
Unreliable Failure Detectors
via Operational Semantics?

Uwe Nestmann and Rachele Fuzzati

School of Computer and Communication Sciences
EPFL-I&C, 1015 Lausanne, Switzerland

Abstract. The concept of unreliable failure detectors for reliable distri-
buted systems was introduced by Chandra and Toueg as a fine-grained
means to add weak forms of synchrony into asynchronous systems. Var-
ious kinds of such failure detectors have been identified as each being
the weakest to solve some specific distributed programming problem. In
this paper, we provide a fresh look at failure detectors from the point of
view of programming languages, more precisely using the formal tool of
operational semantics. Inspired by this, we propose a new failure detec-
tor model that we consider easier to understand, easier to work with and
more natural. Using operational semantics, we prove formally that rep-
resentations of failure detectors in the new model are equivalent to their
original representations within the model used by Chandra and Toueg.

1 Executive Summary

Background In the field of Distributed Algorithms, a widely-used computation
model is based on asynchronous communication between a fixed number n of
connected processes, where no timing assumptions can be made. Moreover, pro-
cesses are subject to crash-failure: once crashed, they do not recover. The concept
of unreliable failure detectors was introduced by Chandra and Toueg [CT96] as a
fine-grained means to add weak forms of synchrony into asynchronous systems.
Various kinds of such failure detectors have been identified as each being the
weakest to solve some specific distributed programming problem [CHT96].

The two communities of Distributed Algorithms and Programming Lan-
guages do not always speak the same “language”. In fact, it is often not easy to
understand each other’s terminology, concepts, and hidden assumptions. Thus,
in this paper, we provide a fresh look at the concept of failure detectors from
the point of view of programming languages, using the formal tool of operational
semantics. This paper complements previous work [NFM03] in which we used an
operational semantics for a distributed process calculus to formally prove that a
particular algorithm (also presented in [CT96]) solves the Distributed Consensus
problem. Readers who are interested in proofs about algorithms within our new
model (rather than proofs about it) are thus referred to our previous paper.
? Appears in Proceedings of ASIAN’03 (c© Springer-Verlag). Supported by the Swiss

National Science Foundation, grant No. 21-67715.02, the Hasler Foundation, grant
No. DICS 1825, an EPFL start-up grant, and the EU FET-GC project PEPITO.

2 Nestmann, Fuzzati

(env)
“ failure detection events happens in the environment ”

Γ −→ Γ ′

(tau)

Γ −→ Γ ′ N
τ@i−−−−→ N ′

“ i not crashed in Γ ”

Γ ` N −→ Γ ′ ` N ′

(suspect)

Γ −→ Γ ′ N
suspectj@i

−−−−−−−−−→ N ′

“ i not crashed in Γ ” “ j may be suspected by i in Γ ”

Γ ` N −→ Γ ′ ` N ′

Table 1. Uniform “Abstract” Operational Semantics Scheme

The work of Chandra and Toueg emphasized the axiomatic treatment of
qualitative properties rather than quantitative ones. Like them, also our current
focus is on issues of correctness, not of performance. Moreover, Chandra and
Toueg did not primarily aim at providing concrete design support for an imple-
mentation of failure detectors. Like them, also we rather seek mathematically
useful and convincing semantic abstractions of failure detectors.

Vehicle of Discussion In Table 1, we propose a uniform scheme to describe the
operational semantics of process networks in the context of failure detectors. For
convenience, we abstract from the way how the steps N −→ N ′ of process net-
works are generated (from the code that implements the respective algorithm),
so we do not provide rules for this. It is sufficient for our purposes to observe that
a process i in a network carries out essentially two kinds of transitions N −→ N ′,
distinguished by whether it requires the suspicion of some process j by process i,
or not. Formally, we use labels suspectj@i and τ@i to indicate these two kinds.

In summary, Table 1 presents a two-layered operational semantics scheme.
One layer, in addition to the transitions N −→ N ′ of process networks, also
describes the transitions Γ −→ Γ ′ of the network’s environment, keeping track
of crashes and providing failure detection, as indicated by rule (env). Another
layer, with the rules (tau) and (suspect), deals with the compatibility of net-
work and environment transitions, conveniently focusing on the environment
conditions for the two kinds of transitions of process networks. For example, the
boxed condition exploits the failure detector information that in our scheme is
to be provided via the environment component Γ .

A system run in this uniform scheme is an infinite sequence of transitions

Γ0 ` N0 −→ Γ1 ` N1 · · · −→ Γt ` Nt −→ · · ·

that we often simply abbreviate as (Γt ` Nt)t∈N0 . We also use the projections
onto the respective environment runs (Γt)t∈N0 and network runs (Nt)t∈N0 , which
exist by definition of the rules (tau) and (suspect) of Table 1.

Unreliable Failure Detectors via Operational Semantics 3

Overview We start the main part of the paper by an introduction (§2) to the
various kinds of failure detectors proposed by Chandra and Toueg, including Ω
which appeared in [CHT96]. Already in this introduction, we rephrase their pre-
vious work using the scheme of Table 1. In addition, we use this exercise to come
up with a well-motivated proposal for a new model and way to represent failure
detectors (§3). We formalize our proposal according to the scheme of Table 1 and
redefine all previously introduced FDs within the new model (§4). Exploiting the
common scheme and the formality of the framework of operational semantics, we
formally prove that our redefinitions are “equivalent” to the original definitions
by a mutual simulation of all possible system runs that are derivable in either
case (§5) and draw some conclusions from having done so (§6).

Contribution In summary, this paper contains an original presentation, using
operational semantics, of existing work by Chandra and Toueg, which is targeted
at an audience in process calculi and programming language semantics. The
paper also provides, as its main contribution, a new model to represent failure
detectors that tries to eliminate a number of drawbacks of the original model used
by Chandra and Toueg. Many other failure detectors have been studied in the
literature; for the current paper, we restrict our attention to the ones introduced
in [CT96, CHT96]. The technical contribution is a formal comparison of the
representations of these classical failure detectors in the new model with their
representations on the old model, which was greatly simplified by having both
models fit the scheme of Table 1. To conclude, we argue that our new model for
FDs is easier to understand, easier to work with, and more natural than the one
used by Chandra and Toueg (see the justification in §6).

