Skip to main content

That Elusive Diversity in Classifier Ensembles

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2652))

Abstract

Is “useful diversity” a myth? Many experiments and the little available theory on diversity in classifier ensembles are either inconclusive, too heavily assumption-bound or openly non-supportive of the intuition that diverse classifiers fare better than non-divers ones. Although a rough general tendency was confirmed in our previous studies, no prominent link appeared between diversity of the ensemble and its accuracy. Diversity alone is a poor predictor of the ensemble accuracy. But there is no agreed definition of diversity to start with! Can we borrow a concept of diversity from biology? How can diversity, as far as we can define and measure it, be used to improve the ensemble? Here we argue that even without a clear-cut definition and theory behind it, studying diversity may prompt viable heuristic solutions. We look into some ways in which diversity can be used in analyzing, selecting or training the ensemble.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  Google Scholar 

  2. Cunningham, P., Carney, J.: Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin (2000)

    Google Scholar 

  3. Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning 40(2), 139–157 (2000)

    Article  Google Scholar 

  4. Fleiss, J.L.: Statistical Methods for Rates and Proportions. John Wiley & Sons, Chichester (1981)

    MATH  Google Scholar 

  5. Ghosh, J.: Multiclassifier systems: Back to the future. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal 19(9-10), 699–707 (2001)

    Article  Google Scholar 

  7. Ho, T.K.: The random space method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  8. Ho, T.K.: Multiple classifier combination: Lessons and the next steps. In: Kandel, A., Bunke, H. (eds.) Hybrid Methods in Pattern Recognition, pp. 171–198. World Scientific Publishing, Singapore (2002)

    Chapter  Google Scholar 

  9. Kleinberg, E.M.: Stochastic discrimination. Annals of Mathematics and Artificial Intelligence 1, 207–239 (1990)

    Article  Google Scholar 

  10. Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions. In: Saitta, L. (ed.) Machine Learning: Proc. 13th International Conference, pp. 275–283. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  11. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation and active learning. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  12. Kuncheva, L.I.: Fuzzy Classifier Design. Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2000)

    Book  Google Scholar 

  13. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles. Machine Learning 51, 181–207 (2003)

    Article  Google Scholar 

  14. Lam, L.: Classifier combinations: implementations and theoretical issues. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 77–86. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Littlewood, B., Miller, D.R.: Conceptual modeling of coincident failures in multiversion software. IEEE Transactions on Software Engineering 15(12), 1596–1614 (1989)

    Article  MathSciNet  Google Scholar 

  16. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proc. 14th International Conference on Machine Learning, San Francisco, pp. 378–387. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  17. Pękalska, E.z., Duin, R.P.W., Skurichina, M.: A discussion on the classifier projection space for classifier combining. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 137–148. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Rao, C.R.: Diversity: Its measurement, decomposition, apportionment and analysis. Sankya: The Indian Journal of Statistics, Series A 44(1), 1–22 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Roli, F., Giacinto, G., Vernazza, G.: Methods for designing multiple classifier systems. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 78–87. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Rosen, B.E.: Ensemble learning using decorrelated neural networks. Connection Science 8(3/4), 373–383 (1996)

    Article  Google Scholar 

  21. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3(2), 135–148 (2002)

    Article  Google Scholar 

  22. Skalak, D.B.: The sources of increased accuracy for two proposed boosting algorithms. In: Proc. American Association for Artificial Intelligence, AAAI 1996, Integrating Multiple Learned Models Workshop (1996)

    Google Scholar 

  23. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W.H. Freeman & Co, New York (1973)

    MATH  Google Scholar 

  24. Tumer, K., Ghosh, J.: Linear and order statistics combiners for pattern classification. In: Sharkey, A.J.C. (ed.) Combining Artificial Neural Nets, pp. 127–161. Springer, London (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuncheva, L.I. (2003). That Elusive Diversity in Classifier Ensembles. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_130

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44871-6_130

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40217-6

  • Online ISBN: 978-3-540-44871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics