Skip to main content

Geometric Methods for Protein Structure Comparison

  • Conference paper
Mathematical Methods for Protein Structure Analysis and Design

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2666))

Abstract

Protein structural comparison is an important operation in molecular biology and bionformatics. It plays a central role in protein analysis and design. As proteins fold in three dimensional space, assuming a variety of shapes, a careful characterization of their geometry is needed to study their function which is known to be related to the shape. Moreover, the comparison of protein structures is essential to infer evolutionary information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abagyan, R.A., Maiorov, V.N.: An Automatic Search for Similar Spatial Arrangements of α helices and β-strands in globular proteins. Journal of Molecular Structural Dynamics 6(5), 1045–1060 (1989)

    Google Scholar 

  2. Alesker, A., Nussinov, R., Wolfson, H.J.: Detection of non-topological motifs in protein structures. Protein Engineering 9(5), 1103–1119 (1996)

    Google Scholar 

  3. Alter, T.D.: Robust and efficient 3D recognition by alignment. Technical Report AITR-1410, Massachusetts Institute of Technology, Artificial Intelligence Laboratory (1992)

    Google Scholar 

  4. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-square fitting of two 3-D point sets. IEEE Trans. on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)

    Article  Google Scholar 

  5. Branden, C., Tooze, J.: Introduction to Protein Structure, 2nd edn. Garland, New York (1999)

    Google Scholar 

  6. Brown, N.P., Orengo, C.A., Taylor, W.R.: A protein structure comparison methodology. Comp. Chem. 27, 359–380 (1996)

    Article  Google Scholar 

  7. Brint, A.T., Willett, P.: Algorithms for the identification of threedimensional maximal common substructures. J. Chem. Inform. Comput. Sci. 27, 152–156 (1987)

    Google Scholar 

  8. Califano, A., Mohan, R.: Multidimensional indexing for recognizing visual shapes. IEEE Trans. on Pattern Analysis and machine Intelligence 16(4), 373–392 (1992)

    Article  Google Scholar 

  9. Chen, H.H., Huang, T.S.: Matching 3d line segments with application to multiple-objects motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 1002–1008 (1990)

    Article  Google Scholar 

  10. Chew, P.L., Dor, D., pEfrat, A., Kedem, K.: Geometric pattern matching in d-dimensional space. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 264–279. Springer, Heidelberg (1995)

    Google Scholar 

  11. Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M., Kravets, D.: Geometric pattern matching under Euclidean motion. Computational Geometry. Theory and Applications 7, 113–124 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Escalier, V., Pothier, J., Soldano, H., Viari, A.: Pairwise and Multiple Identification of three-dimensional common substructures in proteins. J. of Computational Biology 5, 41–56 (1998)

    Article  Google Scholar 

  13. Fischer, D., Bachar, O., Nussinov, R., Wolfson, H.: An efficient automated computer vision based technique for detection of three dimensional structural motifs in proteins. J. Biomol. Struct. Dyn. 9, 769–789 (1992)

    Google Scholar 

  14. Fischer, D., Tsai, C.J., Nussinov, R., Wolfson, H.: A 3D sequenceindependent representation of the protein data bank. Protein Engineering 8, 981–997 (1995)

    Article  Google Scholar 

  15. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Practical Methods for Approximate Geometric Pattern Matching Under Rigid Motion. IEEE Trans. Pattern Analysis and Machine Intelligence 21(4), 371–379 (1999)

    Article  Google Scholar 

  16. Glassner, A. (ed.): Graphics Gems. Academic Press, London (1990)

    Google Scholar 

  17. Gerstein, M.: A Resolution-Sensitive Procedure for Comparing Protein Surfaces and its Application to the Comparison of Antigen-Combining Sites. Acta Cryst. A8, 271–276 (1992)

    Google Scholar 

  18. Gerstein, M., Levitt, M.: Comprehensive Assessment of automatic structural alignment against a manual standard, the scop classification of proteins. Protein Science 7, 445–456 (1998)

    Article  Google Scholar 

  19. Golub, G.H., Van Loan, C.F.: Matrix Computation. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  20. Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol. 229, 707–721 (1993)

    Article  Google Scholar 

  21. Guerra, C., Lonardi, S., Zanotti, G.: Analysis of proteins secondary structures using indexing techniques. In: IEEE Proc First Int. Symposium on 3D Data Processing Visualization and Transmission, pp. 812–821 (2002)

    Google Scholar 

  22. Guerra, C., Pascucci, V.: On matching sets of 3D segments. In: Proceedings of SPIE Vision Geometry VIII, pp. 157–167 (1999)

    Google Scholar 

  23. Guerra, C., Pascucci, V.: 3D segment matching using the Hausdorff distance. In: Proceedings of the IEEE Conference on Image Processing and its Applications IPA 1999, pp. 18–22 (1999)

    Google Scholar 

  24. Hagedoorn, M., Veltkamp, R.C.: Reliable and efficient pattern matching using affine invariant metric. J. of Computer Vision 31(2/3), 203–225 (1999)

    Article  Google Scholar 

  25. Horn, B., Hilden, H., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. 5, 1127–1135 (1988)

    Article  MathSciNet  Google Scholar 

  26. Holm, L., Sander, C.: 3D-Lookup: Fast protein structure database searches at 90% reliability. In: Proc. Third Int. Conf. on Intell. Sys. for Mol. Biol., Menlo Park, pp. 179–187 (1995)

    Google Scholar 

  27. Holm, L., Sander, C.: Mapping the protein universe. Science 273, 595–602 (1996)

    Article  Google Scholar 

  28. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4, 629–642 (1987)

