
Guarded Algebras: Disguising Partiality
so You Won’t Know Whether its There?

Magne Haveraaen1 and Eric G. Wagner2

1 Institutt for Informatikk, Universitetet i Bergen, HiB, N-5020 Bergen, Norway
http://www.ii.uib.no/~magne

2 Wagner Mathematics, 1058 Old Albany Post Road, Garrison, NY 10524, USA
http://www.ii.uib.no/~wagner

Abstract.

Didier Bert and Christine Choppy and Peter Mosses (eds.) Recent Trends in Algebraic

Development Techniques. LNCS 1827, pp. 182–200, Springer Verlag, 2000.

Motivated by considerations from program semantics, we
suggest the notion of guarded algebras. These make explicit the signif-
icant arguments to functions, and prevent involuntary capture of error
values and undefined cases in specifications. Here we show that guarded
reasoning disguises whether the underlying models are partial or total.

1 Introduction

When using algebraic technology to specify software we run into the problem
of partiality in the operators. Partiality can be inherent in an operation itself,
or be an artifact of certain models, such as the finite size of our computational
models. An example of the former is division by zero. Examples of the latter
are limits on the applicability of arithmetic operators due to size limitations on
computer representation of numbers.

These issues are addressed by guarded algebras [HW95]. The carrier sets of
the sorts are partitioned, using sort-guards, into “significant” and “insignificant”
elements, and the arguments of the operations are partitioned, using operator-
guards, into “significant” and “insignificant” arguments. Guards are ordinary
operations which are being used to describe the limitations of sorts and other
operations. The notion of significance is built into the semantics of the specifica-
tions by an appropriate choice for the satisfaction relation between models and
specifications. These modifications have two desirable effects:

1. Guarded algebras may be used to model detectable error conditions by hav-
ing error values as insignificant elements in the carriers.

2. Undetectable error situations may be represented by partiality in the guarded
models.

If we distinguish models solely by their significant elements, we find that there is
an isomorphism between the category of care-distinct guarded total models (all
? This work has been partially supported by the research council of Norway, by the EU

through the COMPASS and CoFI networks, by the Department of Informatics at
the University of Bergen, and the Department of Computer Science at the University
of Wales Swansea.

errors are detectable) and the category of care-distinct guarded partial models
(undetectable errors are allowed). Thus we may fully disguise whether total
or partial models are being used. In this paper we restrict our attention to
conditional equational logic.

Several approaches have been developed to handle error situations using total
algebras. Among these are error algebras [GTW78], which identify error elements
for every sort, or OK -algebras [GDLE84,HL89], which use predicates to desig-
nate the safe arguments of ordinary operators. Surveys with further references
for many of these and various other approaches, also involving partiality, can be
found in [Mos93] and [Mos95]. We restrict our more detailed comparison to three
approaches: Reichel’s equoids [Rei87], Kreowski’s based algebras [Kre87,KM95],
and Meseguer’s membership algebras [Mes98]. These approaches have in com-
mon the feature that within a specification special sets are defined (akin to the
guards in guarded specifications) which are, or can be, used to define the “sig-
nificant” elements and/or arguments, or can be used to define the domains of
definition of the operations in a partial algebra interpretation.

Reichel’s equoids are similar to guarded algebras in that for each operator σ
a set of equations, def σ, is used to specify the domains of the operators – the
domain of A(σ) in an algebra A being required to be exactly the set of solutions
for def σ. This differs from the guarded framework in which the satisfaction
of operator-guards is only a sufficient condition for definedness (significance).
Reichel’s framework does not include a counterpart to the sort-guards of the
guarded framework. Equoids are specified using existential satisfaction of con-
ditional equations with an emphasis on partiality, but a similar approach could
be taken within the framework of total conditional equational logic. Another
difference is that equoids have hierarchically structured signatures rather than
the simple two-level partition into UF and PF employed in this paper. The
use of hierarchical signatures increases expressiveness but having def σ tightly
determine the domain of definition appears to restrict the model class.

Kreowski’s based algebras provide a means for defining certain classes of par-
tial algebras within the framework of total conditional equational logic. A based
specification is a pair BASP = (BASE, SPEC) of plain specifications, where
BASE is a subspecification of SPEC. A BASP -algebra is a triple (B,C, h)
where B is a BASE-algebra, C is a SPEC-algebra and h : B → C|BASE is
a homomorphism from B to the BASE-reduct of C (a slightly more general
definition is given in [KM95]). The partiality is achieved by means of the PART
constructions which restricts and corestricts the operations of C to the image of
B under h. While the emphasis in [Kre87] is on partiality, the same idea could
be used to define a notion akin to that of significant arguments in guarded alge-
bras. The results in [KM95] show that the based algebra framework is equivalent
in expressiveness to total conditional equational logic. A similar result can be
shown for the guarded algebra framework. However this proof (and definition)
of equivalent expressiveness does not take into account the difference in how the
transition is made from total to partial algebras. While based algebras can be
used to produce many pleasing specifications (including one for the standard

example: stacks), the technique does not seem applicable to examples such as
bounded stacks. The reason is that the sets of “significant elements” in a based
algebra are always a subset of the carrier generated by a subset of the operators
starting from a subset of the carriers. This is not as general as what can be done
in the other approarches.

Messquer’s membership algebras [Mes98], while apparently developed pri-
marily as general framework for dealing with subsorting issues, can also be used
to define partiality within a total algebra framework. Roughly speaking, speci-
fications of membership algebras employ membership predicates to specify the
sortedness of terms and the relationships between sorts. By decreeing certain
sorts to be “significant” one can simulate guarded algebras, but at the cost of
losing the brevity of guarded satisfaction since the guards must be explicitly
stated in the conditional equations. Membership algebras are shown, in [Mes98],
to have the same expressive power as Horn Clause Logic (with equality and
predicates) which is a more expressively powerful framework than that used
for guarded algebras. Conversely, it is possible to approximate the membership
predicates within the framework of guarded algebras. We are still investigating
the effects of this difference in power on actual specifications.

This paper is organized as follows: In section two we recapitulate some def-
initions and results about institutions and general logics. Then we define total,
partial and guarded algebras. Section four defines the corresponding institutions,
relates these, and contains our main result on guardedness and partiality. Finally
we discuss further theoretical development of the notion of guarded algebras.

2 Institutions and Logics

The general concept of a logic [Mes89] has three facets: model theory, entailment,
and proof calculus, all sharing the same notions of signature and sentence. The
model-theoretic aspect is captured by the concept of an institution: signatures,
sentences, models and satisfaction. An entailment system captures the syntactic
notions of a logic: signatures, sentences and syntactic derivability (entailment).
A proof calculus is on top of an entailment system and provides the structural
aspects of how to actually prove a derivation of the entailment system.

Let Set be the category of sets and total functions.

Definition 1 (Institution). An institution is given by a quadruple INST =
(Sign,Sen,Mod, |=), where

– Sign is a category of signatures,
– Sen : Sign→Set is a functor giving the sentences
– Mod : Signop→CAT is a functor giving the category of models
– |= is a family, indexed by Obj(Sign), of satisfaction relations, |=Θ⊆ Mod(Θ)×

Sen(Θ) for each Θ ∈ Obj(Sign)

such that, for each morphism θ ∈ Sign(Θ,Θ′), the satisfaction condition,

M ′ |=Θ′ Sen(θ)(ϕ) ⇔ Mod(θ)(M ′) |=Θ ϕ,

holds for each M ′ ∈ Obj(Mod(Θ′)) and each ϕ ∈ Sen(Θ).

An entailment system defines an entailment relation between sets of sentences
(axioms) and sentences (facts) for any given signature. Using entailment one may
derive, on a syntactic level, new facts as consequences of axioms. An entailment
system coupled with an institution forms a logic. A logic coupled with a proof
calculus, taking into account the structural aspects in how facts are derived from
axioms, forms a logical system1. If the entailment system of a logic only derives
facts satisfied by the models of the axioms, it is sound. The entailment system
is complete if, for the models satisfying a set of axioms, all sentences satisfied by
the models are derivable from the axioms.

There are forgetful functors from logical systems and logics to institutions.
These functors are adjoint to several functors going from institutions to logics
and logical systems. Given an institution, entailment systems and proof calculi
may be generated using these functors. In most cases such systems will be of little
use as they will not be efficient to work with. Instead one wants an independently
developed proof calculus with an entailment system which is efficient, sound and,
if possible, complete.

Institutions can be related by many different kinds of morphisms. Certain
of these morphisms transport entailment systems and proof calculi between in-
stitutions. This allows reuse of useful entailment systems and proof calculi, and
also the reuse of tools developed for one logical system for the entailment system
and proof calculus of a different institution.

The following definitions and theorems are adapted from [Mes89]. See also
[Cer93] which investigates their use in relating various partial algebra approaches.

Definition 2 (Theory). Given an institution INST = (Sign,Sen,Mod, |=).
The axiom-preserving theory of INST is the category Th0(INST) with

– presentations as objects (Θ,Φ) ∈ Obj(Th0(INST)) where Θ ∈ Obj(Sign)
and Φ ⊆ Sen(Θ), and

– morphisms θ : (Θ,Φ)→(Θ′, Φ′) ∈ Mor(Th0(INST)) where θ ∈ Sign(Θ,Θ′)
such that Sen(θ)(Φ) ⊆ Φ′.

Definition 3. Given an institution INST = (Sign,Sen,Mod, |=).
The varieties of INST are the categories given by the functor VmodINST :

Th0(INST)op→CAT, where VmodINST (Θ,Φ), for Φ ⊆ Sen(Θ), is the full sub-
category of Mod(Θ) with objects Obj(VmodINST (Θ,Φ)) = {M ∈ Obj(Mod(Θ)) |
M |=Θ Φ}.

Definition 4 (Simple map of institutions). Let sign : Th0(INST)→Sign
and sign′ : Th0(INST ′)→Sign′ be projection functors on theories for institu-
tions INST = (Sign,Sen,Mod, |=) and INST ′ = (Sign′,Sen′,Mod′, |=′).

A simple map of institutions is given by (ζ, α, β) : INST →INST ′, where

1 Readers are referred to [Mes89] for a proper treatment of these concepts. Lack of
space prohibits a more in depth presentation here, and further technical details are
not needed in this paper.

– ζ : Th0(INST)→Th0(INST ′) is a functor with a related functor on sig-
natures ζ1 : Sign→Sign′ such that
• sign′ ◦ ζ = ζ1 ◦ sign
• ζ(Θ,Φ) = ζ(Θ, ∅) ∪ (ζ1(Θ), αΘ(Φ)) for all (Θ,Φ) ∈ Obj(Th0(INST))

– α : Sen→Sen′◦ζ1 is a natural transformation in Set indexed by the signatures
in Sign,

– β : VmodINST ′ ◦ ζop→VmodINST is a natural transformation in CAT in-
dexed by the presentations in Th0(INST),

such that for each Θ ∈ Obj(Sign), ϕ ∈ Sen(Θ) and M ′ ∈ VmodINST ′(ζ(Θ, ∅)),

M ′ |=′
ζ1(Θ) αΘ(ϕ) ⇔ β(Θ,∅)(M ′) |=Θ ϕ.

If the functors β(Θ,∅) are surjective for every (Θ, ∅) ∈ Obj(Th0(INST)), then
the simple map of institutions is said to be surjective.

Theorem 1. Given institutions INST = (Sign,Sen,Mod, |=) and INST ′ =
(Sign′,Sen′,Mod′, |=′) where INST ′ is part of the logical system L′ with an
entailment system and corresponding proof calculus.

If there is a simple map of institutions (ζ, α, β) : INST →INST ′ then we get
a logical system L, containing INST , with entailment system and corresponding
proof calculus from L′.

If L′ has a complete entailment system, then L will have a complete entail-
ment system. Moreover, if L′ has a sound entailment system and the simple map
of institutions is surjective, then L will have a sound entailment system.

3 Algebraic Concepts

We write [n] for the set {1, . . . , n}. We view a string of length n of elements of a
set S as a mapping u : [n]→S. We write ε for the empty string and S∗ for the set
of all strings over S. We write |w| for the length of a string w. A partial function
f : A

p→ B consists of a set ∂(f) together with total function f : ∂(f) t→ B.

3.1 Signatures

Definition 5 (Plain signatures). A plain signature Σ is given by the data
of a 4-tuple, Σ = (S, F,dom, cod), for S a set of sorts, F a set of operators, a
function dom : F t→ S∗ giving the domain, and a function cod : F t→ S giving
the codomain of every operator. A plain signature morphism µ : Σ→Σ′, for
plain signatures Σ = (S, F, dom, cod) and Σ′ = (S′, F ′,dom′, cod′), is a pair of
functions µ1 : S t→ S′ and µ2 : F t→ F ′ such that dom′ ◦ µ2 = µ1 ◦ dom, and
cod′ ◦ µ2 = µ1 ◦ cod.

Plain signatures with signature morphisms form a category Sig. For an operator
σ ∈ F the pair, 〈dom(σ), cod(σ)〉 is called the profile of σ.

Example 1. The plain signature for the mathematical concept of a Group can
be given using the following, slightly sugared, syntax.

sig ΣGroup =
sorts group
opns � : →group

⊕ : group× group→group
	 : group→group

Definition 6 (Guarded signatures). A guarded signature Γ is given by the
data of a 7-tuple, Γ = (S,UF, PF,dom, cod, δ, γ), for S a set of sorts; UF a set
of unprotected operators; PF a set of protected operators, such that (UF∩PF) =
∅; a function dom : (UF ∪ PF) t→ S∗ giving the domain and a function cod :
(UF ∪PF) t→ S giving the codomain of every operator; δ : S t→ (S×UF ×UF)
the sort-guard and γ : PF t→ (S × UF × UF) the operator-guard, with the
requirement that for every s ∈ S and for every ψ ∈ PF

δ(s)1 = cod(δ(s)2) = cod(δ(s)3), dom(δ(s)2) = ε, dom(δ(s)3) = s,

γ(ψ)1 = cod(γ(ψ)2) = cod(γ(ψ)3), dom(γ(ψ)2) = ε, dom(γ(ψ)3) = dom(ψ).

A closed guarded signature morphism µ : Γ→Γ ′, for guarded signatures Γ =
(S,UF, PF,dom, cod, δ, γ) and Γ ′ = (S′, UF ′, PF ′,dom′, cod′, δ′, γ′), is a triple
of functions µ1 : S t→ S′, µ2 : UF t→ UF ′ and µ3 : PF t→ PF ′ such that the
profiles and guard structure are preserved, that is:

dom′ ◦ µ2 = µ1 ◦ dom, cod′ ◦ µ2 = µ1 ◦ cod,
dom′ ◦ µ3 = µ1 ◦ dom, cod′ ◦ µ3 = µ1 ◦ cod,

δ′ ◦ µ1 = (µ1 × µ2 × µ2) ◦ δ, γ′ ◦ µ3 = (µ1 × µ2 × µ2) ◦ γ.

Guarded signatures with closed signature morphisms form a category CGSig.
Let PL : CGSig→Sig be the functor taking each guarded signature to the

corresponding plain signature, i.e., PL(S,UF, PF,dom, cod, δ, γ) = (S, (UF ∪
PF),dom, cod) and PL(µ1, µ2, µ3) = (µ1, µ2 ∪ µ3).

Example 2. The guarded signature for the mathematical concept of a Group is
the same as the plain signature for Group (see Example 1), but extended with
the declaration of sorts and functions for the sort- and operator-guards.

sig ΓGroup =
sorts group
opns � : →group

⊕ : group× group→group
	 : group→group

delta(group) = (B, t, dgroup)
delta(B) = (B, t, dB)

Here the line “delta(group) = (B, t, dgroup)” signals the definition of sort-guard
for sort group, and implicitly declares B as a sort name and operations t : →B
and dgroup : group→B in accordance with the requirements on δ. The line
“delta(B) = (B, t, dB)” declares sort-guard for the sort B, naming B as the
sort, reusing the operation t : →B, and introduces the operation dB : B→B.
In [HW95] it was shown that the sort-guards may be added in a canonical way
using an additional sort B, a fixed constant t and a fresh operation name ds for
every sort s. Thus we will normally not include explicit sort-guards as part of
the sugared signature declarations.

Example 3. The situation becomes more interesting if we create a guarded group
with an operator-guard on the inverse-operation (omitting the sort-guards):

sig ΓGGroup =
sorts group
opns � : →group

⊕ : group× group→group
	 : group→group

guard() = (Bool, true, invertible)

The line “guard() = (Bool, true, invertible)” defines the operator-guard for 	,
and implicitly declares Bool as a sort name and operations true : →Bool and
invertible : group→Bool in accordance with the requirements on γ. An operation
in the target of a guard cannot be used as the argument for a guard in order
to provide the necessary partitioning of operators for guarded signatures. The
declaration ΓGGroup defines sorts group and Bool, and an anonymous sort B
as target for δ. Unprotected operators are �, ⊕, true, invertible, the anonymous
constant t into B and anonymous operations dgroup, dBool and dB from each sort
into B, as required for δ. In this example there is only one protected operator,
namely 	.

3.2 Algebras

We use the standard notions of plain total and partial algebras. For every plain
signature Σ the category of plain total algebras, TAlg(Σ), has plain total alge-
bras for Σ as objects and plain homomorphisms between them as morphisms.
The categories of plain partial algebras, PAlg(Σ), has plain partial algebras for
Σ as objects and weak homomorphisms between them as morphisms.

Definition 7 (Significant elements). Let Σ = PL(Γ) for a guarded signature
Γ = (S,UF, PF,dom, cod, δ, γ).

The set of significant elements for a sort s ∈ S of a plain total algebra A for
Σ is given by

D(A, s) = {a ∈ A(s) | A(δ(s)2) = A(δ(s)3)(a)}

The set of significant elements for a sort s ∈ S of a plain partial algebra A
for Σ is given by

D(A, s) =
{
{a ∈ ∂(A(δ(s)3)) | A(δ(s)2) = A(δ(s)3)(a)} if ∂(A(δ(s)2)) 6= ∅
∅ if ∂(A(δ(s)2)) = ∅

For w ∈ S∗ define D(A,w) = D(A,w1)× · · · ×D(A,w|w|).

Definition 8 (Significant arguments). Let Γ = (S,UF, PF,dom, cod, δ, γ)
be a guarded signature and let Σ = PL(Γ).

The set of significant arguments for an operator σ ∈ (UF ∪PF) in the plain
total algebra A for Σ is given by

G(A, σ) =
{
D(A,dom(σ)) if σ ∈ UF
{a ∈ D(A,dom(σ)) | A(γ(σ)2) = A(γ(σ)3)(a)} if σ ∈ PF ,

The significant arguments for an operator σ ∈ UF ∪ PF in the plain partial
algebra A for Σ are given by

G(A, σ) =



D(A,dom(σ)) if σ ∈ UF
{a ∈ D(A,dom(σ)) |
A(γ(σ)2) = A(γ(σ)3)(a)} if σ ∈ PF ,

∂(A(γ(σ)2)) 6= ∅ and
D(A,dom(σ)) ⊆ ∂(A(γ(σ)3))

∅ otherwise

Definition 9 (Guarded algebras). Let Σ = PL(Γ) for guarded signature
Γ = (S,UF, PF,dom, cod, δ, γ).

A guarded total algebra A for Γ is a plain total algebra A for Σ, such that
for every operator σ ∈ (UF ∪ PF), we have A(σ) (G(A, σ)) ⊆ D(A, cod(σ)).

A guarded partial algebra A for Γ is a plain partial algebra A for Σ, such
that for every operator σ ∈ (UF ∪ PF), we have G(A, σ) ⊆ ∂(A(σ)) and
A(σ) (G(A, σ)) ⊆ D(A, cod(σ)).

For a guarded partial algebra A we have that ∂(A(δ(s)2)) 6= ∅ for every s ∈ S
and ∂(A(γ(σ)2)) 6= ∅ for every σ ∈ PF since D(A, ε) 6= ∅. Also, D(A,dom(σ)) ⊆
∂(A(γ(σ)3)) for every σ ∈ PF since D(A,dom(σ)) = D(A,dom(γ(σ)3)) =
G(A, γ(σ)3) and G(A, γ(σ)3) ⊆ ∂(A(γ(σ)3)).

The category of guarded total algebras GTAlg(Γ) is the full subcategory
of TAlg(Σ) with guarded total algebras as objects. The category of guarded
partial algebras GPAlg(Γ) is the full subcategory of PAlg(Σ) with guarded
partial algebras as objects.

Defining reducts (on algebras and homomorphisms) in the usual way, we
may extend the notion of a category of algebras for every signature to a func-
tor from the dual of the signature category into CAT. Then we get func-
tors TAlg : Sigop→CAT and PAlg : Sigop→CAT for plain algebras and
GTAlg : CGSigop→CAT and GPAlg : CGSigop→CAT for guarded alge-
bras.

The intuition behind guarded algebras is that if A is a guarded algebra with
plain signature Σ, then, for each s ∈ S, we only “really care” about those
elements of the carrier a ∈ A(s) which are in D(A, s), and, for each σ ∈ (UF ∪
PF), we only care about the values of A(σ) for the arguments a ∈ G(A, σ) ⊆
A(dom(σ)). This suggests that if we have two guarded algebras, A and B, in
which the elements and arguments about which we “really care” are the same
and whose operations behave the same on those arguments, then these algebras
are equivalent.

Definition 10. Given guarded, total or partial, algebras A and B with the same
guarded signature Γ = (S,UF, PF,dom, cod, δ, γ) we say they are care-equivalent,
and write A ≡Γ B, if

1. D(A, s) = D(B, s) for every s ∈ S.
2. G(A, σ) = G(B, σ) for every σ ∈ (UF ∪ PF).
3. For every σ ∈ (UF ∪ PF) we have A(σ)(a)G(A,σ) = B(σ)(a)G(A,σ).

Algebras which are not care-equivalent are care-distinct.

3.3 Terms, Sentences and Satisfaction

Definition 11. A finite collection of variables χ = (X, v, x) for a plain signature
Σ = (S, F,dom, cod), consists of a finite set X of variable names, where X∩F =
∅, a function v : X→S typing the variables and a bijective function x : [|X|]→X
defining a string of all the variables in X.

The function v gives the sort of each variable, the function x orders the variables,
permitting us, among other things, to speak of the i’th variable. The use of
a finite collection of variables is insufficient for certain constructions, but is
sufficient when considering ordinary terms and axioms composed from finite
sets of terms.

The S-indexed family T (Σ,χ) of terms with variables χ for Σ is defined in
the normal way. We extend the functions dom and cod to derived operators
χ.t ∈ T (Σ,χ)s for s ∈ S by taking dom(χ.t) = v ◦ x, and cod(χ.t) = s. The

result is a derived function A(χ.t) : A(v ◦ x)→A(s), for each total or partial
algebra A for Σ, defined recursively in the normal way on the structure of t.

We define the semantics of a guarded total (respectively partial) function
with variables χ = (X, v, x) over Γ with (S, F, dom, cod) = PL(Γ) as for a
total (partial) derived operation. In addition we define the significant arguments,
G(A,χ.t) ⊆ D(A,dom(χ.t)) by

G(A,χ.t) =


D(A,dom(χ.t)) If t = xi{
a ∈ D(A,dom(χ.t)) | a ∈ G(A,χ.ti)), i ∈ [n],

〈A(χ.t1)(a), . . . , A(χ.tn)(a)〉 ∈ G(A, σ)
}

If t = σ(t1, . . . , tn)

Proposition 1. Given a guarded partial algebra A and variables χ = (X, v, x)

for guarded signature Γ with Σ = PL(Γ), then G(A,χ.t) ⊆ ∂(A(χ.t)).

Proof. Easily shown by structural induction on the form of t by observing it
holds for t a variable and is preserved for every operation in the signature. ut
The sentences, given by the functor Sen : CGSig→Set, define the kind of axioms
we have. In this paper we focus on conditional equational logics, so our axiom
schemata will only allow for this.

Definition 12 (Conditional equation). Given a plain signature Σ.
A conditional equation χ. ({(t1, u1), . . . , (tk, uk)}, (tk+1, uk+1)), for k ≥ 0,

consists of terms χ.ti, χ.ui ∈ T (Σ,χ)si
, i ∈ [k+1], si ∈ S, for a finite collection

of variables χ = (X, v, x) over Σ.

The set of all conditional equations for Σ is denoted CE(Σ). Different condi-
tional equations in CE(Σ) may have different collections of variables.

We may now extend CE to a functor CE : Sig→Set by defining CE(µ :
Σ→Σ′) as the normal substitution of operations (and variables) generated by µ.
This also gives us a functor CE ◦ PL : CGSig→Set, which we sometimes will
denote as just CE.

We can define a translation from guarded conditional equations to plain con-
ditional equations that follows the same pattern as that of defining the significant
arguments for a derived operator.

Definition 13. Given a guarded signature Γ = (S,UF, PF, dom, cod, δ, γ), and
a finite collection of variables χ = (X, v, x).

The domain-set d(Γ, χ, t), for a term χ.t ∈ T (PL(Γ), χ)s for some s ∈ S, is
defined by

d(Γ, χ, t) =



{(δ(v(x))2, δ(v(x))3(x))|x ∈ X} If t ∈ X
{(δ(v(x))2, δ(v(x))3(x))|x ∈ X}⋃ (

∪i∈[n](d(Γ, χ, ti))
)

If υ ∈ UF , t = υ(t1, . . . , tn)
{(δ(v(x))2, δ(v(x))3(x))|x ∈ X}⋃ (

∪i∈[n](d(Γ, χ, ti))
)⋃

{(γ(ψ)2, γ(ψ)3(t1, . . . , tn))} If ψ ∈ PF , t = ψ(t1, . . . , tn)

The generating principle for an operation σ ∈ UF∪PF from a guarded signature
Γ = (S,UF, PF,dom, cod, δ, γ) is the CE(Γ) equations

d(Γ, σ) = χ.
(
d(Γ, χ, σ(x)), (δ(cod(σ))2, δ(cod(σ))3(σ(x)))

)
for some χ = (X, v, x) such that v ◦ x = dom(σ).

The fully guarded-equation d(Γ, ϕ) for a sentence ϕ ∈ CE(PL(Γ)), where
ϕ = χ.({(ti, ui)|i ∈ [k]}, (tk+1, uk+1)) for k ≥ 0, is defined by

d(Γ, ϕ) = χ.
(
∪i∈[k+1](d(Γ, χ, ti) ∪ d(Γ, χ, ui))

⋃
{(ti, ui)|i ∈ [k]}, (tk+1, uk+1)

)

Definition 14 (Plainification). For Γ = (S,UF, PF,dom, cod, δ, γ), a guard-
ed signature, and Φ ⊆ CE(Γ), a set of sentences, define the plainification of
presentation (Γ,Φ) by

PL(Γ,Φ) = (PL(Γ), {d(Γ, σ) | σ ∈ UF ∪ PF} ∪ {d(Γ, ϕ) | ϕ ∈ Φ}) .

The plainified specification consists of two parts: one generated from the signa-
ture, and the other generated from each of the equations of the presentation.
Note the overloading of PL as a functor PL : CGSig→Sig and a translation
on presentations (pairs consisting of a signature and a set of axioms).

A satisfaction relation relates models and sentences by defining when a sen-
tence holds in an algebra. We will define satisfaction relations for the three cases
of total, partial and guarded algebras.

Definition 15 (Plain satisfaction). Let Σ = (S, F, dom, cod) be a plain sig-
nature, ϕ = χ. ({(t1, u1), . . . , (tk, uk)}, (tk+1, uk+1)) ∈ CE(Σ) a conditional equa-
tion.

The total satisfaction relation for Σ,
t

|=Σ⊆ Obj(TAlg(Σ))× CE(Σ), is de-

fined by A
t

|=Σ ϕ ⇔
(
∀α ∈ A(v ◦ x) ·

∧
i∈[k]{A(χ.ti)(α) = A(χ.ui)(α)} ⇒

A(χ.tk+1)(α) = A(χ.uk+1)(α)
)
.

The existential satisfaction relation,
e

|=Σ⊆ Obj(PAlg(Σ)) × CE(Σ), is de-

fined by A
e

|=Σ ϕ⇔
(
∀α ∈

{
a ∈ A(v ◦ x) | a ∈ ∩i∈[k](∂(A(χ.ti)) ∩ ∂(A(χ.ui)))

}
·∧

i∈[k]{A(χ.ti)(α) = A(χ.ui)(α)} ⇒ α ∈ ∂(A(χ.tk+1)) ∧ α ∈ ∂(A(χ.uk+1))∧

A(χ.tk+1)(α) = A(χ.uk+1)(α)
)
.

The weak satisfaction relation, which is the same as the existential satisfaction
relation, except that α ∈ ∩i∈[k+1](∂(A(χ.ti))∩∂(A(χ.ui))), is closer to the notion
of guarded satisfaction, being defined below. Using weak satisfaction will not
change any of the results presented here. Existential satisfaction is considered
more versatile than weak satisfaction, and is the one most commonly used.

Definition 16 (Guarded satisfaction). Let Γ = (S,UF, PF,dom, cod, δ, γ)
be a guarded signature and let ϕ = χ. ({(t1, u1), . . . , (tk, uk)}, (tk+1, uk+1)) ∈
CE(PL(Γ)) be a conditional equation.

The guarded satisfaction relation for Γ ,
g

|=Γ⊆ Obj(GAlg)(Γ) × CE(Γ),

where GAlg is GTAlg or GPAlg as appropriate, is defined by A
g

|=Γ ϕ ⇔(
∀α ∈

⋂
i∈[k+1](G(A,χ.ti) ∩ G(A,χ.ui)) ·

∧
i∈[k]{A(χ.ti)(α) = A(χ.ui)(α)} ⇒

A(χ.tk+1)(α) = A(χ.uk+1)(α)
)
.

Example 4. We may now provide the standard group axioms for the signature
ΣGroup from Example 1.

spec Group =
sorts group
opns � : →group

⊕ : group× group→group
	 : group→group

vars a, b, c : group
axioms �⊕ a = a = a⊕�

(a⊕ b)⊕ c = a⊕ (b⊕ c)
a⊕ (a) = � = (a)⊕ a

This identifies � as the unit element of the group, ⊕ as associative, and 	 as
the inverse operation with respect to ⊕. The Group variety for total satisfaction
includes the integers and the rationals with 0 as unit element, addition as ⊕ and
minus for 	. It does not include the integers with 1, multiplication and division,
since only 1 and -1 have multiplicative inverses among the integers. It does not
include the rationals with 1, multiplication and division either, since 0 does not
have a multiplicative inverse. Using existential satisfaction and partial algebras
will change this, since letting 	 be undefined on the problematic elements will
be inconsistent with the third axiom which implicitly ensures definedness of 	
on all arguments.

Using weak satisfaction would circumvent the forced definedness of 	 on all
values, so we could then make 	 undefined on the problematic values and permit
the last two models. However, weak satisfaction does not allow error recovery,
as any value, even an error value, returned by 	 must obey all axioms of the
specification.

Example 5. We may also provide the guarded signature ΓGGroup from Example
3 with the group axioms.

spec GGroup =
sorts group
opns � : →group

⊕ : group× group→group
	 : group→group

guard() = (Bool, true, invertible)
vars a, b, c : group
axioms �⊕ a = a = a⊕�

(a⊕ b)⊕ c = a⊕ (b⊕ c)
a⊕ (a) = � = (a)⊕ a

The axioms for 	 are now protected, and may not be relevant for all elements
in the carrier for group. The quantification on the variable a in the last axiom
is restricted to values such that invertible(a) = true. Models of this specification
includes those for the plain group for the sort group and operators �, ⊕ and 	,

irrespectively of the models for Bool, true and invertible. This holds, e.g., when
the carrier for Bool has only one element. If the carrier for Bool has at least
two elements, and invertible(�) is distinct from true, then the rationals with 1,
multiplication and division will be a model for GGroup. Also, if invertible only
takes on the value true for 1 and -1, the integers with 1, multiplication and
division will also be a model.

In this example, as in general, a sort like Bool will not have a two-valued carrier.
Any value that is distinct from true will implicitly be understood as false when
guarding 	. These non-true values may be significant or non-significant (er-
ror values), and the implicit sort-guards will automatically distinguish between
these. This also goes for the carrier for group. For the last two models men-
tioned, 	(0) will be an insignificant error value or a significant recovery value,
as determined by the sort-guard, if 	(0) is defined. In any case, this value need
not obey the third axiom since 	 is protected by invertible. If the value returned
by 	 is non-significant, it will in fact not have to obey any of the axioms of
the specification, since the axioms are only relevant for significant values and
significant arguments. Note that guarded satisfaction will behave the same way
whether a total or a partial algebra is chosen as the model for GGroup.

Proposition 2. For z = t, e, g, g, for Sign = Sig, Sig,CGSig,CGSig and
for Alg = TAlg,PAlg,GTAlg,GPAlg, respectively:

Given a signature morphism θ ∈ Sign(Θ,Θ′), a conditional equation ϕ ∈
CE(Θ), and an algebra A′ ∈ Obj(Alg(Θ′)), then A′

z

|=Θ′ CE(θ)(ϕ) if and only

if Alg(θ)(A′)
z

|=Θ ϕ.

The proof is standard and follows the same pattern in all cases.

In each of the cases above, let
z

|= denote the family of satisfaction relations
z

|=Θ for Θ ∈ Obj(Sign).

Proposition 3. If A and B are care-equivalent guarded, total or partial, alge-

bras over a guarded signature Γ , then A
g

|=Γ ϕ if and only if B
g

|=Γ ϕ.

Proof. Guarded satisfaction only relates to the significant arguments. Since care-
equivalent algebras are identical on the significant arguments, they must satisfy
the same axioms.

4 Institutions of Algebras

The concepts we developed in the previous section give us several institutions.

Proposition 4. There exist institutions T CEL (Total Conditional Equational
Logic), PCEL (Partial Conditional Equational Logic), GT CEL (Guarded Total

Conditional Equational Logic), and GPCEL (Guarded Partial Conditional Equa-
tional Logic) given by

T CEL = (Sig, CE,TAlg,
t

|=)

PCEL = (Sig, CE,PAlg,
e

|=)

GT CEL = (CGSig, CE ◦ PL,GTAlg,
g

|=)

GPCEL = (CGSig, CE ◦ PL,GPAlg,
g

|=).

Note that Th0(T CEL) = Th0(PCEL) and Th0(GT CEL) = Th0(GPCEL).
Both T CEL and PCEL have extensively studied entailment systems and proof

calculi, and there also exist quite a lot of useful support tools for the correspond-
ing logical systems.

4.1 Theories and Varieties

Given a plain signature Σ. The inclusion functor IΣ : TAlg(Σ)→PAlg(Σ)
takes a total algebra to the partial algebra with the same carriers and functions.
The functor IΣ has a left adjoint TΣ : PAlg(Σ)→TAlg(Σ) (see [Bur86] or
[HW95] for a proof). We call TΣ the free totalisation functor for Σ.

The next functor relating total and partial model classes is defined on guarded
signatures since it exploits the extra structure provided by the guards.

Definition 17 (Partialisation functor). Given a guarded signature Γ .
The partialisation functor PΓ : GTAlg(Γ)→GPAlg(Γ) takes a guarded to-

tal algebra to the guarded partial algebra resulting from removing all insignificant
elements from each carrier and restricting the domain of each operation to its
significant arguments.

It is easy to verify that T ◦P(A) ≡Γ A for every A ∈ Obj(GTAlg(Γ)) and that
P ◦ T (A) ≡Γ A for every A ∈ Obj(GPAlg(Γ)).

The inclusion, totalisation and partialisation functors all form natural trans-
formations, indexed by the signatures, in CAT.

The inclusion functor restricts covariantly for plain and guarded presenta-
tions, e.g., for (Σ,Φ) ∈ Obj(Th0(T CEL)) we have that IΣVmodT CEL(Σ,Φ) :
VmodT CEL(Σ,Φ)→ VmodPCEL(Σ,Φ). The totalisation functor does not restrict
nicely for plain presentations. The new elements being added to the carriers and
domains of the operations will in general not obey the axioms.

Proposition 5. Given a guarded signature Γ .
The totalisation functor TPL(Γ) : GPAlg(Γ)→GTAlg(Γ) and the the par-

tialisation functor PΓ : GTAlg(Γ)→GPAlg(Γ) both restrict covariantly for
presentations.

Proof. For any ϕ ∈ CE(Γ), A ∈ Obj(GTAlg(Γ)) and M ∈ Obj(GPAlg(Γ)) we

have that (A
g

|=Γ ϕ) ⇔ (P(A)
g

|=Γ ϕ) and (M
g

|=Γ ϕ) ⇔ (P(M)
g

|=Γ ϕ) since

g

|=Γ only relates to the significant arguments of the operations of Γ , and these
are preserved (and reflected) by both P and T . ut

We define the following algebra functors IGTAlg = T ◦ P ◦ GTAlg :
CGSigop→CAT and IGPAlg = P ◦ T ◦ GPAlg : CGSigop→CAT. Using
these functors we get institutions of initial guarded total conditional equational

logic IGT CEL = (CGSig, CE ◦ PL, IGTAlg,
g

|=) and of initial guarded partial

conditional equational logic IGPCEL = (CGSig, CE ◦ PL, IGPAlg,
g

|=). The
name derives from the fact that these varieties contain the initial algebra from
each care-equivalence class as the unique representative of that care-equivalence
class (see [HW95] for details).

All the guarded institutions share the same syntactic notions (guarded sig-
natures and sentences), i.e., Th0(GT CEL) = Th0(GPCEL) = Th0(IGT CEL) =
Th0(IGPCEL) all represent the same guarded theory.

We may relate the guarded theories to the plain theories using plainification.
We have already defined plainification on signature categories and on presen-
tations. Plainification on guarded theory-morphisms reduces to plainification of
the underlying signature morphism. This gives us a plainification functor PL :
Th0(GT CEL)→Th0(T CEL) on theories. If we let cgsig : Th0(GT CEL)→CGSig
and sig : Th0(T CEL)→Sig be the obvious first projection functors on theories,
we get sig ◦PL = PL ◦ cgsig relating plainification of theories and plainification
of signatures.

Proposition 6. Plainification of guarded theories preserves varieties, i.e.,

VmodT CEL ◦ PLop = VmodGT CEL and VmodT CEL ◦ PLop = VmodGT CEL.

Proof. See [HW95]. ut

Proposition 7.

T ◦ P ◦VmodGT CEL = VmodIGT CEL
P ◦ T ◦VmodGPCEL = VmodIGPCEL.

Proof. Follows from the observation that care-equivalent algebras satisfy the
same axioms, and that, for every (Γ,Φ) ∈ Obj(Th0(GT CEL)) we have that
VmodIGT CEL(Γ,Φ) is a full subcategory of VmodGT CEL(Γ,Φ). Likewise for the
varieties VmodIGPCEL and VmodGPCEL. ut

Proposition 8. The categories VmodIGT CEL(Γ,Φ) and VmodIGPCEL(Γ,Φ) are
isomorphic for every (Γ,Φ) ∈ Obj(Th0(GT CEL)).

Proof. Given an arbitrary guarded signature Γ . For A ∈ Obj(IGTAlg(Γ)) we
easily see that T ◦ P(A) = A and that for h ∈ IGTAlg(Γ)(A,A′) we have
that T ◦ P(h) = h. Likewise, P ◦ T (M) = M and P ◦ T (w) = w for M ∈
Obj(IGPAlg(Γ)) and w ∈ IGPAlg(Γ)(M,M ′). ut

Obviously, IGTAlg is isomorphic to IGPAlg with P and T as the isomor-
phisms.

4.2 Relating the Institutions

The next series of theorems lead to the main claim of this paper, that in the
context of a guarded specification, we will not be able to distinguish between
total or partial models from a logical viewpoint.

Theorem 2. There is a simple map of institutions (ζ, α, β) : GT CEL→T CEL
which is surjective.

Proof. We need to define the functor ζ on theories (and ζ1 on signatures), and
the natural transformations α indexed by guarded signatures and β indexed by
guarded presentations, and show that they have the necessary properties.

– Define the functor ζ = PL : Th0(GT CEL)→Th0(T CEL) and the functor
ζ1 = PL : CGSig→Sig.

– Define the natural transformation α : (CE ◦ PL)→CE ◦ PL by αΓ (ϕ) =
d(Γ, ϕ), the “translation of axioms” part of PL on presentations.

– Define the natural transformation β : VmodT CEL ◦ PLop→VmodGT CEL as
the identity natural transformation since VmodT CEL ◦ PLop = VmodGT CEL.

This satisfies the necessary conditions:

– We have that sig ◦ ζ = ζ1 ◦ cgsig since sig ◦ ζ = sig ◦ PL = PL ◦ cgsig (with
PL on signatures) and ζ1 ◦ cgsig = PL ◦ cgsig.

– ζ(Γ,Φ) = PL(Γ,Φ) = PL(Γ, ∅)∪(PL(Γ), αΓ (Φ)) = ζ(Γ, ∅)∪(ζ1(Γ), αΓ (Φ)).
– Let sp : Th0(T CEL)→Set be the obvious second projection. For each Γ ∈

Obj(CGSig), ϕ ∈ CE(PL(Γ)) and M ′ ∈ VmodT CEL(PL(Γ, ∅)), we have

that β(Γ,∅)(M ′)
g

|=Γ ϕ ⇔ M ′
g

|=Γ ϕ ⇔ M ′
t

|=PL(Γ) sp ◦ PL(Γ, ϕ) ⇔

M ′
t

|=PL(Γ) sp(PL(Γ, ∅) ∪ (PL(Γ), αΓ (ϕ))) ⇔ M ′
t

|=PL(Γ) sp(PL(Γ, ∅)) ∪

sp(PL(Γ), αΓ (ϕ)) ⇔ M ′
t

|=PL(Γ) sp(PL(Γ), αΓ (ϕ)) ⇔ M ′
t

|=PL(Γ) αΓ (ϕ)

since M ′
t

|= sp(PL(Γ, ∅)) by default.
– Since β is the identity natural transformation it is automatically surjective.

ut

Theorem 3. There is a simple map of institutions (ζ, α, β) : GPCEL→PCEL
which is surjective.

Proof. Let sp, ζ, ζ1 and α be as above.

– Define the natural transformation β : VmodPCEL◦PLop→VmodGPCEL as the
identity natural transformation since VmodPCEL ◦ PLop = VmodGPCEL.

This satisfies the necessary conditions:

– The constraints on syntax have been shown for GT CEL.

– For each Γ ∈ Obj(CGSig), ϕ ∈ CE(PL(Γ)) andM ′ ∈ VmodPCEL(PL(Γ, ∅))

we get: β(Γ,∅)(M ′)
g

|=Γ ϕ⇔M ′
e

|=PL(Γ) sp(PL(Γ, ∅))∪sp(PL(Γ), αΓ (ϕ)) ⇔

M ′
e

|=PL(Γ) αΓ (ϕ) since M ′
e

|= sp(PL(Γ, ∅)) by default.
– Since β is the identity natural transformation it is automatically surjective.

ut

Theorem 4. There is a simple map of institutions (ζ, α, β) : IGT CEL→GT CEL
which is surjective.

Proof. Let sp be as before. Since the theories are the same, ζ, ζ1 are identity
functors and α is the identity natural transformation.

– Define β = T ◦ P : VmodGT CEL ◦ ζop→VmodIGT CEL.

This satisfies the necessary conditions:

– We have that cgsig ◦ ζ = ζ1 ◦ cgsig since ζ and ζ1 are identities.
– ζ(Γ,Φ) = (Γ,Φ) = ζ(Γ, ∅) ∪ (ζ1(Γ), αΓ (Φ)) since all these functions and

functors are identities.
– For each Γ ∈ Obj(CGSig), ϕ ∈ CE(Γ) and M ′ ∈ VmodGT CEL(PL(Γ, ∅)),

we have that β(Γ,∅)(M ′)
g

|=Γ ϕ ⇔ T (P(M ′))
g

|=Γ ϕ ⇔ M ′
g

|=Γ ϕ ⇔ M ′
g

|=Γ

αΓ (ϕ) since M ′ ≡Γ T (P(M ′)) and by Proposition 3 they will satisfy the
same formulas.

– Since β = T ◦ P it is surjective.
ut

Theorem 5. There is a simple map of institutions (ζ, α, β) : IGPCEL→GPCEL,
which is surjective.

Proof. Similar to the previous proof. ut

Theorem 6. There is an isomorphism from IGT CEL to IGPCEL which is a
surjective, simple map of institutions (ζ, α, β) : IGT CEL→IGPCEL.

Proof. Let cgsig and sp be as before. Since the theories are the same, ζ, ζ1 are
identity functors and α is the identity natural transformation.

– Define the natural transformation β = T : VmodIGPCEL◦ζop→VmodIGT CEL,
which is also an isomorphism between the categories.

This satisfies the necessary conditions. For the theories this has already been
proved.

– For each Γ ∈ Obj(CGSig), ϕ ∈ CE(Γ) and M ′ ∈ VmodIGPCEL(PL(Γ, ∅)),

we have that β(Γ,∅)(M ′)
g

|=Γ ϕ ⇔ T (M ′)
g

|=Γ ϕ ⇔ M ′
g

|=Γ ϕ ⇔ M ′
g

|=Γ

αΓ (ϕ) since T preserves and reflects satisfaction.
– Since β = T is an isomorphism it is surjective.

Since all components of (ζ, α, β) are identities or isomorphisms, the map itself
is an isomorphism. ut

This allows us to prove our main theorem.

Theorem 7. We may use entailment systems and proof calculi for T CEL for
IGT CEL and use entailment systems and proof calculi for PCEL for IGPCEL.

Further, in the context of IGT CEL and IGPCEL entailment systems and
proof calculi for T CEL and PCEL are indistinguishable.

Proof. The first two statements follow from composing the institution maps of
the previous theorems. The last statement follows from the isomorphism insti-
tution maps between the institutions IGT CEL and IGPCEL. ut

This result can be extended to GT CEL and GPCEL, but the proof will be more
involved since the maps upwards from IGT CEL and IGPCEL are not surjec-
tive on model classes. We should also be able to allow weak guarded signature
morphisms, i.e., guarded signature morphisms which also may map protected
operators to unprotected operators.

The model classes of IGT CEL and IGPCEL contain exactly one represen-
tative from each of the care-equivalence classes, a representative that is canon-
ical in the sense that it is initial in the care-equivalence class [HW95]. A care-
equivalence class does not contain final algebras, but there are other choices,
such as error-algebras, which may be interesting for certain purposes. How to
select these, and how those classes relate back to GT CEL and GPCEL is open
for investigation.

5 Conclusion

We have shown that the concept of guarded algebra provides a very nice cor-
respondence between total and partial varieties using the inclusion, totalisation
and partialisation model functors. Further, it allows a logical framework insen-
sitive to the choice of total or partial models. We may choose the entailment
systems and proof calculi which are most simple to work with, irrespectively
of whether total models or partial models are best suited to understand the
problem domain. This may be useful when, for example, investigating program
semantics with detectable and undetectable errors.

The practical use may be hampered by the number of conditions generated
by plainification, the translation from guarded to plain presentations. Other
translation schemes that yield plain presentations that are more efficient to work
with are being considered. Such a scheme may not yield the full model classes
of GT CEL or GPCEL after the translation, but it seems that as long as each
care-equivalence class is represented, the translation will be adequate from the
logical aspect.

Further investigation of the relationship between guarded algebras and simi-
lar specification formalisms, such as membership algebras [Mes98], may allow the

transferal of additional useful logical reasoning and rewrite tools to the guarded
context.

We also want to extend the notion of guardedness beyond conditional equa-
tional specifications. First-order logic is especially interesting. A positive result
here may be useful in the context of the algebraic specification language CASL
[Mos97], which admits both partial and total models.

References

[Bur86] Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

[Cer93] Maura Cerioli. Relationships between Logical Formalism. PhD thesis, Uni-
versità de Pisa–Genova–Udine, 1993.

[GDLE84] M. Gogolla, K. Drosten, U. Lipeck, and H.-D. Ehrich. Algebraic and opera-
tional semantics of specifications allowing exceptions and errors. Theoretical
Computer Science, 34:289–313, 1984.

[GTW78] Joseph A. Goguen, J. W. Thatcher, and Eric G. Wagner. An initial algebra
approach to the specification, correctness, and implementation of abstract
data types. In R. T. Yeh, editor, Current Trends in Programming Method-
ology, IV, Data Structuring, pages 80–149. Prentice-Hall, 1978.

[HL89] Ivo Van Horebeek and Johan Lewi. Algebraic Specifications in Software
Engineering – an introduction. International Series of Monographs on Com-
puter Science. Springer–Verlag, Berlin, 1989.

[HW95] Magne Haveraaen and Eric G. Wagner. Guarded algebras and data type
specification. Technical Report 108, Department of Informatics, University
of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, October 1995.

[Kre87] Hans-Jörg-Kreowski. Partial algebras flow from algebraic specifications. In
Proc. ICALP 87, volume 267 of Lecture Notes in Computer Science, pages
521–530. Springer Verlag, 1987.

[KM95] Hans-Jörg-Kreowski and Till Mossakowski. Equivalence and difference be-
tween institutions: simulating Horn Clause Logic with based algebras. Math
Struct. in Comp. Science 5:189–215, 1995.

[Mes89] J. Meseguer. General logics. In Proc. Logic Colloquium ’87. North-Holland,
1989.

[Mes98] José Meseguer. Membership algebra as a logical framework for equational
specification. In Francesco Parisi Presicce, editor, Recent Trends in Alge-
braic Development Techniques, volume 1376 of Lecture Notes in Computer
Science, pages 18–61. Springer Verlag, 1998.

[Mos95] Till Mossakowski. Equivalences among various logical frameworks of partial
algebras. Bericht Nr, 4/95, Universität Bremen, Fachbereich Mathematik
und Informatik, 1995.

[Mos93] Peter D. Mosses. The use of sorts in algebraic data type specification. In
Recent Trends in Data Type Specification, pages 66–91. LNCS 655, 1993.

[Mos97] Peter D. Mosses. CoFI: The common framework initiative for algebraic
specification and development. In Michel Bidoit and Max Dauchet, editors,
TAPSOFT’97: Theory and Practice of Software Development, volume 1214
of Lecture Notes in Computer Science, pages 115–137. Springer-Verlag, 1997.

[Rei87] Horst Reichel. Initial Computability Algebraic Specifications, and Partial
Algebras. Clarendon Press, Oxford, 1987

