
Recovering Camera Motion in a Sequence of

Underwater Images through Mosaicking

Rafael Garcia, Xevi Cuf́ı, and Viorela Ila

Computer Vision and Robotics Group, Institute of Informatics and Applications,
University of Girona, Campus de Montilivi,

17071, Girona, Spain
{rafa, xcuf, viorela}@eia.udg.es

Abstract. A procedure for automatic mosaic construction over long
image sequences is presented. This mosaic is used by an underwater
vehicle to estimate its motion with respect to the ocean floor. The system
exploits texture cues to solve the correspondence problem. The dynamic
selection of a reference image extracted from the mosaic improves motion
estimation, bounding accumulated error. Experiments with real images
are reported.

1 Introduction

A composite image constructed by aligning and combining a set of smaller images
is known as mosaic [1]. In most cases the construction of a mosaic involves recov-
ering the relative motion between the camera and the scene. Mosaics of the ocean
floor are very useful in undersea exploration, creation of visual maps, underwa-
ter navigation, etc. In this context an underwater vehicle carries a down-looking
camera, taking images of the ocean floor to build a mosaic as it performs the mis-
sion. Quite often, the mosaicking systems found in the literature perform local
gray level correlation [2] or compute optical flow [3] to align the images which
form the mosaic. Although these techniques provide good results in standard
images [4], they may lead to detection of incorrect correspondences in underwa-
ter sequences. The special properties of the medium makes underwater images
difficult to process [5]: the elements of the image get blurred, some regions of
interest present high clutter and lack of distinct features. Although most of the
techniques neglect the use of textural information, considering only image inten-
sity, texture provides a rich source of information to solve image alignment [6].
This paper extends our previous work [7, 8] to construct more accurate mosaics
of the ocean floor and over longer image sequences. In [7], every image of the
sequence was registered to the previous one. Therefore, when an inaccuracy is
introduced in the transformation between both images, this error affects not only
the current registration, but all the following ones.

In this paper, we address the problem of building mosaics of the ocean floor
to reduce the error associated to the position of an underwater vehicle when
it performs a mission. In particular, our mosaicking system has been upgraded

2 Rafael Garcia et al.

in several ways to overcome the difficulties described above: (i) texture cues
are considered to improve feature correspondences, thus reducing inaccuracies;
and (ii) selection of a reference image extracted from the mosaic, in contrast to
processing every pair of consecutive images.

The remainder of the paper is structured as follows: Section 2 outlines our mo-
saicking methodology, detailing the characterization procedure and the method-
ology applied to the selection of a reference image. Then, experimental results
proving the validity of our proposal appear in Section 3. Finally, Section 4
presents the conclusions of this work.

2 Building a Mosaic

Our mosaicking system is divided into two main blocks, namely: mosaic con-

troller and mosaic engine. The mosaic controller keeps the state of the mosaick-
ing system and takes decisions according to this state. It is responsible of the
mosaic data structure, i.e., updating the mosaic image (Im) according to the
estimated motion. On the other hand, the motion is estimated by the mosaic
engine. It considers the current image (Ic) and a reference image (Ir) and com-
putes a planar homography which describes the motion between both. Selection
of the reference image is performed by the mosaic controller. Figure 1 shows the
relationship between both modules.

2.1 Mosaic Controller

This module aims to analyze how the vehicle is moving and generates the per-
tinent commands to control the mosaic engine. The mosaic controller provides
the engine module with the images which will be used to estimate the motion
of the vehicle. One of these images is the current frame acquired by the camera
(Ic). The second one is a reference image (Ir), extracted from the mosaic image
Im by the controller.

Every iteration of the algorithm starts when current image Ic is acquired.
Then, the geometric distortion caused by the lens (and the water-glass-air inter-
face of the camera housing) is corrected through a simplification of the Faugeras-
Toscani algorithm [9] to correct uniquely radial distortion, instead of performing
full camera calibration [10]. Once lens distortion has been corrected, the cur-
rent image at time instant k, denoted Ic(k), is rotated and scaled so that its
orientation and scale matches that of the reference image Ir(k).

Consider a 3× 3 matrix rHc(k) as the homography which transforms the co-
ordinates of a point in image Ic(k) into its corresponding coordinates in the refer-
ence image Ir(k). The motion estimated at the previous time instant rHc(k−1)
is assumed to be valid as an “a priori” motion estimation for instant k, since mo-
tion between two consecutive images is rather small due to the high frame-rate
of the sequence. Then, images Ir(k) and Ic(k), together with “a priori” motion
estimation matrix rHc(k − 1) are passed to the mosaic engine, and it is told
to execute. The output of the mosaic engine is the homography matrix rHc(k),

Recovering Camera Motion in a Sequence of Underwater Images 3

which estimates the motion between Ic(k) and Ir(k) at time instant k. It should
be noted that the engine is executed only when the controller requires it.