    Article  Google Scholar 

  29. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  30. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  31. Kanmgar-Parsi, B., Kamgamr-Parsi, B.: Matching sets of 3d line segments with application to polygonal arc matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10), 1090–1099 (1997)

    Article  Google Scholar 

  32. Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: Affine invariant model-based object recognition. IEEE Trans. on Robotics and Automation, 578–589 (1990)

    Google Scholar 

  33. Lancia, G., Carr, R., Walenz, B., Istrail, S.: Optimal PDB structure alignments: A Branch-and-Cut algorithm for the maximum contact map overlap problem. In: Proc. 5th ACM REsearch in COMputational Biology, pp. 193–202 (2001)

    Google Scholar 

  34. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: Stereochemical duality of protein structure coordinates. Proteins 12, 345–364 (1992)

    Article  Google Scholar 

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  Google Scholar 

  36. Leibowitz, N., Fligelman, Z.Y., Nussinov, R., Wolfson, H.J.: Multiple structural alignment and core detection for geometric hashing. In: Proc. ISMB 1999, Heidelberg, Germany, pp. 169–177 (1999)

    Google Scholar 

  37. Lemmen, C., Lengauer, T.: Computational methods for the structural alignment of molecules. J. of Computer-Aided Molecular Design 14, 215–232 (2000)

    Article  Google Scholar 

  38. Lesk, A.M.: Protein architecture: a practical approach. Oxford Univ. Press, Oxford (1991)

    Google Scholar 

  39. Lesk, A.: Computational Molecular Biology. In: Encyclopedia of Computer Science and Technology, vol. 31. Marcel Dekker, New York (1994)

    Google Scholar 

  40. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. and Applic. 9, 272–290 (1997)

    Article  Google Scholar 

  41. Mitchell, E.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Use of Techniques derived from graph theory to compare secondary structures motifs in proteins. J. Molecular Biology 212, 151–166 (1989)

    Article  Google Scholar 

  42. Mizuguchi, K., Deane, C.M., Blundell, T.L., Johnson, M.S., Overington, J.P.: JOY: protein sequence-structure representation and analysis. Bioinformatics 14, 617–623 (1998)

    Article  Google Scholar 

  43. Murray, R.M., Li, X., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  44. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Molecular Biology 247, 536–540 (1995)

    Google Scholar 

  45. Overington, J.P., Zhu, Z.Y., Sali, A., Johnson, M.S., Sowdhamini, R., Louie, G.V., Blundell, T.L.: Molecular recognition in protein families: a database of aligned three-dimensional structures of related proteins. Biochem. Soc. Trans. 21(3), 597–604 (1993)

    Google Scholar 

  46. Pennec, X., Ayache, N.: A geometric algorithm to find small but highly similar 3D substructures in proteins. Bionformatics 14(6), 516–522 (1998)

    Article  Google Scholar 

  47. Platt, D.E., Guerra, C., Rigoutos, I., Zanotti, G.: Global secondary structure packing angle bias in proteins (2002) (manuscript)

    Google Scholar 

  48. Rucklidge, W.J.: Efficiently locating objects using the Hausdorff distance. International Journal of Computer Vision 24(3), 251–270 (1997)

    Article  Google Scholar 

  49. Sabata, B., Aggarwal, J.K.: Estimatiom of motion from a pair of range images: a review. Computer Vision, Graphics and Image Processing: Image Understanding 54(3), 309–324 (1991)

    MATH  Google Scholar 

  50. Sali, A., Blundell, T.L.: Definition of a General Topological Equivalence in protein structures: a procedure involving comparisons of properties and relationships through simulated annealing and dynamic programming. Journal of Molecular Biology 212, 403–428 (1990)

    Article  Google Scholar 

  51. Singh, A.P., Brutlag, D.L.: Hierarchical protein structure superposition using both secondary structures and atomic representations. In: Proc. Fifth Int. Conf. on Intell. Sys. for Mol. Biol., Menlo Park, pp. 284–293 (1997)

    Google Scholar 

  52. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)

    Article  Google Scholar 

  53. Sowdhamini, R., Burke, D.F., Huang, J.-F., Mizuguchi, K., Nagarajaram, H.A., Srinivasan, N., Steward, R.E., Blundell, T.L.: CAMPASS: A database of structurally aligned protein superfamilies. Structure 6(9), 1087–1094 (1998)

    Article  Google Scholar 

  54. Ullman, J.R.: J. Assoc. Comp. 23, 31–42 (1995)

    MathSciNet  Google Scholar 

  55. Verbitsky, G., Nussinov, R., Wolfson, H.J.: Structural comparisons allowing hinge bendings, swiveling motions. Proteins 34, 232–254 (1998)

    Article  Google Scholar 

  56. Walker, M.W., Shao, L., Voltz, R.A.: Estimating 3-D Location Parameters Using Dual Number Quaternions. CVGIP:Image Understanding 54(3), 358–367 (1991)

    Article  MATH  Google Scholar 

  57. Willett, P.: Searching fore pharmacophoric patterns in databases of threedimensional chemical structures. J. of Molecular Recognition 8, 290–303 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferrari, C., Guerra, C. (2003). Geometric Methods for Protein Structure Comparison. In: Guerra, C., Istrail, S. (eds) Mathematical Methods for Protein Structure Analysis and Design. Lecture Notes in Computer Science(), vol 2666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44827-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44827-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40104-9

  • Online ISBN: 978-3-540-44827-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics