Get = λ(d, i).(min(0,d+ 1), i+ 1)

Open(ε) = λ(d, i).(ε+(d, i))

The intuition is as follows. A put that prefixes a process P with cumulative effect (d, i),
contributes to a “shift” in that effect of one unit. The effect of a get capability is dual. To
illustrate, take P = put...put...get a. The thread effect associated with P is computed as
follows, where we use function composition in standard order (i.e. f ◦ g(x) = f (g(x))):

ε = (Put ◦ Put ◦ Get)((0,0)) = (−2,0).

The intuition about an open capability is similar, but subtler, as the effect of opening an
ambient is, essentially, the effect of the process unleashed by the open: in opn n.P, the
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process unleashed by opn n runs in parallel with P. As a consequence, open has an ad-
ditive import in the computation of the effect. To motivate, assume that n : Amb〈ι,ε,χ〉.
Opening n unleashes the enclosed process in parallel to the process P. To compute
the resulting effect. we may rely on the effect ε declared by n to bound the effect
of the unleashed process: that effect is then is added to the effect of the continua-
tion P. Specifically, if P has effect ε′, the composite effect of opn n.P is computed
as Open(ε)(ε′) = ε+ ε′.

2.2 The Typing Rules

The typing rules are collected in Figures 2 and 3, where we denote with idΦ the identity
element in the domain Φ.

The rules in Figure 2 derive judgements Γ � M : W for well-typed messages. The
rules draw on the intuitions we gave earlier. Notice, in particular, that the capabilities
in, out and the cocapability opn have no effect, as reflected by the use idΦ in their type.
The same is true also of the the co-capability put↓. In fact, by means of the superscript
k in ak[[[ P ]]] we can record the actual weight of the ambient (cf. reduction rule (GETD)).
This implies that the weight of an ambient in which put↓ is executed does not change:
the ambient loses a slot, but the weight of one of its sub-ambients increases.

(axiom)
Γ,M : W � M : W

(nil)
Γ � nil : Cap〈idΦ,χ〉

Γ � M : Amb〈−,−,−〉
(get M)

Γ � get M : Cap〈Get,χ〉
(put)

Γ � put : Cap〈Put,χ〉

(get↑)
Γ � get↑ : Cap〈Get,χ〉

(put↓)
Γ � put↓ : Cap〈idΦ,χ〉

Γ � M : Amb〈−,−,−〉
(in M)

Γ � in M : Cap〈idΦ,χ〉
Γ � M : Amb〈−,−,−〉

(out M)
Γ � out M : Cap〈idΦ,χ〉

Γ � M : Amb〈−,ε,χ〉
(opn M)

Γ � opn M : Cap〈Open(ε),χ〉
(opn)

Γ � opn : Cap〈idΦ,χ〉

Γ � M : Cap〈φ,χ〉 Γ � M′ : Cap〈φ′,χ〉
(path)

Γ � M.M′ : Cap〈φ ◦ φ′,χ〉
Fig. 2. Good Messages

The rules in Figure 3 derive judgements Γ � P : Proc〈ε,χ〉 for well-typed processes.
An inspection of the typing rules shows that any well-typed process is also well-formed
(in the sense of Definition 1. We let 0E denote the null effect (0,0): thus, rules (000) and
( ) simply state that the inhert process and the slot form have no effects. Rule (prefix)
computes the effects of prefixes, by applying the thread effect of the capability to the
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( )
Γ � : Proc〈0E ,χ〉

(000)
Γ � 000 : Proc〈0E ,χ〉

Γ � M : Cap〈φ,χ〉 Γ � P : Proc〈ε,χ〉
(prefix)

Γ � M ...P : Proc〈φ(ε),χ〉

Γ � P : Proc〈ε,χ〉 Γ � Q : Proc〈ε′,χ〉
(par)

Γ � P ||| Q : Proc〈ε+ ε′,χ〉
Γ,x : W � P : Proc〈ε,W 〉

(input)
Γ � (x : W )P : Proc〈ε,W 〉

Γ � M : W Γ � P : Proc〈ε,W 〉
(out put)

Γ � 〈M〉P : Proc〈ε,W 〉
Γ,a : Amb〈ι,ε,χ〉 � P : Proc〈ε′,χ′〉

(new)
Γ � (νννa : Amb〈ι,ε,χ〉)P : Proc〈ε′,χ′〉

Γ � M : Amb〈[n,N],ε,χ′〉
Γ � P : Proc〈(d, i),χ′〉 w(P) = k

[max(k+d,0),k+ i] ≤ [n,N]
(d− i,min(N−n, i−d)) ≤ ε

(amb)
Γ � Mk[P] : Proc〈0E ,χ〉

Γ � P : Proc〈0E ,χ〉 w(P) = k
(spawn)

Γ � k� P : Proc〈0E ,χ〉
Γ � P : Proc〈0E ,χ〉 w(P) = 0

(bang)
Γ � !!!P : Proc〈0E ,χ〉

Fig. 3. Good Processes

effect of the process. Rule (par) adds up the effects of two parallel threads, while the
constructs for input, output and restriction do not have any effect.

Rule (amb) governs the formation of ambient processes. The declared weight k of
the ambient must reflect the weight of the enclosed process. Two further conditions
ensure (i) that k modified by the effect (d, i) of the enclosed process lies within the
interval [n,N] declared by the ambient type, and (ii) that effect ε declared by the ambient
type is a sound approximation for the effects released by opening the ambient itself.
Condition (i) is simply [max(k+d,0),k+ i] ≤ [n,N], where the use of max(k+d,0) is
justified by observing that the weight of an ambient may never grow negative as a result
the enclosed process exercising putcapabilities. To motivate condition (ii), first observe
that opening an ambient which encloses a process with effect (d, i) may only release
effects ε ≤ (d− i, i− d). The lower bound arises in a situation in which the ambient is
opened right after the enclosed process has completed its i get ’s and is thus left with
|d− i| put’s unleashed in the opening context. Dually, the upper bound arises when the
ambient is opened right after the enclosed process has completed its d put’s, and is left
with i−d get ’s. On the other hand, we also know that the maximum increasing effect
released by opening ambients with weight ranging in [n,N] is N−n. Collectively, these
two observations justify the condition (d− i,min(N−n, i−d))≤ ε in rule (amb).

In rule (spawn), the effect of k � P is the same as that of the reduct P. Finally, to
prevent the effects of duplicated processes to add up beyond control, with unpredictable
consequences, rule (bang) enforces duplicated process to have null effects.

A first property of the given type system is that all typable preterms are terms.
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The following result complements Proposition 1 and shows that capacity bounds on
ambients are preserved during computations, while the processes’ ability to shrink or
expand reduces.

Theorem 1 (Subject Reduction). Assume Γ � P : Proc〈ε,χ〉 and P ↘↘↘∗ Q. Then Γ �
Q : Proc〈ε′,χ〉 for some ε′ ≤ ε.

It follows as a direct corollary that no ambient may be subject to under/over-flows dur-
ing the computation of a process.

Theorem 2 (Absence of Under/Over-Flow). Assume Γ � P : Proc〈ε,χ〉 and let P↘↘↘∗
Q. If a : Amb〈[n,N],−,−〉 ∈ Γ, then, for any subterm of Q of the form ak[[[ R ]]], not in the
scope of a binder for a, we have n ≤ k ≤ N.

2.3 Typed Examples

A Typed Memory Module. As a first illustration of the typing system at work we give
a typed version of the memory module of Section 1.3. All other examples in that section
are typeable too, and this can be easily verified. We start with the malloc ambient

MALLOC � m[[[ out u... in mem...opn...put...get u...opn m ]]]

Since there are no exchanges, we give the typing annotation and derivation disregarding
the exchange component from the types. Let Pmalloc denote thread enclosed within the
ambient m. If we let m : Amb〈[0,0],(−1,0)〉 ∈ Γ, an inspection of the typing rules for
capabilities and paths shows that the following typing is derivable for any ambient type
assigned to mem:

Γ � out u... in mem...opn...put...get u...opn m : Cap〈(Put ◦ Get ◦ λε...((−1,0)+ ε))(0E)〉

Composing the thread effects, one has: Put ◦ Get (−1,0) = (−1,0). From this one de-
rives Γ � Pmalloc : Proc〈(−1,0)〉, which gives Γ � MALLOC : Proc〈0E 〉. As to the mem-
ory module itself, it is a routine check to verify that the process

MEM_MOD � mem[[[ 256MB ||| opn m ||| . . . ||| opn m ]]]

typechecks with m : Amb〈[0,0],(−1,0)〉, mem : Amb〈[0,256MB],(−256MB,256MB)〉.

A Cab Trip. As a further example, we give a new version of the the cab trip protocol
from [17], formulated in our calculus. A customer sends a request for a cab, which
then arrives and takes the customer to his destination. The use of slots here enables
us to model very naturally the constraint that only one passenger (or actually any fixed
number of them) may occupy a cab. The typing environment contains call :W1, cab :W1,
trip : W0, loading : W0, unloading : W0, bye : W0 where W1 = Amb〈[1,1],0E〉, W0 =
Amb〈[0,0],0E〉.
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CALL( f rom,client) �
call1[[[ out client ...out f rom... in cab...opn... in f rom...(loading0[[[ out cab... in client ...opn ]]] ||| ) ]]]

T RIP( f rom,to,client) � trip0[[[ out client ...opn...out f rom... in to...unloading0[[[ in client ...opn ]]] ]]]

CLIENT( f rom,to) � (νννc : W1)c1[[[CALL( f rom,c) ||| opn loading... in cab...T RIP( f rom,to,c)
||| opn unloading...out cab...bye0[[[ out c... in cab...opn...out to ]]]]]]

CAB � cab1[[[ ||| !!!(opn call ...opn trip...opn bye) ]]]

SITE(i) � sitei[[[ CLIENT (sitei,site j) |||CLIENT(sitei,sitel) ||| · · · ||| ||| ||| · · · ]]]
CITY � city[[[ CAB |||CAB ||| · · · ||| · · · ||| SIT E(1) ||| · · · ||| SIT E(n) ||| ||| ||| · · · ]]]

The fact that only one slot is available in cab together with the weight 1 of both call
and client prevents the cab to receive more than one call and/or more than one client.
Moreover this encoding limits also the space in each site and in the whole city.

Comparing with [17], we notice that we can deal with the cab’s space satisfactorily
with no need for 3-way synchronisations. Unfortunately, as already observed in [17],
this encoding may lead to unwanted behaviours, since there is no way of preventing
a client to enter a cab different from that called and/or the ambient bye to enter a cab
different from that the client has left. We will give a safe encoding of this example in
Subsection 3.2 using named slots.

3 Controlling Races for Resources

The calculus of the previous sections provides a simple, yet effective, framework for
reasoning on resource usage and consumption. On the other hand, it is less effective
in expressing policies to govern the allocation and distribution of space to distinct,
possibly, competitive components. Indeed, with the current semantics it is not entirely
obvious that a given resource unit can be selectively allocated to a specific agent, and
protected against unintended use. To illustrate, consider the following term (and assume
it well-formed):

a1[[[ in b.P ]]] ||| b[[[ 1�Q ||| ||| d[[[ c1[[[ out d.R ]]] ]]] ]]]

Three agents are competing for the resource unit in ambient b: ambients a and c, which
would use it for their move, and the local spawner inside ambient b. While the race
between a and c may be acceptable – the resource unit may be allocated by b to any
migrating agent – it would also be desirable for b to reserve resources for internal use,
i.e. for spawning new processes. In fact, reserving private space for spawning is possible
with the current primitives, by encoding a notion of “named resource”. This can be
accomplished by defining:

k
a � a[[[ putk ||| k ]]], and k� (a,P) � (νννn)(n[[[ (get a)k.k� opn.P ]]] | opn n)

Then, assuming w(P)= k, one has (νννa)( k
a ||| k� (a,P))∼= P, as desired. It is also possible

to encode a form of “resource renaming”, by defining:

{x/y}.P � (νn)(n[[[ get y.put.opn ]]] ||| x[[[ get n.put]]] ||| opn n.P)

Then, a y-resource can be turned in to an x-resource: {x/y}.P ||| y ↘↘↘∗ P ||| x.
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Encoding a similar form of named, and reserved, resources for mobility is subtler.
On the one hand, it is not difficult to encode a construct for reserving a x-slot for am-
bients named x. For example, ambients a and b may agree on the following protocol to
reserve a private slot for the move of a into b. If we want to use the space in ambient b
for moving a we can write the process:

(νννp,q)(p[[[ in b...get q...1 � opn...a1[[[ ]]] ]]] ||| b[[[ P ||| q[[[ ||| put ]]] ||| opn p ]]])

On the other hand, defining a mechanism to release a named resource to the context
from which it has been received is more complex, as it amounts to releasing a resource
with the same name it was allocated to. This can be simulated loosely with the cur-
rent primitives, by providing a mechanism whereby a migrating ambient releases an
anonymous slot, which is then renamed by the context that is in control of it. The prob-
lem is that such a mechanism of releasing and renaming lacks the atomicity required
to guard against unexpected races for the released resource. Indeed, we conjecture that
such atomic mechanisms for named resources can not be defined in the current calculus.

3.1 The Calculus, Refined

We counter the problem by refining the calculus with named resources as primitive
notions, and by tailoring the constructs for mobility, transfer and spawning accordingly.
Resource units come now always with a tag, as in η, where η ∈ N + {∗} is the unit
name. To make the new calculus a conservative extension of the one presented in §1,
we make provision for a special tag ‘*’, to be associated with anonymous units: any
process can be spawned on an anonymous slot, as well any ambient can be moved
on it. In addition, we extend the structure of the transfer capabilities, as well as the
construct for spawning and ambient as shown in the productions below, which replace
the corresponding ones in §1.

Processes P ::= η | k�η P | M[[[ P ]]]η | . . . as in Section 1

Capabilities C ::= getη M | get↑η | . . . as in Section 1

Messages M ::= . . . as in Section 1

Again, a (well-formed) term is a preterm such that in any subterm of the form ak[[[P]]] or
k �η P, P has weight k. The weight of a process can be computed by rules similar to
those of Section 1. The anonymous slots ∗ will be often denoted simply as , and in
general η will be omitted when equal to ∗; subscripts on ambients are omitted when
irrelevant.

The dynamics of the refined calculus is again defined by means of structural con-
gruence and reduction. Structural congruence is exactly as in Figure 1, the top-level
reductions are defined in Figure 4.

The reductions for the transfer capabilities are the natural extensions of the original
reductions of §1. Here, in addition to naming the target ambient, the get capabilities
also indicate the name of the unit they request. The choice of the primitives enables
natural forms of scope extrusion for the names of resources, even though resource tags
may not be variables. Consider the following system:

S � n[[[ (νννa)(put...P ||| a ||| p[[[ out n... in m...opn...geta n ]]]) ]]] ||| m[[[ opn p.Q ]]]
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The reductions for ambient opening and exchanges are as in Figure 1, and the rules (ENTER)
and (EXIT) have η ∈ {a,�} as side condition. The omitted subscripts ρ on ambients are meant to
remain unchanged by the reductions.

ak[[[ in b...P ||| Q ]]]ρ ||| b[[[ k
η ||| R ]]] ↘↘↘ k

ρ ||| b[[[ ak[[[ P ||| Q ]]]η ||| R ]]](ENTER)

k
η ||| b[[[ P ||| ak[[[ out b...Q ||| R ]]]ρ ]]] ↘↘↘ ak[[[ Q ||| R ]]]η ||| b[[[ P ||| k

ρ ]]](EXIT)

bh+1[[[ put...P ||| η ||| Q ]]] ||| ak[[[ getη b...R ||| S ]]] ↘↘↘ bh[[[ P ||| Q ]]] ||| ak+1[[[ R ||| η ||| S ]]](GETS)

put↓...P ||| η ||| ak+1[[[ get↑η ...Q ||| R ]]] ↘↘↘ P ||| ak[[[ η ||| Q ||| R ]]](GETU)

k�η ...P ||| k
η ↘↘↘ P(SPAWN)

Fig. 4. Top-level reductions with named units

Here, the private resource enclosed within ambient n is communicated to ambient m, as
S↘↘↘∗ (νννa)(n[[[ P ]]] ||| m[[[ Q ||| a ]]]).

The dynamics of mobility solves the problem we discussed above. To complete
a move an ambient a must be granted an anonymous resource or an a-resource. The
migrating ambient releases a resource under the name that it was assigned upon the
move (as recorded in the tag associated with the ambient construct). Finally, the new
semantics of spawning acts as expected, by associating the process to be spawned with
a specific set of resources.

These definitions suggest a natural form of resource renaming (or rebinding), noted
{{{η///ρ}}}k with the following operational semantics.

{{{η///ρ}}}k ...P ||| k
ρ ↘↘↘ P ||| k

η

Notice that this is a dangerous capability, since it allows processes to give particular
names to anonymous slots, and for instance put in place possible malicious behaviours
to make all public resources their own: !!!{{{y///∗}}}. This suggests that in many situations
one ought to restrict k�η to η ∈ N . The inverse behaviour, that is a “communist for y
spaces,” is also well-formed and it is often useful (even though not commendable by
everyone). Notice however that it can be harmful too: !!!{{{∗///y}}}. We have not defined the
name rebinding capability as a primitive of our calculus since it can be encoded using
the new form of spawning as follows, for a fresh.

{{{η///ρ}}}k ...P � (νννa)(k�ρ ( k
η ||| a0[[[ opn ]]]) ||| opn a...P)

Observe that the simpler encoding k �ρ ( k
η ||| P) is allowed only for processes P of

weight 0.

It is easy to check that the type system of Section 2 can be used without modifi-
cations also for the calculus with named slots. For this calculus the same properties
proved in Section 2 hold.
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Theorem 3 (Subject Reduction and Under/Over-Flow Absence). For the processes
and reduction relation of this section, we have:

(i) Γ � P : Proc〈ε,χ〉 and P↘↘↘∗ Q imply Γ � Q : Proc〈ε′,χ〉 with ε′ ≤ ε.
(ii) If Γ,a : Amb〈[n,N],χ〉 � P : Proc〈ε,χ〉, P↘↘↘∗ C[ak[[[ R ]]]], and the showed occurrence

of a is not in the scope of a binder for a, then n ≤ k ≤ N.

3.2 More Examples

The Cab Trip Revisited. Named slots allow us to avoid unwanted behaviours when
encoding the cab trip example. The cab initially contains one slot named call, but after
reaching the client’s site it will contain one slot with the client private name, and lastly
when the client goes out of the cab it leaves one slot named bye. The call exiting the
client leaves one slot tagged forbye, which is reserved for spawning bye. The (resource)
renaming in the sites and in the city allow the public reuse of resources.
Let W1 = Amb〈[1,1],0E〉, W0 = Amb〈[0,0],0E〉. As in Subsection 2.3 the typing envi-
ronment contains call : W1, cab : W1, trip : W0, unloading : W0, but bye : W1 and we do
not need the ambient loading.

CALL( f rom,client) � call1[[[ out client ...out f rom... in cab...opn... in f rom... client ]]] f orbye

T RIP( f rom,to,client) � trip0[[[ out client ...opn...out f rom... in to...unloading0[[[ in client ...opn ]]] ]]]

CLIENT( f rom,to) � (νννc : W1)c1[[[CALL( f rom,c) ||| in cab...T RIP( f rom,to,c)
||| opn unloading...out cab...1� f orbye bye1[[[ out c... in cab...opn...out to... call ]]]∗]]]bye

CAB � cab1[[[ call ||| !!!(opn call ...opn trip...opn bye) ]]]∗
SIT E(i) �

sitei[[[ CLIENT (sitei,site j) |||CLIENT(sitei,sitel) ||| · · · ||| ||| ||| · · · ||| !!!{{{∗///f orbye}}}1 ||| !!!{{{∗///bye}}}1 ]]]

CITY �
city[[[ CAB |||CAB ||| · · · ||| SIT E(1) ||| · · · ||| SIT E(n) ||| ||| ||| · · · ||| !!!{{{∗///f orbye}}}1 ]]]

A Travel Agency. We conclude the presentation with an example that shows the ex-
pressiveness of the naming mechanisms for resources in the refined calculus. We wish
to model clients buying tickets from a travel agency, paying them one slot (the fortkt

inside the client), and then use them to travel by plane. At most two clients may enter
the travel agency, and they are served one by one. The three components of the systems
are defined below.