Once the engine has finished its execution, the controller decides if Im should
be updated. The controller can be configured to actualize the mosaic every α
images, with α = 1..20. It uses equation (1) to update the mosaic image Im(k)
with the current image Ic(k). Im is only updated in those areas which have
not been updated before by the previous images. Therefore, the first available
information for every pixel is used to actualize the mosaic image. This strategy
of using the less recent information to construct the mosaic is known in the
literature as “use first” [2].

mHc(k) = mHr(k) · rHc(k) (1)

The next step consists of deciding whether a new reference image Ir has to
be selected for the next iteration. The controller uses matrix rHc(k) to check
if the overlapping between the reference image Ir(k) and current image Ic(k) is
below a given threshold (e.g. 40% of the size of the image). In this case, it has
to select a new reference image Ir(k + 1) for the next iteration of the algorithm.
The new reference image will be extracted from the mosaic image Im(k) at the
same position and orientation as that of the last image added to the mosaic
(at time k − mod(k/α)). Following this methodology, drift in the estimation of
the trajectory of the vehicle increases more slowly than registering every pair of
consecutive images.

On the other hand, if the overlap between images Ic(k) and Ir(k) is bigger
than the threshold, the reference image will not change, i.e. Ir(k + 1) = Ir(k).

2.2 Mosaic Engine

The engine begins its execution by detecting interest points in image Ic. The
goal of the interest point detector is to find scene features which can be reliably
detected and matched when the camera moves from one location to another.
Moreover, these features should be stable when lighting conditions of the scene
change somewhat. A slightly modified version of the Harris corner detector [11]
is used to detect the interest points. Once the relevant features of image Ic

have been detected, the next step consists of finding their correspondences in
the reference image Ir. Before searching for correspondences, both images are
smoothed with a 3 × 3 Gaussian mask. Given an interest point cm in image Ic,
instead of considering the point as an individual feature, we select an n×n region
R(cm) centered at this point. Then, the system aims to find a point rm in the
reference image Ir, surrounded by an n×n area which presents a high degree of
similarity to cm. This “similarity” is computed as a correlation function [4]:

corr {R(cm), R(rm)} =
cov {R(cm), R(rm)}

σ {R(cm)} · σ {R(rm)}
(2)

From equation (2) we can observe that the correlation between two points is
defined as the covariance between the grey levels of region R(cm) in the current

4 Rafael Garcia et al.

image and region R(rm) defined in Ir, normalized by the product of the standard
deviation of these regions. In practice, these regions are subsampled by a factor
q, reducing the processed pixels from n×n to m×m, where m = ((n − 1)/q)+1,
and, therefore, decreasing the computational burden.

Equation (2) is computed for all the points of the reference image which fall
inside a small search window. In order to locate this window, the system takes
into account the previous estimated motion rHc(k−1). Consider an interest point
cm̃, defined in the current image and expressed in homogeneous coordinates. The
search window is centered at rc̃, as shown in equation (3).

rc̃ = rHc(k − 1) · cm̃ (3)

being rc̃ the projection of the interest point cm̃ into the reference image. The
coordinates provided by rc̃ are uniquely used to open the window where equa-
tion (2) is applied to search for the correct correspondence rm̃ of interest point
cm̃.

Equation (2) is normalized by substracting the mean and dividing by a factor
which takes into account the dispersion of the gray levels in the considered
regions. For this reason, this measurement of correlation is very adequate for
underwater imaging, where lighting inhomogeneities are frequent. Unfortunately,
although equation (2) produces good results in absence of rotations, its reliability
decreases as images Ic and Ir present a higher rotational component. For this
reason the mosaic controller rotates and scales the current image, prior to pass
it to the engine.

According to equation (2), given an interest point cm in the current image
Ic, its correspondence rm in Ir should be the point which has obtained the high-
est correlation score. Those pairs (interest point, matching) which have obtained
a correlation score lower than a given threshold are deleted. However, experi-
mental work with underwater images has proved that in some cases the true
correspondence is not the one with the highest correlation score [6]. Therefore,
the incorrect correspondences (known as “outliers”) are detected through a two-
step approach: first, discrimination of false matches through textural analysis;
and next, elimination of points describing non-dominant motion by means of a
robust estimator.

In order to characterize incorrect correspondences through textural analysis,
the textural properties of the neighborhood of both the interest point cm and
its estimated correspondence rm are computed. In this way, the regions R(cm)
and R(rm) are characterized by two feature vectors (cv and rv), which encode
their textural properties. Some of the Energy filters defined by Laws (e.g. L5S5,
E3E3, etc.) are used to perform the textural analysis [12]. Depending on the
parametrization of the system, this textural characterization may consist, for
instance, of measuring the texture at some neighboring locations (g0, g1, ..., g8)
as shown in Figure 2. If the Euclidean distance between both vectors is smaller
than a selected threshold, the pair (interest point, matching) is considered to
be an outlier. In fact, this approach is based in the assumption that interest
points (and their correspondences) are located at the border between, at least,

Recovering Camera Motion in a Sequence of Underwater Images 5

two regions with different textural properties. It is a reasonable assumption
since interest points are detected by finding areas of high variation of the image
gradient through a corner detector, i.e., located in the border of different image
textures.

