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Abstract: This paper presents an approximation function developed for the veri-
fication of cryptographic protocols. The main properties of this approximation are
that it can be build automatically and its computation is guaranteed to terminate
unlike the Genet and Klay’s one. This approximation has been used for the verifica-
tion of the Needham-Schroeder, Otway-Rees and Woo Lam protocols. To be more
precise, the approximation allows us to check secrecy and authenticity properties of
the protocols.
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Approximation automatique pour la vérification de
protocoles cryptographiques

Résumé : Ce rapport présente une fonction d’approximation qui a été développée
pour la vérification de protocoles cryptographiques. Les propriétés principales de
cette approximation sont : 1) elle peut étre construite automatiquement, 2) son
calcul termine, ce qui n’est pas le cas de approximation de Genet et Klay. Cette
approximation a été utilisée pour vérifier des protocoles de Needham-Schroeder,
Otway-Rees and Woo Lam. Plus précisement, cette approximation nous permet de
vérifier des propriétés de secret et d’authenticité des protocoles.

Mots-clés : protocoles cryptographiques, approximation automatique, vérifica-
tion, propriétés de secret et d’authenticité



1 INTRODUCTION

1 Introduction

Cryptography is used to secure the exchange of information over open networks.
Cryptographic protocols define the rules (message formats and message order) to
establish secure communications. But with some cryptographic protocols, informa-
tion is not safe even when used with good cryptographic algorithms. So, since these
flaws have been discovered in protocols considered to be secure, several methods
have been developed to verify cryptographic protocols.

One of the first papers presenting a method to verify cryptographic protocols was
[BANS89]. In this paper, Burrows, Abadi and Needham introduce a logic to model
and to analyze cryptographic protocols. The idea is to reason about the beliefs
of the agents in the network and the evolution of these beliefs after each protocol
step. The lack of an automatic tool and of a complete semantics has encouraged
the development of other logics [GNY90, AT91].

Existing techniques have also been extended for cryptographic protocol verifi-
cation. In [Mea94, Mea96|, a method based on the model-checking techniques is
presented. The technique presents an extension of the Dolev-Yao model [DY83] and
also integrates the notion of belief introduced in [BAN89]. The protocol is modeled
by sets of rules that describe the intruder abilities, then by a narrowing technique
it checks if an insecure state is reachable or not. With the NRL Protocol Analyzer
[Mea96] several flaws have been discovered. The main advantage of this tool is that
the verification is done automatically. [JRVO0O0] also introduces an automatic tool
that has been successfully tested on simple protocols [CJ97]. They use rewriting
rules to model the protocol and the intruder behaviour, then they apply those rules
with a variant of ac-narrowing on an initial configuration. When the tool found an
inconsistency then the protocol is flawed.

In [Pau98|, Paulson introduces a method based on the proof by induction to
verify cryptographic protocols. This method allows the verification of a large range
of properties. But in this approach the secrecy and authenticity properties/theorems
are very difficult to prove'. The proofs require an experienced user to inject the
right lemma at the right time to make the proofs converge. This is not the case of
the remaining properties, the proofs of those properties are slightly the same for all
protocols.

In [Bol96], Bolignano presents a method based on the clear distinction of reliable
and unreliable agents. His method allows a precise specification of the protocol.
The properites are modeled with temporal logic features and proved with the help
of invariants of the protocol and axioms about the knowledge. The technique has
been tested with the Coq prover [Bol95].

The list of techniques to verify cryptographic protocols is long. To have a better
view of this particular field of research, the reader can see the surveys [GSG99] and
[AGGT01].

Automata and tree automata are well known to model infinite systems. Recently,
methods using tree automata to verify cryptographic protocols have been introduced
[Mon99, GK00, GL00]. [Mon99] was the first paper where tree automata were used
to verify cryptographic protocols. In [Mon99] and [GL00], tree automata model the
set of messages that intruders are able to construct. In [GKO00] tree automata model
the network (traces of the protocol + capabilities of the intruder) and the current
intruder knowledge. Another difference between these approaches is that in [Mon99]
and [GLOO] results are limited to a given number of agents and sessions, which is not
the case in [GK00]. To conclude, these methods use an abstract analysis technique
to compute the limit (reached when no new information is added to the model)

1to see what is involved look at the proofs of the Needham-Schroeder protocol:
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/library /HOL/Auth/
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after which the computation must stop. To be more precise, the size of the system
that must be verified, here a cryptographic protocol, is too big to be explored.
To reduce the size of the system and thus be able to verify some properties of this
system, an approximated system is built. In this approximated system, only relevant
information for the verification are kept. For the techniques previously cited, the
approximated system is a super-set of the concrete one. The result is that if a
property is satisfied at the end of the computation then the protocol verifies this
property, otherwise nothing can be said.

These methods have been used to verify secrecy and authentication properties.
Secrecy guarantees that information defined as secret (like shared keys) cannot be
caught by an intruder during protocol runs. Authentication guarantees that an
agent in the network can identify the sender of a message.

To build an approximated system or an approximation of a system, mathe-
matical functions are used. Those functions, called approximation functions, define
which information/parts of the system will be abstracted and how they will be. The
title of this paper is "Automatic Approximation ...", so to introduce an automatic
approximation the paper first need to present non-automatic one. Thus the paper
presents the approximation function of Genet [Gen98| used in [GK00]. Then it gives
an automatic (and implemented) way to construct a specific approximation function
well adapted for verifying secrecy and authentication on cryptographic protocols.
And unlike the Genet and Klay’s approximation, this approximation terminates. Se-
crecy and authentication properties have been checked on the Needham-Schroeder
protocol (public key without server, shared key with server), the Woo Lam protocol
and the simplified version of Otway-Rees with our approximation function.

The paper is organized as follows. Section 2 introduces some useful definitions.
Section 3 presents the approximation of [Gen98] and our approximation. Section 4
explains why our approximation fits to the verification of cryptographic protocols.

2 Definitions

To facilitate the understanding of the rest of the paper some notations and basics
definitions are introduced in this section.

Let F be a finite set of symbols associated with an arity function, X a countable
set of variables, T (F, X) the set of terms, and 7 (F) the set of ground terms (terms
without variables). Let Var(t) denote the set of variables of the term ¢ € T(F, X).

Definition 1 A term rewriting system (TRS) R is a set of rewrite rules | — r,
where I, r € T(F,X), 1 ¢ X, and Var(r) C Var(l). If s|p denotes the subterm
of s at the position p and s[ro], denotes the term obtained by substitution of the
subterm s|, at the position p by the term ro, then the relation —x means that for
any s,t € T(F,X) we have s —x t if there exists a rule | = r in R, a position
p € Pos(s), where Pos(s) is the set of positions in s, and a substitution o such that
lo = s|p and t = s[ro],. The set of R-descendants of a set E of ground terms is
denoted by R*(E) and defined by R*(E) = {t € T(F) | Is € E . s =% t}, where
—% 15 the transitive closure of .

Definition 2 Let R be a TRS defined on T(F,X). A termt € T(F,X) is linear if
any variables of Var(t) has exactly one occurrence in t. A rewrite rule is left-linear
if the left-hand side of the rule is linear. R is left-linear if every rewrite rule of R
is left-linear.

Definition 3 A bottom-up finite tree automaton is a quadruple A = {F, Q,Qf, A}
where F is a finite set of symbols, Q is a finite set of states, Qy is the set of ter-
minal states such that Qf C Q, and A is a set of transitions. A transition of A
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is a rewrite rule ¢ — 4 q, where ¢ € T(F|JQ) and g € Q. The tree language
recognized by A is L(A)={t € T(F)|3Iq € Qf .t =% g¢}.

>From now on, we consider bottom-up finite tree automata and we say tree
automata for short.

3 Approximations

The idea of Genet and Klay is the following. Given an initial automaton A (recogniz-
ing the initial configuration of the network where everybody wants to communicate
with everybody), a term rewriting system R (modeling the protocol steps and the
intruder abilities), and an approximation function (see Section 3.1 for more detail),
an automaton T 1 (A) recognizing an approximation of the possible configurations
of the network reachable by R from A is built. Moreover, R*(L(A)) C L(Tr1(A)).
The technique to compute the approximation automaton and the approxima-
tion function used by Genet and Klay is explained in the next section. Then our
approximation function is introduced and two of its properties are established:

1. Tr 1(A) computed with our approximation verifies R*(L(A)) C L(Tr1(A))-

2. The computation of 7z 1(A) computed with our approximation stops.

3.1 Approximation of Genet and Klay
Let A ={F,Q,Q,A} be a tree automaton.

Definition 4 Given a configuration s € T(F|J Q) \ Q, an abstraction of s is a
mapping o.:

a:{slp|p € Posx(s)} — Q

where Posr(s) denotes the set of positions (sequences of integers) in the term s.
The mapping « is extended on T (F|J Q) by defining a as the identity on Q.

Definition 5 Let s — g be a transition such that s € T(FUQ), ¢ € Q, and o an
abstraction of s. The set Normqs(s — q) of normalized transitions is inductively
defined by:

1. if s =q, then Norm,(s = q) =0, and
2. if s € Q and s # q, then Normy (s — q) = {s — ¢}, and

3. if s= f(t1,... ,tn), then Normu(s = q) =
{f(a(t),-.. ,a(tn) = q} U Uil Norma(ti = o(t:).

Definition 6 Let Q be a set of states, Qnew be any set of new states such that
QN Qnew = 0, and Q*,cwy the set of sequences qy ...q of states in Qpey. Let
¥(Q, X) be the set of substitutions of variables in X by the states in Q.

An approximation function, v, is a triple (a set of rewriting rules, a set of
states and a set of substitutions) mapping to a set of sequences of states, i.e. y:
R x (QU Q) X 2((QU Q) X) — Q*new, such that (I = r,q,0) =q1...qk
where Posx(r) is the set of positions inr and k = Card(Posx(r)).

In the rest of the paper, let Q,,¢,, be any set of new states such that Q| Qnew =
@, and Qu =Q U Qnew-

>From every v(I = r,q,0) = q1 ...qx, the states ¢1,...,qr can be associated
with positions p1,...,pr € Posx(r) by defining the corresponding abstraction
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function a on the restricted domain {ro|, | VI - r € R, Vp € Posx(r), Vo €
¥(Q,X)}: alroly,) = g¢; for all p; € Posz(r)={p1,... ,pr}, such that p; < p;41 for
i=1...k (where < is the lexicographic ordering). In the following, Norm., is the
normalization function where « value is defined according to v as above.

Starting from a left-linear TRS R, an initial automaton A9 = A and an approx-
imation function v, Genet and Klay construct A;41 from A4; by:

1. searching for a critical pair, i.e. a state ¢ € O, a rewrite rule I — r and a
substitution o € %(Q, X') such that lo —%. ¢ and ro »%. q.

2. Ait1 = AiUNormy(ro — gq).

The above process is iterated until it stops on a tree automaton Aj, such that
there is no critical pair.

Before introducing our approximation we give an example that will be re-used
later to illustrate the difference between the approximation « (Definition 6) and our
approximation «y; (Definition 8).

Example 1 Consider the alphabet F = {0 : 0,s : 1}, the initial automaton
Ao = {F,{q0,01},{q0,91},{0 = qo, s(go) = ¢1}} and the term rewriting system
R = {s(z) — s(s(z))}.

If we apply the above process to compute A;41 from A;, the computation will
never stop. New states are introduced for each normalization.

The computation without normalization looks like:

5(q0) =r 5(s(q0)) == s(s(5(q0)))---

Now if we apply the normalization, we have:

5(q0) —=r 3(g2) == 5(g3)---

with v(R,q1,2 = ) = ¢2, Y(R, 1, = g2) = g3, ... . The computation will go like
that for ever!

3.2 Our Approximation Function

In our approach we keep the same normalization as in Definition 5 but we refine
the approximation of Genet and Klay (-y; Definition 6), and we have:

Definition 7 Let Q; be the set of sequences q ...qr of states in Q,. Let A =
{F,Qu, Qs, A} be a tree automaton. Let Posr(r) = {p1,...,pr}. An approzi-
mation function is a mapping Ye: R X Qy X X(Qy, X) — QF, such that v.(I -
r,q,0) =q1-...qk S.t.

LViie[L,k = (3¢-q € Qu A (ro

pi) 20 d) = a=1¢)

2. Vii€ Lk = (3f FEF Aro = fltry.e  te) A F(@rs---ax) = qA
(rolp;) = flar,---,ax)) = ¢ =4q)

3. Viie[Lk] = (F,¢ I - r'.0" € 2(Qu, X)Aq € QuAl' 1" € RAY(I' =
r'.q'0')=q...q,) = Fj. j€L,z] A (r'd'|p;) = (rolp.))) = @i =q))-

To facilitate the understanding of Definition 7, we can say:

e the first rule says that if a subterm of ro is already recognized by the state ¢
of the current automaton then ¢’ is used for the normalization of this subterm;
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e the second rule explains that if a subterm of ro at the position p; is equal to
Ye(l = r,q,0) = q1...q then the state ¢; used in v.(I — r,q,0) is replaced
by the state g;

e the third rule tells that two same subterms in two 7. have the same normal-
ization state.

We establish now that our function ~y, (Definition 7) gives an upper approximation
of R*(L(A)) and that with this function the computation of the approximation
automaton always stops.

Proposition 1 Let R be a left-linear TRS. Let v, be an approrimation function
such that v, is defined by Definition 7. Let Ag and A be two tree automata
such that Acp is computed as explained in Section 3.1 with R, 7. and the initial
automaton Ag; Then R*(L(Ao)) C L(Aek)-

Proof Proposition 1 is guaranteed by Theorem 1 in [GK00)]. <

The number of substitutions and of new states is infinite so the computation
of the approximated automaton with the function Definition 7 may go forever. To
guarantee the termination of the computation, we have to refine Definition 7. The
idea is to generate an approximation v’ where only variables that can be replaced
by symbols of arity zero are replaced by the states corresponding to those symbols
in the tree automaton. Then with the results of 4/, the new approximation ~y is
built (Definition 8).

Definition 8 Let R be a left-linear term rewriting system. Let A = {F, Q,, Qy, A}
be a tree automata. Let Posx(r) = {p1,...,pr}.- Let ' be an approximation
function such that ' is defined by Definition 7 with the substitution X(Q,,X) =

Uf:agd(E){Fi | F; CE A Card(F;) =i} where E L {z = qlz € X A Ja. (a €
TF)Na—=49 ANVy. (yeX Ny=2)=>y=q€ E)}.

An approzimation function vy is a mapping Yr: R X Qy X L(Qy, X) — QF with
vl = r,q,0) =q1 ... qk -t
e do'.(c' Co .4 (Il = rqd)=9q...q) and g = ¢, (1 <i < k) with the
mazimum of matches between o' and o,

e and:

LV LK) = (G5 € LK A (roln) = (r0'ly,)) = @ = 4);

2.Vi.i € [Lk] = (3f-f€F AN ro" = ftr,---,te) N flgt,---,q,) =
g A (rolp) = f(di,---qp) = ¢ =a);

3. Vi.i € [Lk] = ((3.7.7 € [lak] A (rapi) = ("“‘ﬂpj)) = 4 ZQJ')'

As for Definition 7, we give a brief explanation of the rules of Definition 8:

e the first rule says that if a subterm of ro is already recognized by the state ¢’
of the current automaton then ¢’ is used for the normalization of this subterm;

e the second rule explains that if a subterm of ro at the position p; is equal to
vi(l = r,q,0) = g1 ...qx then the state g; used in v7(I = r,q,0) is replaced
by the state g;

e the third rule tells that two same subterms of ro have the same normalization
state.
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This definition of vy, (Definition 8) also verifies Proposition 1 (Consequence of
Theorem 1 in [GKO00]).

Proposition 2 Let R be a left-linear TRS. Let Ay = {F,Q,Q5,A} be a tree
automaton. Let vy be an approximation function such that ¢ is defined by Defini-
tion 8. If the number of rules in R and the number of states in Q are finite then
the computation of Asi, converges to a fizpoint.

Proof [Sketch]
e the first approzimation ' terminates

— initial stage
* Substitutions used in Definition 8 only substitute variables that model

symbols of arity 0 by states (the remaining variables can take any
values). So the number of substitutions is finite;

* The number of rewriting rules is finite;

* The number of automaton states is finite;

- The numbers of rules lo — ro withl — r € R and o a sub-
stitution such that lo —>f4ﬁ q and ro —ﬁj‘4ﬁ q with ¢ € Q is
finite;

If we apply the normalization process to all the previous rules

with the function ' then we add a finite number of states.

— nt" stage

* So the number of substitutions is finite as the substitution are the
same as the ones at the initial stage;

* The number of rewriting rules is finite;

* The number of automaton states is still finite but has been increased
of a particular number of states by the last normalization process;

- The numbers of rules lo — ro withl — r € R and o a sub-

stitution such that lo —)j‘ﬁ q and ro +>:‘4fi q with ¢ € Q is
finite;
If all the 3-uple +'(I = r,q,0) has been used once, the normal-
ization process does not add any more states to the automaton
(because of the substitution used and the definition of v'); other-
wise a finite number of states is added.

— After a finite number of normalization processes the computation stops.

e the principal approzimation vy terminates

v¢ does not introduce new states, it uses the states introduced by ' or those
of the automaton. So the computation terminates.

o

We conclude this section by two examples. The first example was presented in

Section 3.1 and the second example, originally from [Gen98§], is used to illustrate

the utility of 7'. Recall that in [Gen98], the computation of this example does not
terminate with the approximation of Definition 6.

Example 2 We have the alphabet 7 = {0 : 0,s : 1}, the initial automaton
Ao = {F,{qo, 1}, {00, 01},{0 = qo,8(q0) = ¢1}} and the term rewriting system
R = {s(z) = s(s(x))}.

If we apply the Genet and Klay process to compute A;11 from A; with our
approximation vy, the computation stops which is shown below.

The computation without normalization looks like:
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5(q0) = 5(s(q0)) == s(s(5(q0)))--

Now if we apply the normalization, we have:

5(q0) == s(q1) == s(q2) == s(q2)

We have v' (R,q1,2 = @) = ¢1 and 7' (R,q1,0) = ¢2. The first normalization
adds no transition (s(go) — ¢1 is already in Ap). The next normalizations add the
transitions s(g1) — ¢2 and s(g2) = g2 (because of 7' (R,q1,0) = ¢2) and after no
more critical pair can be found so the computation stops.

Example 3 In this example taken from [Gen98|, we have A4 a tree automaton
where A={app(q0,q0) — a1, cons(ga,q1) — qo, nil = go, nil = qi, a — ¢},
rl = app(cons(x,y),z) — cons(z,app(y,z)), R = {rl}, and v; (Definition 8) the
approximation function mapping every tuple (rl, g, o) to one state.

Now, we apply the Genet and Klay process to compute A;;; from A;:

1. We have to add Norm., (cons(gz, app(q1, q)) — q1) to A.

Norm.,(cons(qz, app(q1, @)) — q1) = {cons(g2,q3) — a1, app(q1,q) —
gs}, to find this set of normalized transitions, we have to compute v’ and then
to use the right 7' to have ~;:

Y (rl, g, {r =@,y =q1,2 = q}) = g3

o V=3 Y (rl,q,{zr=q2,2=qo}) = qu
’yl (T’l,(h,@) =gs

L4 7f (Tlaqla{m =42,y =q1,2 = qO}) - 71 (Tl;(ha{w =4q2,Y =4q1,2 = (Io})
= g¢3; so the transitions cons(qz,q3) — q1 and app(qi,q0) — q3 are
added to the current automaton set of transitions.

2. We have to add Norm,,(cons(qz2, app(qs, qo)) — q3) to A.

Norm., (cons(q2, app(gs, go)) — g3) = {cons(g2,q1) — g3, app(gs,qo) —
qs}, to find this set of normalized transitions, we repeat the same process as
the one in the first step:

v (rl, gz, {x = g2,y = q1,2 = qo}) = ¢3

!

o V=< A (rl,gz,{xr =2, 2 = q}) =@

’yl (Tl7q37@) =45

o i (i, {z = @2,y = 43,2 = qo}) = 7' (rl,q1,{7 = @2,2 = qo}) = qs;
so the transitions cons(g2,q4) — g3 and app(gs, o) — ¢4 are added to
the current automaton set of transitions.

3. We have to add Norm.,(cons(q2, app(qs, qo)) — qa) to A.

Norm., (cons(qz, app(qs, q)) — qa) = {cons(g2,q1) — qa, app(gs,q) —
g1}, to find this set of normalized transitions, we repeat the same process as
the one in the first step:
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v (rl,qa, {r = @2,y = 1,2 = q}) = g3

!

o ¥'=3 7 (rl,q,{z =q2,2 = qo}) = qu

’yl (T‘l,Q4,@) =4gs
o v (rlygu, {r = @2, = @, 2 = @}) = 7 (rl,q0,{z = 2,2 = q@}) = @;
so the transitions cons(g2,q4) — qa and app(qs,qo) — ¢ are added to
the current automaton set of transitions.

4. The computation stops and does not go on forever like with the v function of
Genet (Definition 6).

We saw that our approximation is an upper-approximation of what we want to
approximate and that the computation of the approximation has stopped.

Now, we can see why this approximation fits to the verification of the crypto-
graphic protocols, and in particular to the verification of the secrecy and authenti-
cation properties.

4 Cryptographic Protocols

In this section we explain why our approximation is quite efficient for the verification
of cryptographic protocols. We implemented it in OCAML? [RV98, LDG101] to be
used by Timbuk® [GTO01].

In [GKO00], the authors explain how cryptographic protocols can be verified with
their approximation function (Definition 6). As already said in the introduction,
their idea is to compute a superset of all the reachable states (approximation au-
tomaton) from the initial configuration of the network, where everybody wants to
communicate with everybody (initial automaton), the protocol steps (term rewrit-
ing system) and the approximation function. Then the negation of the secrecy
and authentication properties are each modeled by a tree automaton (negation au-
tomata). The verification of secrecy and authentication are done by checking the
intersection of the approximation automaton with the negation automata. If the
intersection is empty the property is satisfied, otherwise another technique must be
used to verify the property.

To facilitate the understanding of the following comments, the syntax and the
semantics used in [GKO0O0] are summarized in Table 1.

The messages exchanged during the protocol runs will be composed of basic
pieces of information (i.e. agent name, shared key, ...) or of a concatenation of
basic pieces of information (i.e. agent name and shared key encrypted, ...). To
reduce the number of messages that can be sent, we decide to fix the format of the
messages by typing them. So in the term rewriting system (TRS) instead of having
for example pubkey(x) you have pubkey(agt(x)) to indicate that z can only be an
agent.

In a message, two types of information can be distinguished, the one understood
by the agent (i.e. agent names, ...) and the one that cannot be understood by the
agent (i.e. an agent cannot access to a piece of information that has been encrypted
if he does not have the right decryption key, ...). In TRS, this distinction is visible,
if we take the example of a nonce, an agent can identify a nonce if he has created
this nonce in the TRS when agt(z) has created a nonce to communicate with agt(y)
we have N(agt(x),agt(y)) and when it is a nonce created by someone else we have

?http://caml.inria.fr/ocaml/index.html
3http:/ /www.irisa.fr/lande/genet /timbuk/index.html
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agt(x) z is an agent

c_init(x, y, z) = thinks he has established a communication with y but
he really communicates with z

c_resp(X, y, z) = thinks he responds to a request of communication from
y but he really communicates with z

cons(x, y) concatenation of the information z and y
encr(x, y, z) 2 is encrypted by y with z

goal(x, y) z wants to communicate with y

hashl1(x, y) y is hashed by z

hash2(x, y, z) z is hashed by y with the key z

mesg(x, y, z) 2 1s a message sent by z to y

N(x, y) nonce created by z to communicate with y
pubkey(x) public key of z

serv(x) z is a server

sharekey(x, y) key shared by z and y

Table 1: Description of the terms used

N(w,z). Our approximation also makes the distinction, in one case we will have the
state corresponding to the precise nonce and in the other case we will introduce a
new state (because of the approximation 4'). This approximation ' gives precise
states for known information (as known information contains variable that can be
substituted by constant) and abstract states for unknown ones.

The thing to remember is that we want to verify that information during pro-
tocol runs are kept secret (secrecy properties) and that at the end the actors of
the protocol really communicate with the actors they want to (authentication prop-
erties). In [GKOOQ] the authors assume the existence of Alice, Bob (two trustable
agents), an unbounded number of untrustable agents and an intruder. They gather
together all the untrustable agents to only consider Alice, Bob and the Rest and
they verify the secrecy and authentication properties for Alice and Bob. Alice, Bob
and the Rest can be seen as constants. In 7', only variables that model them are
substituted by a state. The computation of the approximated automaton with this
~' using this substitution has no effect on the verification of our two properties.

To have a better view of what we just said, we can look at the Needham-
Schroeder protocol (cf. Fig. 1). Two agents, Alice and Bob, want to establish a
secure communication using a public key infrastructure.

Alice initiates a protocol run, sending a nonce Na and her name A
to Bob.
Message 1: A = B : {Na, A}k

Bob responds to Alice’s message with a further nonce Nb.
Message 2: B = A : {Na,Nb, B}k,

Alice proves her existence by sending Nb back to Bob.
Message 3: A = B : {Nb}xs

Figure 1: Good version of the Needham-Schroeder protocol

So, for this protocol we verify that the nonce Na (resp. Nb) created by Alice
(resp. Bob) to communicate with Bob (resp. Alice) are kept secret during the
protocol runs. We also verify that at the end of each run Alice (resp. Bob) really

11
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communicates with Bob (resp. Alice). The approximation function (corresponding
to Definition 8) used by Timbuk* [GT01] to compute the approximation automaton
of Needham-Schroeder is available in Section A. The reader can see that we have
all the possible messages, from Alice to Alice, from Alice to Bob, from Alice to
someone else, ....

Figure 2 gives the approximation function of the second step of the protocol
when Bob, agt(q2), sends the message. The function is composed of rules of the
form "[..] -> [...]" where the first part of the rule is the term to normalize and
the second one is the normalization process to use. As you can see a precise state
is given to information known by Bob, i.e. N(q5, g5) -> ql5, and a global state
is given to unknown information, i.e. N(a_1,b 1) -> q45 (a_1 and b_1 will be
replaced during the computation by g3 (the Rest), g4 (Alice), g5 (Bob)). It is clear
on the figure that the nonces created by Bob to communicate with himself, Alice
and someone else are not gather together so the verification of the secrecy of the
nonce created to communicate with Alice (be sure that the intruder does not catch
N(g5, g4)) is not affected by our approximation. For the same reason, distinction
of the communication between Alice, Bob and the Rest, our approximation does
not affect the verification of the authentication.

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(g5, g5),
cons(N(agt(a2), agt(q2)), agt(q2)))))) -> q13]

-> [LHS -> q13 agt(q2) -> g5 agt(q2) -> g5 N(qg5, g5) -> q1b cons(ql5, gb) -> ql6
cons(ql5, q16) -> q46 pubkey(q5) -> ql7 encr(ql7, g5, q46) -> q13

mesg(q5, g5, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(a_1, b_1),
cons(N(agt(q2), agt(q2)), agt(q2)))))) -> q13]

-> [LHS -> q13 agt(q2) -> gb agt(q2) -> g5 N(g5, gb) -> qlb cons(ql5, gb) -> ql6
N(a_1,b_1) -> g45 cons(q45, q16) -> q46 pubkey(q5) -> q17 encr(ql7, g5, q46) -> ql13
mesg(q5, g5, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(a_2, b_2),
cons(N(agt(q2), agt(ql)), agt(q2)))))) -> q13]

-> [LHS -> q13 agt(q2) -> g5 agt(ql) -> g4 N(qg5, q4) -> q19 cons(ql9, g5) -> q20
N(a_2,b_2) -> g48 cons(q48, q20) -> q49 pubkey(q4) -> 21 encr(q21, g5, q49) -> q13
mesg(qd, a4, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q0), encr(pubkey(agt(q0)), agt(q2), cons(N(q5, g3),
cons(N(agt(a2), agt(a0)), agt(a2)))))) -> ql3]

-> [LHS -> q13 agt(q2) -> g5 agt(q0) -> g3 N(q5, q3) -> q23 cons(q23, g5) -> q24
cons(q23, q24) -> 52 pubkey(q3) -> q25 encr(q25, g5, q52) -> q13

mesg(qg5, a3, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q0), encr(pubkey(agt(q0)), agt(q2), cons(N(a_3, b_3),
cons(N(agt(q2), agt(q0)), agt(q2)))))) -> q13]

-> |LHS -> q13 agt(q2) -> g5 agt(q0) -> g3 N(g5, q3) -> g23 cons(q23, g5) -> g24
N(a_3,b_3) -> 951 cons(gb1, q24) -> g52 pubkey(q3) -> 25 encr(q25, g5, q52) -> q13
mesg(qg5, a3, q13) -> q13]

Figure 2: Approximation of the second step of Needham Schreoder

4http:/ /www.irisa.fr/lande/genet /timbuk/index.html
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5 CONCLUSION

This distinction is very helpful, when the intersection of the approximation au-
tomaton and the negation property automaton is not empty. By looking at the
approximation automaton with the approximation function, information, that can
help the user to verify whether the property is satisfied or not with another method
[Mea96, Pau98, JRV00], can be deduced. In particular, by studying the states of
the automaton the user can find which particular step can lead or not to an attack
and thus have an idea of how to direct the verification with the other verification
technique.