Related Work We are not aware of any related or competing approaches.

Acknowledgments We very much thank André Schiper and Sam Toueg for en-
lightening discussions about failure detectors and, more generally, distributed
algorithms, but they may not necessarily agree with all conclusions that we drew
from our work. Many thanks also to Pawel Wojciechowski and the anonymous
referees for their comments on a draft of this paper.

2 A Fresh Look at the Model of Chandra and Toueg

Recall that we are addressing asynchronous message-passing distributed system
with no bounds on message delays and a fixed number n of processes. Let P :=
{1 . . . , n} denote the set of process names. All processes are supposed to run the
very same algorithm. Processes may crash; when they do so, they do not recover.
Systems evolve in time. T denotes some discrete time domain; for simplicity,
we may just assume that T = N0. At any time, the state of a system is fully
determined by the states of the individual processes while running the algorithm,
together with the messages currently present in the global message buffer. We
do not formalize global states, but treat them abstractly throughout the paper.

4 Nestmann, Fuzzati

2.1 Schedules

A schedule, of the form (T, I, S), is essentially a sequence S of global steps in
time T, while running some algorithm starting within the initial global state I,
where the message buffer is empty. Sometimes, we refer to just S as being the
schedule. A step is usually produced by any one of the n processes according to
the algorithms’ instructions: in atomic fashion, a process receives some messages
(possibly none) from the message buffer, possibly checks whether it is allowed
to suspect another process, and sends out new messages (possibly none) to the
message buffer, while changing its state. Often, it is left rather informal and
imprecise how steps are actually defined, and there are a number of variations
for this. In both papers [CT96, CHT96], it is assumed that schedules are infinite.

A Simple Operational Semantics View To avoid the details of generating
global steps from an algorithm, and to abstract away from the details of message-
passing, we model schedules simply as infinite sequences of labeled transitions

N
µ@i−−−−→ N ′

that denote steps between abstract global states (ranged over by N) by perform-
ing an action µ due to the activity of some process i. The label µ depends on
whether i needs to (be able to) suspect another process j, or not. If it does so,
we indicate this by a transition arrow labeled with µ := suspectj , otherwise we
simply use the label µ := τ , which is commonly used to indicate that “some”
not further specified activity takes place by process i.

In this paper, we are not at all interested in how schedules themselves are
generated. An example of this can be found in our earlier paper [NFM03], where
we used a reasonably standard process calculus to do this.

2.2 Unreliable Failure Detectors

According to Chandra and Toueg [CT96], a failure detector (FD) is a separate
module attached locally to a process; each process i has its own private FDi.
At any moment in time, each FD outputs a list of (names of) processes that it
currently suspects to have crashed. FDs are unreliable: they may

– make mistakes,
– disagree among them, and
– change their mind indefinitely often.

Process i interacts with its FDi explicitly by only being allowed to suspect an-
other process j at any given time t, if FDi’s output list contains j at this time.

Example 1 (“Application”). When a process needs to go on by the help of an-
other process—e.g., via reception of a message—it may typically specify to “ei-
ther wait for this process, or suspect it and continue otherwise”. However, it is
only allowed to choose the second option if its FD permits it at the very moment
that the process looks at the FDs output, which it may have to do infinitely often
if the FD insists on not permitting the required suspicion.

Unreliable Failure Detectors via Operational Semantics 5

More formally, the concept of process crashes is modeled by means of failure
patterns F : T → 2P that describe monotonically when in a run crashes happen.
For example, F (42) = {3, 7} means that processes 3 and 7 have crashed during
the time interval [0, 42]. Similarly, the concept of failure detection is modeled by
so-called failure detector histories H : T×P → 2P. For example, H(42, 5) = {6, 7}
means that at time 42 processes 6 and 7 are suspected by the FD of process 5.
Given the previous example F , this means that process 7 is correctly suspected,
while process 6 is erroneously suspected. Mathematically, a FD is a function1

D : (T → 2P) → 2(T×P→2P)

that maps failure patterns F to sets of failure detector histories. Such sets may
be specified by additional properties, as exemplified in Section 2.3. From now
on, whenever we mention some F and H in the same context, then H ∈ D(F)
is silently assumed; we may write HD to indicate the referred FD.

Finally, system runs R are quintuples (F,H, T, I, S). Subject to the shared
time domain T, the schedule S of a run is required to be “compatible” with the
failure pattern F and detector history H: (1) a process cannot take a step after
it has crashed (according to F); (2) when a process takes a step and queries
its failure detector module, it gets the current value output by its local failure
detector module (according to H).

A process is correct in a given run, if it does not crash in this run. It may,
though, crash in other runs. Let crashed(R) := crashed(F) :=

⋃
t∈T F (t) denote

the processes that have crashed in run R according to its failure pattern F .
Consequently, correct(R) := correct(F) := P\crashed(F). Usually, one considers
only runs in which correct(F) 6= ∅, i.e., in every run at least one process survives.
Sometimes, as for the Consensus algorithm that we studied in [NFM03], it is even
required that less than n/2 processes may crash. Abstractly, we use maxfail(n)
to denote the maximal number of crashes permitted in a run.

A Simple Operational Semantics View To make the model fit our univer-
sal scheme of Table 1, we need to recast the information contained in failure
patterns F and failure detector histories H in an evolutionary manner as en-
vironment transitions. Both F and H are totally defined over the whole time
domain T. Thus, we may simply use transitions (t, F, H) −→ (t+1, F, H), in which
time t just passes, while we leave F and H unchanged. Rule (T-env) of Table 2
serves us to generate such transitions formally.

System configurations are of the form Γ ` N , where Γ is an element of
the domain T × (T → 2P) × (T × P → 2P), and N represents some state of the
algorithm. The rules (T-tau) and (T-suspect) in Table 2 formally describe the
conditions for a transition of an algorithm in state N to produce system transi-
tions depending on the current information about crashes and failure detectors

1 The term failure detector is overloaded to denote the single devices that are attached
to processes, as well as the mathematical object that governs the output that any
of these single devices may yield during runs.

6 Nestmann, Fuzzati

(T-env)
�

(t, F, H) −→ (t+1, F, H)

(T-tau)
(t, F, H) = Γ −→ Γ ′ N

τ@i−−−−→ N ′ i 6∈ F (t)

Γ ` N −→ Γ ′ ` N ′

(T-suspect)
(t, F, H) = Γ −→ Γ ′ N

suspectj@i

−−−−−−−−−→ N ′ i 6∈ F (t) j ∈ H(i, t)

Γ ` N −→ Γ ′ ` N ′

Table 2. Operational Semantics for the Failure Detectors of [CT96]

at any time t ∈ T. Note that in both cases the process i who is responsible for
the transition must not (yet) have crashed at the time t when the transition
is supposed to happen: i 6∈ F (t). Note further that if it is required to suspect
some process j to perform the transition, then the respective failure detector
of process i must currently permit to do so: j ∈ H(i, t). It is easily possible to
generalize this representation to the case where, to carry out a single transition,
process i would need to suspect more than one other process; for simplicity, we
only consider a single suspicion.

System runs can now be fit together dynamically as infinite sequences of
system transitions that are derivable by operational semantics rules.

Definition 1. A T(D)-run is an infinite sequence ((t, F, H) ` Nt)t∈T generated
by (T-env), (T-tau), and (T-suspect), for some F,H with H ∈ D(F).

2.3 “Sufficiently Reliable” Failure Detectors

Probably the main novelty of Chandra and Toueg’s paper [CT96] was the defini-
tion and study of a number of FDs D that only differ in their degree of reliability,
as expressed by a combination of safety and liveness properties. These are formu-
lated in terms of permitted and enforced suspicions according to the respective
failures reported in F and the failure detection recorded in H ∈ D(F):

completeness addresses crashed processes that must be suspected
by (the FDs of) “complete” processes.

accuracy addresses correct processes that must not be suspected
by (the FDs of) “accurate” processes.

Note that these definitions refer to suspicions allowed by the output of the in-
dividual FDs at any time (according to H). By “complete” and “accurate”
processes, we indicate that there is some flexibility in the definition of the set
of processes that the property shall be imposed on. Note that H is, in prin-
ciple, a total function. Therefore, at any moment, it provides FD output for
every process—crashed or not—so there are at least three obvious possibilities
to define the meaning of “complete” and “accurate” processes:

Unreliable Failure Detectors via Operational Semantics 7

1. all processes (∈ P)
2. only processes that are still alive at time t (∈ P \ F (t))
3. only correct processes (∈ correct(F) = P \ crashed(F))

Obviously, it does not make much sense to speculate, as in solution 1, about the
output of FDs of crashed processes, because the respective process would never
ever again contact its FD.2 It seems much more natural to select solution 2,
because it precisely considers just those processes that are alive. If completeness
or accuracy shall hold only eventually, then solution 3 becomes interesting: since
every incorrect process that is still alive at some moment will crash later on, the
property would just hold at a later time. In infinite runs, and for properties with
an eventual character, solutions 2 and 3 become “equivalent” [CT96].

Eight Candidates Various instantiations of completeness and accuracy have
been proposed. We recall the eight FDs of Chandra and Toueg, defined by all
possible combinations of the following variations of completeness and accuracy.
Note that their defining properties are quantified over all possible runs. For every
given run, the components F and H ∈ D(F) are fixed, as well as the derived
notions of which processes are considered to be correct in this run.

strong completeness Eventually, every process that crashes is permanently
suspected by every correct process.

∀F,H : ∃t̂ : ∀p ∈ crashed(F) : ∀q ∈ correct(F) : ∀t ≥ t̂ : p ∈ H(q, t)

weak completeness Eventually, every process that crashes is permanently sus-
pected by some correct process.

∀F,H : ∃t̂ : ∀p ∈ crashed(F) : ∃q ∈ correct(F) : ∀t ≥ t̂ : p ∈ H(q, t)

Combined with the strong/weak versions of completeness, the following notions
of accuracy induce eight variants of FDs, with their denotations listed in brackets.

strong accuracy (P/Q) No process is suspected before it crashes.

∀F,H : ∀t : ∀p, q ∈ P \ F (t) : p 6∈ H(q, t)

Note that the “accuracy set” is the alive processes.

weak accuracy (S/W) Some correct process is never suspected.

∀F,H : ∃p ∈ correct(F) : ∀t : ∀q ∈ P \ F (t) : p 6∈ H(q, t)

Note that also here the “accuracy set” is the alive processes.

2 It might be more appropriate to define H as partial function where H(i, t) is only
defined if i 6∈ F (t). One might also conclude that the (F, H)-based model is too rich.

8 Nestmann, Fuzzati

eventual strong accuracy (♦P/♦Q) There is a time after which correct pro-
cesses are not suspected by any correct process.

∀F,H : ∃t̂ : ∀t ≥ t̂ : ∀p ∈ correct(F) : ∀q ∈ correct(F) : p 6∈ H(q, t)

eventual weak accuracy (♦S/♦W) There is a time after which some correct
processes is never suspected by any correct process.

∀F,H : ∃t̂ : ∃p ∈ correct(F) : ∀t ≥ t̂ : ∀q ∈ correct(F) : p 6∈ H(q, t)

Note that, except under strong and weak accuracy, (the FDs of) processes that
crash (in a given run) may behave completely unconstrained (in this run) before
they have crashed. Although the formulation of the above FDs might appear a
bit ad-hoc (see Gärtner [Gär01] for a gentle and systematic overview), some of
them are known to provide the weakest FDs required to solve certain well-known
distributed programming problems: ♦W solves Consensus, where less than n/2
processes may crash; S solves Consensus, where less than n processes may crash;
P solves the Byzantine General’s Problem [CT96].

Another important contribution found in [CT96] is the concept of reducibility
between FDs. Essentially, it studies reduction algorithms TD→D′ that transform
the outputs of D into outputs of D′. As a consequence, any problem that can be
solved using D′ can also be solved using D, written D � D′. If such a relation
holds in both directions, then we write D ∼= D′. Interestingly, FDs with either
strong or weak completeness are not that much different with respect to their
ability to solve problems: P ∼= Q, S ∼= W, ♦P ∼= ♦Q, ♦S ∼= ♦W.

2.4 Another Prominent Candidate: Ω

In this subsection, we try to explain that completeness is required in the (F,H)-
based model used by Chandra and Toueg only because this model is unrealisti-
cally rich, which we might regard as a deficiency of the model.

Without the completeness property, the (F,H)-based model allows a FD
to be incomplete, i.e., to indefinitely not suspect a crashed process. We may
conceive this as unrealistic if we, for instance, assume that FDs work with time-
outs. Given that any crashed process can only have sent a finite number of
messages before having crashed, any FD will be reporting suspicion of a crashed
process at the latest after “timeout” times “number of sent messages” units of
time.

It is instructive to replay the argument in the dual model of “presence detec-
tors”, where the outputs of FDs are inversed, i.e., where H tells which processes
are currently “trusted” by the FD. Intuitively, this dual model feels more direct
since the trust in a process to be alive is often based on “feeling its heartbeat”.
Of course, since it is just a mathematically dual, also this model is too rich: an
incomplete FD may be expressed by always listing a crashed process as being
trusted.3 However, it is easy to constrain this model as to avoid incomplete FDs.
3 In this model, completeness more intuitively specifies the natural requirement that

“you cannot feel the heartbeat of a crashed process infinitely long”. Strong com-

Unreliable Failure Detectors via Operational Semantics 9

(Ω-env) = (T-env) (Ω-tau) = (T-tau)

(Ω-suspect)
(t, F, H) = Γ −→ Γ ′ N

suspectj@i

−−−−−−−−−→ N ′ i 6∈ F (t) j 6= H(i, t)

Γ ` N −→ Γ ′ ` N ′

Table 3. Operational Semantics for the “Presence” Detector Ω of [CHT96]

Interestingly, the detector Ω, as introduced in another paper by Chandra
and Toueg, jointly with Hadzilacos [CHT96], represents one particular model
variant of presence detectors that is “sufficiently poor” to render incomplete
FDs impossible. With Ω, every FD at any moment in time outputs only a single
process that is believed to be “correct”4 or trusted; H : P× T → P.

(Ω) Eventually, all correct processes always trust the same correct process.

∃t̂ ∈ T : ∃q ∈ correct(F) : ∀p ∈ correct(F) : ∀t > t̂ : H(p, t) = q

Observe why it is no longer possible to indefinitely enforce trust on crashed
processes: since the output of H contains only a single process, the associated
process can always suspect any of the n−1 other processes. The property above
eventually stabilizes to a single correct process, then permanently allowing the
suspicion of the remaining other processes.

It is straightforward to provide an operational semantics view for Ω by adapt-
ing the previous configurations to the new type of H. The rule (Ω-suspect) in
Table 3 shows the duality of presence detectors versus failure detectors: the
condition on a suspected j is inversed.

Definition 2. A T(Ω)-run is an infinite sequence ((t, F, H) ` Nt)t∈T generated
by (Ω-env), (Ω-tau), and (Ω-suspect), for some F,H with H ∈ Ω(F).

The FD Ω was introduced only as an auxiliary concept in the proof that ♦W is
the weakest FD solving Consensus, which works because Ω ∼= ♦W.

3 Proposal of a New Model of FDs

There are a number of observations on the (F,H)-based specification of FDs
that motivate us to do it differently.

from static to dynamic The use of (F,H) as “predicting” the failures of pro-
cesses and their detection by others in a run appears to be counter-intuitive
from the point of view of programming language semantics where events of a
computation are to happen dynamically and possibly non-deterministically.

pleteness makes sense in precisely this respect. The intuition of weak completeness
is less clear: why should the heartbeat argument apply to only one process?

4 Original called this way in [CHT96], but it is different from the notion of a correct
process which is precisely about a full run, and not just one moment in it.

10 Nestmann, Fuzzati

from failure detection to presence detection In Subsection 2.4, we men-
tioned the problem of completeness, which is inherent in the (F,H)-model,
and how Ω does a good job in avoiding the problem in a poorer dual model.
We propose to use similar ideas also for FDs that are not equivalent to Ω.

intuition mismatch The use of a total function H to model outputs of FD
modules counters the intuition that a process crash should imply the crash
of its attached FD at the same time. This could be repaired by making H a
partial function that is only defined when the respective process has not yet
crashed. Below, we go even further and replace the H completely.

We do not see the need to record in H an abundance of unreliable information.
The quest to model a minimal amount of information has two consequences.

from unstable to stable The use of unreliable FD-outputs listed in H very
carefully models a lot of unstable (and therefore questionable!) information,
namely information that changes nondeterministically over time. However,
in order to characterize the above six FD properties, only (eventually) stable
information is used. We therefore propose to model only this kind of stable
information—once it has become stable—and to freely allow any suspicions
for which there is no stable information yet, as in the “poor” output of Ω.

from local to global Chandra and Toueg intended to give an abstract model
of FDs, but we feel that by attaching individual modules to every process it
is still too concrete, i.e., close to implementation aspects. Furthermore, the
above completeness and accuracy properties are all defined globally on the
set of all FD modules, not on individual ones. Thus, we rather propose to
model FDs as a single global entity and have all processes share access to
it. As a side-effect, the freedom (=”imprecision”) in the formulation of FD
properties with respect to the proper choice of the “accuracy set” disappears.

Summing up, we seek to model the environment of process networks dynamically
as a global device that exclusively stores stable information. But, apart from
crashes that occur irrevocably, which information should this precisely be?

Looking again at the previous (F,H)-based FDs, the principle behind the
more complicated notions of accuracy seems to be that of “justified trust”. Cor-
rect processes—those that, according to F , were immortal in the given run—are
trusted forever (according to H) in the given run, either eventually or already
from the very beginning. If, in some dynamic operational semantics scenario,
we want to model the moment when such a process becomes trusted, we must
ensure this process not to crash afterwards—it must become immortal at this
very moment. Then, we call such a process trusted-immortal.

4 An Operational Semantics View of the New Model

As motivated in the previous section, we propose a new model—defined by its
operational semantics—that can be used to represent all of the FDs of [CT96]
solely based on stable/reliable information that is not fixed before a run starts,

Unreliable Failure Detectors via Operational Semantics 11

(D-env)
(TI ∪ TI) ∩ C = ∅ (C ∪ C) ∩ TI = ∅ |C ∪ C| ≤ maxfail(n)

(TI, C) −→ (TI] TI, C] C)

(D-tau)
(TI,C) = Γ −→ Γ ′ N

τ@i−−−−→ N ′ i 6∈ C

Γ ` N −→ Γ ′ ` N ′

(X -suspect)
(TI,C) = Γ −→ Γ ′ N

suspectj@i

−−−−−−−−−→ N ′ i 6∈ C conditionX (Γ, j)

Γ ` N −→ Γ ′ ` N ′

Table 4. Operational Semantics Scheme with Reliable Information

but is dynamically appearing along its way. It turns out that two kinds of infor-
mation suffice: (1) which processes have crashed, and (2) which processes have
become trusted-immortal. Both kinds of information may occur at any moment
in time, and they remain irrevocable in any continuation of the current run.

We use the symbol D to recall the softer more dynamic character as opposed
to time T just passing for some predefined crash and detection schedule.

Modeling Stable Reliable Information Rule (D-env) in Table 4 precisely
models the nondeterministic appearance of crashed and trusted-immortal pro-
cesses in full generality. Environments Γ = (TI,C) ∈ 2P × 2P record sets TI of
trusted-immortal processes and sets C of crashed processes. In a single step, an
environment may be increased by further trusted-immortal processes (∈TI) and
further crashed processes (∈C). The two empty-intersection conditions on TI
and C assure a simple sanity property: processes shall not be crashed and
trusted-immortal at the same time. Note that we also assume the operator]
to imply the empty intersection of its operands: processes may crash or become
trusted-immortal only once. The condition concerning maxfail(n) is obvious: we
should not have more processes crash than permitted. The sets TI and C may
both be empty, which implies that the environment may also do idle steps; this is
necessary for runs whose number of steps is greater than the number of processes,
like in the infinite runs that we are looking at.

Rule (D-tau) straightforwardly permits actions τ@i if i 6∈ C. Rule (X -
suspect) requires in addition that the suspected process j is permitted to be
suspected by Γ , depends on the FD accuracy that we intend to model.

Failure Detection In our model, trusted-immortal processes are intended to
be never again suspected by any other process. In Table 5, we specify differ-
ent incarnations for the rule (X -suspect) that are targeted at the the various
notions of accuracy that our FDs are intended to satisfy.

Strong Accuracy (as in P/Q) can be expressed very simply and directly in our
environment model, because it does not explicitly talk about correct processes.

12 Nestmann, Fuzzati

(P/Q-suspect)
(TI,C) = Γ −→ Γ ′ N

suspectj@i

−−−−−−−−−→ N ′ i 6∈ C j ∈ C

Γ ` N −→ Γ ′ ` N ′

(S/W-suspect)
(TI,C) = Γ −→ Γ ′ N

suspectj@i

−−−−−−−−−→ N ′ i 6∈ C j 6∈ TI 6= ∅

Γ ` N −→ Γ ′ ` N ′

(♦-suspect)
(TI,C) = Γ −→ Γ ′ N

suspectj@i

−−−−−−−−−→ N ′ i 6∈ C j 6∈ TI

Γ ` N −→ Γ ′ ` N ′

Table 5. Operational Semantics with Reliable Detectors

Rule (P/Q-suspect) says precisely that “no site is suspected before it has
crashed” by requiring that any suspected process j must be part of the set C.
Note that the component TI is not used at all; if we were interested in just strong
accuracy, it would suffice to record information about crashed processes.

Definition 3. A D(P/Q)-run is an infinite sequence (Γt ` Nt)t∈T
generated by (D-env), (D-tau), and (P/Q-suspect).

Weak Accuracy (as in S/W) builds on rule (S/W-suspect). In order to get
that “some correct process is never suspected”, the idea is that some process
must become trusted-immortal before any suspicion in the system may take
place. A process i may always suspect process j unless the failure detector tells
otherwise, i.e., unless it imposes to trust j by j 6∈ TI. Note that if we allowed
suspicions before the “election” of at least one trusted-immortal, then even a
process becoming trusted-immortal later on might have been suspected before.

Definition 4. A D(S/W)-run is an infinite sequence (Γt ` Nt)t∈T
generated by (D-env), (D-tau), and (S/W-suspect).

The other versions of “eventual accuracy” cannot be expressed solely by
operational semantics rules; additional liveness properties are required.

Eventual Weak Accuracy (as in ♦S/♦W) builds on rule (♦-suspect), which
is a slightly more liberal variant of (S/W-suspect): suspicions may take place
without some process having become trusted-immortal. However, we need to add
to the condition on runs that eventually at least one process indeed turns out
to be trusted-immortal such it cannot be suspected afterwards. The detector Ω
of [CHT96] is very close to this very intuition, as well (confirming Ω ∼= ♦W).

Definition 5. A D(♦S/♦W)-run is an infinite sequence (Γt ` Nt)t∈T
generated by (D-env), (D-tau), and (♦-suspect),
where there is a reachable state (TIt̂,Ct̂) ` Nt̂ with TIt̂ 6= ∅.

Unreliable Failure Detectors via Operational Semantics 13

Eventual Strong Accuracy (as in ♦P/♦Q) is a nuance trickier: like its weak
counterpart, it builds directly on rule (♦-suspect) and adds to it a condition on
runs, but now a more restrictive one: in any run, there must be a state Γ = (TI,C)
with TI∪C = P. In such a state, all decisions about correctness and crashes have
been taken. This witnesses that ♦P is called eventually perfect [CT96]: in fact,
the condition j 6∈ TI becomes equivalent to the perfect condition j ∈ C of P/Q.

Definition 6. A D(♦P/♦Q)-run is an infinite sequence (Γt ` Nt)t∈T
generated by (D-env), (D-tau), and (♦-suspect),
where there is a reachable state (TIt̂,Ct̂) ` Nt̂ with TIt̂ ∪ Ct̂ = P.

Note that we did not explicitly mention completeness properties in our re-
definitions. In fact, as inspired by Ω (see Subsection 2.4), they are built-in im-
plicitly. With the rules (S/W-suspect) and (♦-suspect), the suspicion of a
crashed process is always allowed. With rule (P/Q-suspect), the suspicion of
a crashed process is allowed immediately after it crashed. Note that complete-
ness is thus provided in the strongest possible manner, strictly implying strong
completeness. It does not only hold eventually, but “as soon as possible”, sub-
ject only to accuracy constraints. This built-in strength is a consequence of the
principle of our model to store only stable information to govern the possibility
of suspicions, leaving complete freedom to suspect in all those cases where the
fate of the suspected process has not yet been decided on in the current run.

Having redefined runs that are allowed for particular FDs, we must of course
also argue that they correspond to the original counterparts of Chandra and
Toueg. This we do formally in the following section.

5 Validation of the New Model

We compare our D-representations of FDs with the T-representations proposed in
[CT96] extensionally through mutual “inclusion” of their sets of runs. Essentially,
we are looking for a mutual simulation of T-runs and D-runs sharing the same
network run (by projecting onto the N -component). To this aim, it will be crucial
to formally relate the respective notions of environment.

Definition 7. (TI,C) corresponds to (t, F, H), written (TI,C) ∼ (t, F, H), if

1. C = F (t), and
2. j ∈ TI implies that ∀i ∈ At : ∀t′ ≥ t : j 6∈ H(i, t′).

where At := F (t) or At := correct(F) depending on the respective “accuracy set”
(see Section 2) of the version of accuracy that we are considering.

It is also convenient to use case 2 in the opposite direction for the case of t′ = t:
If (TI,C) ∼ (t, F, H), then ∀i ∈ At : ∀j : j ∈ H(i, t) implies that j 6∈ TI.

Example 2. For all F,H: (∅, F (0)) ∼ (0, F, H). This correspondence holds, be-
cause C = F (0) is defined to satisfy case 1, and TI = ∅ trivially implies case 2.

14 Nestmann, Fuzzati

We present the main theorems in a generic manner. Let Ds ∈ {P,S,♦P,♦S }
and Dw ∈ {Q,W,♦Q,♦W } denote the FDs with respect to strong and weak
completeness. We use Ds/Dw to conveniently denote the respective variants.

First, we offer a rather obvious observation.

Lemma 1. Let Ds/Dw ∈ {P/Q, S/W, ♦P/♦Q, ♦S/♦W }.
Every T(Ds)-run is also a T(Dw)-run.

Proof. Trivial, because strong completeness implies weak completeness. ut

Now, we show the main mutual simulation theorem. It also underlines the
fact that the kind of completeness does not really matter much, which confirms
the respective result of [CHT96], that the eight FDs collapse into just four.

Theorem 1. Let Ds/Dw ∈ {P/Q, S/W, ♦P/♦Q, ♦S/♦W }.
1. If ((t, F, H) ` Nt)t∈T is a T(Dw)-run,

then there is (Γt)t∈T such that (Γt ` Nt)t∈T is a D(Ds/Dw)-run.
2. If (Γt ` Nt)t∈T is a D(Ds/Dw)-run,

then there are F,H such that ((t, F, H) ` Nt)t∈T is a T(Ds)-run.

Note that part 1 requires only a T(Dw)-run, while part 2 provides a T(Ds)-run,
which is due to the strength of the built-in completeness of the D-model.

Proof. See Appendix A.

We also show that Ω is “equivalent” to ♦S/♦W.

Theorem 2.

1. If ((t, F, H) ` Nt)t∈T is a T(Ω)-run,
then there is (Γt)t∈T such that (Γt ` Nt)t∈T is a D(♦S/♦W)-run.

2. If (Γt ` Nt)t∈T is a D(♦S/♦W)-run,
then there are F,H such that ((t, F, H) ` Nt)t∈T is a T(Ω)-run.

This theorem allows us to denote D(♦S/♦W)-runs as D(Ω)-runs, and justifies
the model that we used when proving a Consensus algorithm correct in [NFM03].

We could prove Theorem 2 “directly” just like we did in the proof of Theo-
rem 1. However, we can also profit from the work of Chandra and Toueg, whose
results translate into our setting as in Proposition 1 below.

There are algorithmic FD-transformations TΩ→♦W and T♦S→Ω such that

– for all F,H : H ∈ Ω(F) implies TΩ→♦W(H) ∈ ♦W(F), and
– for all F,H : H ∈ ♦S(F) implies T♦S→Ω(H) ∈ Ω(F).

Proposition 1 ([CHT96]). Let R denote ((t, F, H) ` Nt)t∈T.

1. If R is a T(Ω)-run, then ((t, F, TΩ→♦W(H)) ` Nt)t∈T is a T(♦W)-run.
2. If R is a T(♦S)-run, then ((t, F, T♦S→Ω(H)) ` Nt)t∈T is a T(Ω)-run.

Proof (of Theorem 2).

1. By Proposition 1(1) and Theorem 1(1).
2. By Theorem 1(2) and Proposition 1(2).

ut

Unreliable Failure Detectors via Operational Semantics 15

6 Conclusions

We propose a new model of FDs that we consider easier to understand, easier
to work with, and more natural than the model used by Chandra and Toueg.

– It is arguably easier to understand, because the environment information
that it provides to check the conditions of the rules of Table 5 is designed to
be minimal—shared, global, and reliably stable—and to support just those
moments when suspicions are effectively needed with a maximal flexibility.
This is in contrast to the (F,H)-based model with individual FD modules
that at any moment in time produce unreliable output (sets of currently
suspected processes) that their master process may not be interested in for
a long time; they might even have crashed already.

It is certainly easier to understand from the computational point of view due
to the dynamic modeling of events concerning crashes and their detection.

– It is easier to work with, because it is generally more light-weight in that
only stable information is considered. Moreover, our model is simpler since
the strongest possible completeness property is built-in, so we do not have
to explicitly care about it when, e.g., looking for the weakest FD solving
a distributed computing problem in our model. Also, to exploit any of the
accuracy properties in proofs, it suffices to check rather simple syntactic
conditions in states of a given run. Starting in the initial state, a finite search
suffices, profiting from the built-in monotonicity of the stable information.

– It is more natural, for two reasons: (1) It avoids the need to impose additional
completeness properties by allowing dynamic nondeterminism on suspicions
until they possibly become forbidden forever. (2) It avoids the problem of
selecting the “accuracy set” of eventually reliable individual FDs, where the
(F,H)-based model leaves the choice to FDs of correct, alive, or all processes.
In our model, FD modules are not modeled individually as belonging each
to individual processes, but failure detection is modeled by using a global
shared entity. In a dynamic operational scenario as ours, the only reasonable
choice for the counterpart of the “accuracy set” is the alive processes.

In this paper, we concentrated on the FDs presented in [CT96, CHT96], but we
see no obstacle in applying our principles of Section 3 to other (F,H)-based FDs.

References

[CHT96] T. D. Chandra, V. Hadzilacos and S. Toueg. The Weakest Failure Detector
for Solving Consensus. Journal of the ACM, 43(4):685–722, 1996.

[CT96] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable
Distributed Systems. Journal of the ACM, 43(2):225–267, 1996.

[Gär01] F. C. Gärtner. A Gentle Introduction to Failure Detectors and Related
Problems. Technical Report TUD-BS-2001-01, TU Darmstadt, Apr. 2001.

[NFM03] U. Nestmann, R. Fuzzati and M. Merro. Modeling Consensus in a Process
Calculus. In R. Amadio and D. Lugiez, eds, Proceedings of CONCUR 2003,
volume 2761 of LNCS, pages 399–414. Springer, Aug. 2003.

16 Nestmann, Fuzzati

A Proofs of Theorem 1

Proof. For each case of Ds/Dw, the proof follows the same pattern.

1. Let ((t, F, H) ` Nt)t∈T be a T(Dw)-run. Any step

(t, F, H) ` Nt −→ (t+1, F, H) ` Nt+1 (1)

must now be simulated by a derivable step

Γt ` Nt −→ Γt+1 ` Nt+1 (2)

for some (Γt)t∈T. In order to verify the derivability of transition (2), the
semantics tells us to check the two possibilities of action τ@i and suspectj@i
carried out by Nt. Naturally, knowing the derivability of transition (1), we
can deduce some knowledge about the output of F and H at time t.
We construct Γt using this knowledge; formally, we establish Γt ∼ (t, F, H).
To this aim, we prove that the correspondence is preserved under appropri-
ately defined environment transitions, indicated by Γt :−→ Γt+1.

Lemma 2. If Γt ∼ (t, F, H) and Γt :−→ Γt+1 , then Γt+1 ∼ (t+1, F, H).

Proof (of Lemma 2 by construction of Γt :−→ Γt+1).
In fact, it is never a problem to have Γt+1 ∼ (t+1, F, H) satisfy its first
condition C(t+1) = F (t+1) by simply setting C(t+1) := F (t+1). Note that
since F is steadily increasing, then the condition C]C of (D-env) is satisfied.
In order to have Γt+1 ∼ (t+1, F, H) satisfy its second condition, we must be
very cautious when we add elements to TIt to become TIt+1.
case Dw=Q : Never add elements to TIt+1. Then any transition Γt −→ Γt+1

is derivable, and Lemma 2 holds immediately.
case Dw=W : Here, we may assume weak accuracy : some correct process p

is never suspected. We simply set TI0 := {p} to get the desired effect,
and afterwards never again change the TIt component.
Note that with Γ0 := ({p}, F (0)), we have Γ0 ∼ (0, F, H) precisely due
to the weak accuracy assumption of the T(W)-run.
Note that then, as a consequence, Lemma 2 immediately holds for all
transitions (of all t > 0). Of course, it is also needed in these transition to
check that p will not accidentally be chosen to crash; this is guaranteed,
because of weak accuracy requiring a correct process, which is thus 6∈
crashed(F) and will therefore never enter any Ct.

case Dw=♦W : Here, we may assume eventual weak accuracy : eventually,
after time t̂, some correct process p will never again be suspected, so we
set TI0 = · · · = TIt̂−1 = ∅ and TIt̂ := {p}.
The critical transition for Lemma 2 to hold is Γt̂−1 −→ Γt̂. Here, the even-
tual weak accuracy property makes Γt̂ ∼ (t̂, F, H) satisfy condition 2.

case Dw=♦Q : Here, we may assume eventual strong accuracy : eventually,
after time t̂, no correct process p will ever again be suspected, so we set
TI0 = · · · = TIt̂−1 = ∅ and TIt̂ := correct(F).
The argument for Lemma 2 to hold is a replay of the previous case. ut

Unreliable Failure Detectors via Operational Semantics 17

The “constructive preservation” property of Lemma 2 provides us with the
required assumptions to simulate subsequent steps and, thus, allows us to
iteratively simulate the whole infinite run, starting in all cases but one at
Γ0 = (∅, F (0)). Let us first look at individual simulation steps.

Lemma 3. If Γt ∼ (t, F, H) and transition (1), then transition (2).

Proof (of Lemma 3). Check the conditions to derive transitions (1), either
due to (T-tau) or due to (T-suspect), and then observe that the correspon-
dence of environments also enables to derive the respective transition (2).
If transition (1) required i 6∈ F (t), which it does in both (T-tau) and (T-
suspect), then the first condition on ∼ provides us with the required i 6∈ CΓt

in (D-tau) and in any of the (X -suspect). We may then focus on the more
interesting boxed condition of the rules (X -suspect).
case Dw=Q : The enabling conditions for (P/Q-suspect) only depend on

the respective C and hold trivially.
case Dw=W : Recall that the second condition on∼ tells us that j ∈ H(i, t)

implies j 6∈ TIt. Since, by definition of Γt :−→ Γt+1 for the case W, also
TIt 6= ∅ holds for all t > 0. Together, this (j 6∈ TIt 6= ∅) implies that
suspicion steps can always be simulated using (S/W-suspect).

cases Dw=♦W and Dw=♦Q : Again, j ∈ H(i, t) implies j 6∈ TIt. This is
already sufficient to simulate suspicion steps using (♦-suspect). ut

The basic requirement on D(Ds/Dw)-runs (matching the Definitions 3–6) is
to consist of sequences of derivable transitions. This holds in all cases by the
infinite iteration of Lemma 3. However, the ♦-runs (i.e., the D(♦S/♦W)-runs
and D(♦P/♦Q)-runs) require an additional condition.
case Dw=♦W : The resulting run is a D(♦S/♦W)-run, because there is t̂

in which we set TIt̂ := {p}.
case Dw=♦Q : The resulting run is a D(♦P/♦Q)-run, because there is t̂

in which we set TIt̂ := correct(F). However, this is not necessarily yet
the moment needed to establish a D(♦P/♦Q)-run. In order to find this
moment t̂′, we only have to wait until all the processes in crashed(F)
have actually crashed. By our definition of Ct, the required property of
Definition 5 that TIt̂′ ∪ Ct̂′ = P becomes valid.

2. The structure of this proof is similar to the previous one.
Let R := (Γt ` Nt)t∈T be a D(Ds/Dw)-run with Γt = (TIt,Ct) for t ∈ T.
Before, we constructed a sequence of Γt for some fixed F,H such that Γt ∼
(t, F, H) for all t ≥ 0. Here, we construct the functions FR,HR with HR ∈
Ds(FR) by means of the information found in the various Γt. While it is
obvious that FR should very closely follow the information recorded in C,
there is a lot of freedom in the choice of HR—allowing suspicions or not—
because it is supposed to contain a lot of information that is never checked
in the projection (Nt)t∈T of R. We are going to choose HR to permit the
maximum amount of suspicions. As a consequence, this choice gives us the
strongest possible completeness property essentially for free.

18 Nestmann, Fuzzati

Independent of the FD, we may transform any given D-run into a T-run by
constructing FR in a uniform manner:

∀t ∈ T : FR(t) def= Ct

For the construction of HR, we need to distinguish among the cases of Ds

between the perfect FD (P) and the imperfect FDs (S,♦P,♦S).
For the perfect FD, we set:

∀t ∈ T : ∀i ∈ P : HR(i, t) def= Ct

For the imperfect FDs, we need some auxiliary functions.
Let R denote the run (Γt ` Nt)t∈T.
Let ti(R) :=

⋃
t∈T TIt denote the set of trusted-immortal processes of R.

If j ∈ ti(R), then let tj be (uniquely!) defined by j 6∈ TItj−1 and j 6∈ TItj
,

thus denoting the moment in which j becomes trusted-immortal.
To define HR, we start by allowing suspicions of every process by every
other process at any time. (We may, of course, leave out useless permissions
to self-suspect, but this does not matter for the result.)

∀t ∈ T : ∀i ∈ P : HR(i, t) def= P

From these sets, we subtract (in imperative programming style, with ∀ de-
noting forall loops) a number of processes, depending on the time at which
trusted-immortal processes have become so.

∀j ∈ ti(R) : ∀i ∈ P : ∀t ≥ tj : HR(i, t) def= HR(i, t) \ {j}

By construction, we immediately get that Γt ∼ (t, FR,HR).
The correspondence is also preserved by the Γ -transitions of R.

Lemma 4. If Γt ∼ (t, FR,HR) and Γt −→ Γt+1, then Γt+1 ∼ (t+1, FR,HR).

As before, we need a simulation lemma; now, it addresses the other direction.

Lemma 5. If Γt ∼ (t, FR,HR) and transition (2), then transition (1).

It holds for symmetric reasons, because it is also exploiting the same corre-
spondence properties of the constructed pair FR,HR.
The only difference (in fact, a simplification) in the final iteration of the
simulation is in the case of the D(♦P/♦Q)-run. Here, the moment t̂ that
according to Definition 6 shows TIt̂∪Ct̂ = P is precisely the earliest moment
that provides weak accuracy for the T(♦P)-run.
Now, the remaining argument is to show that the components (FR,HR) of a
T(Ds)-run also satisfy strong completeness. In fact, by construction, we have
the following completeness property for the case of imperfect FDs:

in every run,
every crashed process is always suspected by every process.

This obviously strictly implies strong completeness. The case of perfect FDs
is similar, just replacing the words always suspected by the words suspected
right after it crashed, which also strictly implies strong completeness. ut