� THE AGENCY: ag5[[[ 2
cl ||| req |||

desk1[[[ req ||| !!!(opn req...1 �fortkt ... tkt1[[[ out desk... in cl...CONT ]]]req)]]] ]]]

where CONT = (opn...out ag... in plane...rdy0[[[ out cl ]]] ||| getoff ||| opn getoff)

� THE CLIENT: cl1[[[ in ag... req1[[[ out cl... in desk...opn... fortkt ]]]tkt ||| opn tkt ]]]cl

� THE AIRCRAFT: plane[[[ 2
cl ||| opn rdy0 ...opn rdy0 ...ROUTE...(GETOFF ||| GETOFF) ]]]

where GETOFF = getoff1[[[ in cl...opn...out plane ||| ]]] and ROUTE is the unspecified
path modelling the route of the aircraft.
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We assume that there exists only one sort of ticket, but it is easy to extend the
example with as many kinds of ticket as possible plane routes. What makes the example
interesting is the possibility of letting two clients into the agency, but serving them non-
deterministically in sequence. Notice that the use of the named slots is essential for
a correct implementation of the protocol. When the request goes to the desk, a slot
named tkt is left in the client. This slot allows the ticket to enter the client. In this way
we guarantee that no ticket can enter a client before its request has reached the desk.

We assume the aircraft to leave only when full. This constraint is implemented by
means of the rdy ambient. The ambient getoff enables the passengers to get off once at
destination; assigning weight 1 to the getoff ambients prevents them to get both into the
same client.

4 Conclusion and Future Work

We have presented an ambient-like calculus centred around an explicit primitive rep-
resenting a resource unit: the space “slot” . The calculus, dubbed BoCa, features ca-
pabilities for resource control, namely pairs get/put to transfer spaces between sibling
ambients and from parent to child, as well as the capabilities in a and out a for ambi-
ent migration, which represent an abstract mechanism of resource negotiation between
travelling agent and its source and destination environments. A fundamental ingredi-
ent of the calculus is �(_), a primitive which consumes space to activate processes.
The combination of such elements makes of BoCa a suitable formalism, if initial, to
study the role of resource consumption, and the corresponding safety guarantees, in the
dynamics of mobile systems. We have experimented with the all important notion of
private resource, which has guided our formulation of a refined version of the calculus
featuring named resources.

The presence of the space construct induces a notion of weight on processes, and
by exercising their transfer capabilities, processes may exchange resources with their
surrounding context, so making it possible to have under- and over-filled ambients. We
have introduced a type system which prevents such unwanted effects and guarantees
that the contents of each ambient remain within its declared capacity.

As we mentioned in the Introduction, our approach is related to the work on Con-
trolled Mobile Ambients (CMA) [17] and on Finite Control Mobile Ambients [3]. There
are, however, important difference with respect to both approaches.

In CMA the notions of process weight and capacity are entirely characterized at
the typing level, and so are the mechanisms for resource control (additional control on
ambient behavior is achieved by means of a three-way synchronization for mobility, but
that is essentially orthogonal to the mechanisms targeted at resource control). In BoCa,
instead, we characterize the notions of space and resources directly in the calculus,
by means of an explicit process constructor, and associated capabilities. In particular,
the primitives for transferring space, and more generally for the explicit manipulation
of space and resources by means of spawning and replication appear to be original to
BoCa, and suitable for the development of formal analyses of the fundamental mecha-
nism of the usage and and consumption of resources which do not seem to be possible
for CMA.
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As to [3], their main goal is to isolate an expressive fragment of Mobile Ambients
for which the model checking problem against the ambient logic can be made decidable.
Decidability requires guarantees of finiteness which in turn raise boundedness concerns
that are related to those we have investigated here. However, a more thorough com-
parison between the two approaches deserves to be made and we leave it to our future
work.

Plans for future include further work in several directions. A finer typing discipline
could be put in place to regulate the behavior of processes in the presence of primi-
tive notions of named slots. Also, the calculus certainly needs behavioral theories and
proof techniques adequate for reasoning about resource usage and consumption. Such
theories and techniques could be assisted by enhanced typing systems providing static
guarantees of a controlled, and bounded, use of resources, along the lines of the work
by Hofmann and Jost in [10].

A further direction for future development is to consider a version of weighed am-
bients whose “external” weight is independent of their “internal” weight, that is the
weight of their contents. This approach sees an ambient as a packaging abstraction
whose weight may have a different interpretation from that of contents’. For instance,
modelling a wallet the weight of its contents could represent the value of the money
inside, whereas its external weight could measure the physical space it occupies. A di-
rectory’s internal weight could be the cumulative size of its files, while the external
weight their number.

Last, but not least, we would like to identify logics for BoCa to formulate (quanti-
tative) resource properties and analyses; and to model general resource bounds negoti-
ation and enforcement in the Global Computing scenario.
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