Two comments to conclude this section. First comment, the term rewriting
systems used in the protocol case are not inevitably left-linear but it has no conse-
quence for the computation of the approximation. The non-linearity only concerns
the agents present in the network and each of them is initially recognized by a pre-
cise state. Those states are initially deterministic (you have one state for Alice, one
for Bob and one for the Rest) and this property is conserved during the computation
(see [GKOO] for more detail). Second comment, the examples used in the previous
section are not directly related to cryptographic protocols. So it seems that our
approximation might also be used in other contexts where you are confronted to an
infinite number of reachable states.

5 Conclusion

A tool that generates the approximation function (Definition 8) for protocols with-
out timestamps has been implemented in OCAML® [RV98, LDG*01]. This tool
also generates the term rewriting system and the initial automaton for the protocol
we want to verify. With this tool and the Timbuk library verifications of proto-
cols’ properties have been done. The secrecy and authentication have been verified
for the Needham-Schroeder protocol (public key without server, shared key with
server), the Woo Lam protocol and the simplified version of Otway-Rees.

If we compare Genet and Klay’s approximation function with ours, we can say
that our function is generated automatically and guarantees to make the computa-
tion stop. For the computation time, we cannot compare the results. For our tests
we have used Timbuk, which has been specially designed after [GK00] to compute
an approximation automaton from an initial automaton, a term rewriting system
and an approximation function. It can also be generated automatically before the
computation.

Our approximation works well on basic protocols, we are going to test it on more
complex protocols (SET [Gro96a], TLS [Gro96b], ...). We will also determine if by
extending the semantics of [GK00] it would be possible still with our approximation
function to verify freshness properties. Unless most of the other techniques, with
[GKO00] we can only say that the property is satisfied when the intersection of tree
automata is empty. Otherwise we have to use another technique [Mea96, Pau98,
JRV00] to verify whether the property is satisfied or not.

In [OSO01], we explain how to combine Paulson’s idea and the approximation
technique to exploit the strengths of each method. This combining approach is
illustrated with the Needham-Schroeder protocol in [0S02]. The goal is to develop
a technique/tool that could be used by expert in protocols and not in theorem
proving.

In the same context of cryptographic protocol verification, we will also look at
[BT02] and see how we can adapt their technique to our approach.

The examples solved in this paper with our approximation have no close relation
with the cryptographic protocols. We will also look for other fields to successfully

Shttp://caml.inria.fr/ocaml/index.html
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use our approximation. May be in the processors/hardware design or algorithm
verification...
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A APPROXIMATION OF THE NEEDHAM-SCHROEDER PROTOCOL

A Approximation of the Needham-Schroeder Pro-
tocol

Here we give the automatically generated approximation of the protocol steps for
Needham-Schroeder. The state g1 models Alice, the state g2 models Bob, the state
0 models the untrustrable agents of the network and the state ¢13 models the
network as in [GKO0].

Approximation Needham Schroeder

States q[0—90]

Rules

The format of the rules is [U(...)]— > [...] where [U(...)] is the term to normalize and
[-..] is the normalization of the first term.

Approximation of U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)), agt(a),
cons(N(agt(a), agt(b)), agt(a)))))

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(agt(q2), agt(q2)),
agt(q2))))) -> q13] -> [LHS -> q13 agt(q2) -> g5 agt(q2) -> g5 N(g5, g5) -> q15 cons(q15,
a5) -> ql6 pubkey(q5) -> q17 encr(ql7, g5, q16) -> q13 mesg(q5, g5, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(agt(q2), agt(ql)),
agt(q2))))) -> q13] -> [LHS -> q13 agt(q2) -> g5 agt(ql) -> g4 N(a5, g4) -> q19 cons(q19,
ab) -> q20 pubkey(q4) -> q21 encr(q21, g5, q20) -> q13 mesg(q5, q4, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q0), encr(pubkey(agt(q0)), agt(q2), cons(N(agt(q2), agt(q0)),
agt(q2))))) -> q13] -> [LHS -> q13 agt(q2) -> g5 agt(q0) -> g3 N(g5, q3) -> q23 cons(q23,
ab) -> q24 pubkey(q3) -> q25 encr(q25, g5, q24) -> q13 mesg(q5, g3, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(agt(ql), agt(q2)),
agt(ql))))) -> q13] -> [LHS -> q13 agt(ql) -> g4 agt(q2) -> g5 N(qg4, g5) -> q27 cons(q27,
q4) -> g28 pubkey(q5) -> q17 encr(ql7, g4, q28) -> q13 mesg(q4, g5, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(agt(ql), agt(ql)),
agt(ql))))) -> q13] -> |[LHS -> q13 agt(ql) -> g4 agt(ql) -> q4 N(qg4, q4) -> q30 cons(q30,
q4) -> q31 pubkey(q4) -> q21 encr(q21, g4, g31) -> q13 mesg(aq4, g4, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(q0), encr(pubkey(agt(q0)), agt(ql), cons(N(agt(ql), agt(q0)),
agt(ql))))) -> q13] -> [LHS -> q13 agt(ql) -> g4 agt(q0) -> g3 N(a4, g3) -> 33 cons(q33,
q4) -> g34 pubkey(q3) -> q25 encr(q25, g4, q34) -> q13 mesg(q4, g3, q13) -> ql13]

[U(LHS, mesg(agt(q0), agt(q2), encr(pubkey(agt(q2)), agt(q0), cons(N(agt(q0), agt(q2)),
agt(q0))))) -> q13] -> [LHS -> q13 agt(q0) -> g3 agt(q2) -> g5 N(g3, g5) -> q36 cons(q36,
q3) -> q37 pubkey(q5) -> ql17 encr(ql7, g3, q37) -> q13 mesg(q3, g5, q13) -> q13]

[U(LHS, mesg(agt(q0), agt(ql), encr(pubkey(agt(ql)), agt(q0), cons(N(agt(q0), agt(ql)),
agt(q0))))) -> q13] -> [LHS -> q13 agt(q0) -> g3 agt(ql) -> g4 N(q3, g4) -> q39 cons(q39,
q3) -> q40 pubkey(q4) -> q21 encr(q21, g3, q40) -> q13 mesg(q3, q4, q13) -> q13]

[U(LHS, mesg(agt(q0), agt(q0), encr(pubkey(agt(q0)), agt(q0), cons(N(agt(q0), agt(q0)),
agt(q0))))) -> q13] -> [LHS -> q13 agt(q0) -> g3 agt(q0) -> q3 N(g3, q3) -> q42 cons(q42,
a3) -> q43 pubkey(q3) -> q25 encr(q25, q3, q43) -> q13 mesg(q3, g3, q13) -> ql13]

Approximation of U(LHS, mesg(agt(b), agt(a), encr(pubkey(agt(a)), agt(b),
cons(N(a_ 1, b_1), cons(N(agt(b), agt(a)), agt(b))))))

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(q5, g5), cons(N(agt(q2),
agt(a2)), agt(a2)))))) -> q13] -> [LHS -> q13 agt(a2) -> g5 agt(q2) -> a5 N(a5, qb5) ->
ql5 cons(ql5, g5) -> ql16 cons(qlb, q16) -> q46 pubkey(q5) -> ql17 encr(ql7, g5, q46) ->
q13 mesg(q5, g5, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(q2)), agt(q2), cons(N(a_1, b_1),
cons(N(agt(a2), agt(a2)), agt(a2)))))) -> ql3] -> [LHS -> ql3 agt(q2) -> 5 agt(a2)
-> g5 N(g5, g5) -> q15 cons(ql5, gb) -> ql6 N(a_1, b_1) -> q45 cons(q45, q16) -> q46
pubkey(qg5) -> q17 encr(ql7, g5, q46) -> q13 mesg(q5, b, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), cons(N(a_2, b_2),
cons(N(agt(a2), agt(al)), agt(a2)))))) -> ql3] -> [LHS -> ql3 agt(q2) -> g5 agt(al)
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-> g4 N(qg5, q4) -> q19 cons(ql9, g5) -> q20 N(a_2, b_2) -> g48 cons(q48, q20) -> q49
pubkey(g4) -> 21 encr(q21, g5, q49) -> q13 mesg(qgb, a4, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q0), encr(pubkey(agt(q0)), agt(q2), cons(N(g5, g3), cons(N(agt(q2),
agt(q0)), agt(q2)))))) -> ql3| -> [LHS -> q13 agt(q2) -> 45 agt(q0) -> q3 N(q5, q3) ->
q23 cons(q23, gb) -> q24 cons(q23, q24) -> g52 pubkey(q3) -> q25 encr(q25, g5, q52) ->
q13 mesg(g5, g3, q13) -> ql3]

[U(LHS, mesg(agt(q2), agt(q0), encr(pubkey(agt(q0)), agt(q2), cons(N(a_3, b_3),
cons(N(agt(a2), agt(a0)), agt(q2)))))) -> ql3] -> [LHS -> ql3 agt(q2) -> a5 agt(q0)
-> g3 N(q5, g3) -> q23 cons(q23, g5) -> q24 N(a_3, b_3) -> ¢51 cons(gb1, q24) -> ¢52
pubkey(q3) -> q25 encr(q25, g5, q52) -> q13 mesg(qg5, g3, q13) -> ql3]

[U(LHS, mesg(agt(ql), agt(q2), encr(pubkey(agt(q2)), agt(ql), cons(N(a_4, b_4),
cons(N(agt(al), agt(a2)), agt(ql)))))) -> ql3] -> [LHS -> ql3 agt(ql) -> q4 agt(q2)
-> g5 N(q4, g5) -> q27 cons(q27, g4) -> q28 N(a_4, b_4) -> g54 cons(gb4, q28) -> ¢55
pubkey(qg5) -> q17 encr(ql7, g4, q55) -> q13 mesg(q4, a5, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(q4, q4), cons(N(agt(ql),
agt(ql)), agt(ql)))))) -> q13] -> [LHS -> ql13 agt(ql) -> q4 agt(ql) -> a4 N(q4, q4) ->
q30 cons(q30, g4) -> g31 cons(q30, q31) -> 58 pubkey(q4) -> q21 encr(q21, g4, g58) ->
ql3 mesg(q4, g4, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), cons(N(a_5, b_5),
cons(N(agt(ql), agt(al)), agt(ql)))))) -> ql3] -> [LHS -> q13 agt(ql) -> q4 agt(ql)
-> g4 N(q4, q4) -> q30 cons(q30, g4) -> q31 N(a_5, b_5) -> @57 cons(q57, q31) -> ¢58
pubkey(g4) -> 21 encr(q21, g4, 958) -> q13 mesg(q4, a4, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(q0), encr(pubkey(agt(q0)), agt(ql), cons(N(q4, q3), cons(N(agt(ql),
agt(q0)), agt(ql)))))) -> ql3| -> [LHS -> q13 agt(ql) -> q4 agt(q0) -> q3 N(q4, q3) ->
q33 cons(q33, q4) -> q34 cons(q33, q34) -> 61 pubkey(q3) -> q25 encr(q25, g4, g61) ->
ql3 mesg(q4, g3, q13) -> q13]

[U(LHS, mesg(agt(ql), agt(q0), encr(pubkey(agt(q0)), agt(ql), cons(N(a_6, b_6),
cons(N(agt(ql), agt(q0)), agt(ql)))))) -> ql13] -> [LHS -> q13 agt(ql) -> q4 agt(q0)
-> g3 N(qg4, g3) -> q33 cons(q33, q4) -> q34 N(a_6, b_6) -> g60 cons(q60, g34) -> g61
pubkey(q3) -> q25 encr(q25, g4, q61) -> q13 mesg(q4, g3, q13) -> ql13]

[U(LHS, mesg(agt(q0), agt(q2), encr(pubkey(agt(q2)), agt(q0), cons(N(a_7, b_7),
cons(N(agt(q0), agt(a2)), agt(q0)))))) -> ql3] -> [LHS -> q13 agt(q0) -> q3 agt(q2)
-> g5 N(q3, g5) -> q36 cons(q36, q3) -> q37 N(a_7, b_7) -> q63 cons(q63, q37) -> q64
pubkey(qg5) -> ql7 encr(ql7, g3, q64) -> q13 mesg(q3, g5, q13) -> ql13]

[U(LHS, mesg(agt(q0), agt(ql), encr(pubkey(agt(ql)), agt(q0), cons(N(a_8, b_8),
cons(N(agt(q0), agt(al)), agt(q0)))))) -> q13] -> [LHS -> q13 agt(q0) -> a3 agt(ql)
-> g4 N(qg3, q4) -> q39 cons(q39, g3) -> q40 N(a_8, b_8) -> q66 cons(q66, q40) -> q67
pubkey(q4) -> g21 encr(q21, g3, q67) -> q13 mesg(q3, q4, q13) -> ql13]

[U(LHS, mesg(agt(q0), agt(q0), encr(pubkey(agt(q0)), agt(q0), cons(N(q3, 3), cons(N(agt(q0),
agt(q0)), agt(a0)))))) -> ql13| -> [LHS -> q13 agt(q0) -> q3 agt(q0) -> q3 N(q3, q3) ->
q42 cons(q42, q3) -> q43 cons(q42, q43) -> q70 pubkey(q3) -> g25 encr(q25, g3, q70) ->
ql13 mesg(q3, g3, q13) -> q13]

[U(LHS, mesg(agt(q0), agt(q0), encr(pubkey(agt(q0)), agt(q0), cons(N(a_9, b_9),
cons(N(agt(q0), agt(a0)), agt(q0)))))) -> q13] -> [LHS -> q13 agt(q0) -> g3 agt(q0)
-> g3 N(q3, q3) -> q42 cons(q42, g3) -> q43 N(a_9, b_9) -> q69 cons(q69, q43) -> q70
pubkey(q3) -> q25 encr(q25, g3, q70) -> q13 mesg(q3, g3, q13) -> q13]

Approximation of U(LHS, mesg(agt(a), agt(b), encr(pubkey(agt(b)), agt(a),
N(a_2,b_2))))

[U(LHS, mesg(agt(q2), agt(q2), encr(pubkey(agt(a2)), agt(q2), N(a_10, b_10)))) ->
ql13] -> [LHS -> q13 agt(q2) -> gb agt(q2) -> g5 N(a_10, b_10) -> q73 pubkey(qg5) ->
ql7 encr(ql7, g5, q73) -> q13 mesg(qg5, g5, q13) -> ql3]

[U(LHS, mesg(agt(q2), agt(ql), encr(pubkey(agt(ql)), agt(q2), N(a_11, b_11)))) ->
ql3] -> [LHS -> q13 agt(q2) -> gb agt(ql) -> q4 N(a_11, b_11) -> q75 pubkey(q4) ->
q21 encr(q21, g5, q75) -> q13 mesg(q5, g4, q13) -> q13]

[U(LHS, mesg(agt(q2), agt(q0), encr(pubkey(agt(q0)), agt(q2), N(a_12, b_12)))) ->
ql13] -> [LHS -> q13 agt(q2) -> gb agt(q0) -> g3 N(a_12, b_12) -> q77 pubkey(q3) ->
q25 encr(q25, g5, q77) -> q13 mesg(q5, g3, q13) -> q13]
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[U(LH57 mesg(agt(ql), a‘gt(q2): encr(pubkey(agt(q2)), a‘gt(ql): N(a_137 b_13)))) ->
q13] -> [LHS -> q13 agt(ql) -> g4 agt(q2) -> g5 N(a_13, b_13) -> q80 pubkey(q5) ->
ql7 encr(ql7, g4, q80) -> q13 mesg(q4, g5, q13) -> ql3]

[U(LHS, mesg(agt(ql), agt(ql), encr(pubkey(agt(ql)), agt(ql), N(a_14, b_14)))) ->
ql3] -> |[LHS -> q13 agt(ql) -> q4 agt(ql) -> q4 N(a_14, b_14) -> q82 pubkey(q4) ->
q21 encr(q21, g4, q82) -> q13 mesg(q4, g4, q13) -> ql13]

[U(LHS, mesg(agt(ql), agt(q0), encr(pubkey(agt(q0)), agt(ql), N(a_15, b_15)))) ->
ql3] -> [LHS -> q13 agt(ql) -> q4 agt(q0) -> g3 N(a_15, b_15) -> q84 pubkey(q3) ->
q25 encr(q25, q4, q84) -> q13 mesg(q4, g3, q13) -> ql13]

[U(LHSa mesg(agt(qO), a'gt(q2): encr(pubkey(agt(qZ)), agt(qO), N(a_167 b_16)))) ->
ql3] -> [LHS -> q13 agt(q0) -> g3 agt(q2) -> g5 N(a_16, b_16) -> q86 pubkey(q5) ->
ql7 encr(ql7, g3, q86) -> q13 mesg(q3, g5, q13) -> ql13]

[U(LHS, mesg(agt(qO), agt(ql): encr(pubkey(agt(ql)), agt(qO), N(a_177 b_17)))) ->
ql3] -> [LHS -> q13 agt(q0) -> g3 agt(ql) -> g4 N(a_17, b_17) -> q88 pubkey(q4) ->
q21 encr(q21, g3, q88) -> q13 mesg(q3, g4, q13) -> ql13]

[U(LHS, mesg(agt(q0), agt(q0), encr(pubkey(agt(q0)), agt(q0), N(a_18, b_18)))) ->
ql3] -> [LHS -> q13 agt(q0) -> g3 agt(q0) -> g3 N(a_18, b_18) -> q90 pubkey(q3) ->
a25 encr(q25, q3, q90) -> q13 mesg(q3, g3, q13) -> ql3]

(* End of the function *)
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