The second step consists on applying a robust estimation method, the Least
Median of Squares (LMedS), to detect those feature points describing a trajec-
tory which is different from the dominant motion of the image [13]. These “bad”
correspondences are in fact correctly matched points belonging to some moving
object of the scene, such as a moving fish, algae, etc.

Next, the motion estimation rHc(k) between current and reference images is
computed from the remaining pairs of points applying equation (4).

r

m̃ = r

Hc ·
c

m̃ or

[
λ · rx

λ · ry

λ

]
=

[
h11 h12 h13

h21 h22 h23

h31 h32 1

]
·

[
cx
cy

1

]
(4)

where λ is an arbitrary non-zero constant. Therefore, solving the homography
of equation (4) involves the estimation of 8 unknowns. By using inhomogeneous
coordinates instead of the homogeneous coordinates of the points, and operating
the terms, the projective transformation of equation (4) can be written as:




cx1
cy1 1 0 0 0 −rx1 ·

cx1 −rx1 ·
cy1

0 0 0 cx1
cy1 1 −ry1 ·

cx1 −ry1 ·
cy1

...
...

...
...

...
...

...
...

cxn

cyn 1 0 0 0 −rxn · cxn −rxn · cyn

0 0 1 cxn

cyn 1 −ryn · cxn −ryn · cyn




·




h11

h12

h13

h21

h22

h23

h31

h32




=




rx1

ry1

...

rxn

ryn




(5)

When the engine completes its execution, it gives back the control to the
mosaic controller.

3 Experimental Results

In order to evaluate the proposed technique, several sea trials have been carried
out under real conditions, using URIS, a small Unmanned Underwater Vehicle
(UUV) developed at the University of Girona. The vehicle carries a downward-
looking camera, which takes images of the seafloor. As the vehicle moves, the
acquired images are sent to the surface through an umbilical tether, where they
are stored on a tape to be processed off-line.

The sea trial reported here was carried out in July 2001. This experiment
shows a trajectory performed by the vehicle in an area of the sea floor formed
by rocks and algae. The original trajectory is formed by 4.380 images at a frame
rate of 25 i.p.s. The sequence has been sub-sampled, taking only one image of
every five, thus the mosaicking system processes 876 images.

Figure 3 shows the resulting mosaic. It can be observed in this Figure that
image alignment is quite good, although the underwater terrain is not flat. Un-
fortunately, it is not possible to quantify the errors which are produced in real

6 Rafael Garcia et al.

sea trials since the real trajectory cannot be recovered from any other sensors
available in the UUV.

4 Conclusions

In this paper we have presented a methodology to construct mosaics of the ocean
floor to estimate the motion of an underwater vehicle. The construction of visual
mosaics of the floor can provide accurate position estimates for local navigation
of the vehicle. A new texture-based characterization and matching methodology
has been proposed, reducing the number of incorrect correspondences in image
pairs. Moreover, a dynamic selection of the reference image improves, to a large
extent, the performance of the system.

References

1. R. Szeliski, Image mosaicing for tele-reality applications, in: IEEE Workshop on
Applications of Computer Vision, 1994, pp. 44–53.

2. N. Gracias, J. Santos-Victor, Underwater video mosaics as visual navigation maps,
Computer Vision and Image Understanding 79 (1) (2000) 66–91.

3. S. Negahdaripour, X. Xu, A. Khamene, A vision system for real-time position-
ing, navigation and video mosaicing of sea floor imagery in the application of
ROVs/AUVs, in: IEEE Workshop on Applications of Computer Vision, 1998, pp.
248–249.

4. A. Giachetti, Matching techniques to compute image motion, Image and Vision
Computing 18 (3) (2000) 247–260.

5. J. Jaffe, The domains of underwater visibility, in: SPIE Ocean Optics VIII, 1986,
pp. 287–293.

6. R. Garcia, X. Cuf́ı, J. Batlle, Detection of matchings in a sequence of underwa-
ter images through texture analysis, in: IEEE International Conference on Image
Processing, Vol. 1, Thessaloniki, Greece, 2001, pp. 361–364.

7. R. Garcia, J. Batlle, X. Cuf́ı, J. Amat, Positioning an underwater vehicle through
image mosaicking, in: IEEE International Conference on Robotics and Automation,
Vol. 3, Seoul, Rep. of Korea, 2001, pp. 2779–2784.

8. X. Cuf́ı, R. Garcia, P. Ridao, An approach to vision-based station keeping for an
unmanned underwater vehicle, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Vol. 1, Lausanne, Switzerland, 2002, pp. 799–804.

9. R. Garcia, J. Batlle, X. Cuf́ı, A system to evaluate the accuracy of a visual mosaick-
ing methodology, in: MTS/IEEE OCEANS Conference, Vol. 4, Honolulu, Hawaii,
2001, pp. 2570–2576.

10. O. Faugeras, G. Toscani, The calibration problem for stereo, in: IEEE Conference
on Computer Vision and Pattern Recognition, 1986, pp. 15–20.

11. C. Harris, M. Stephens, A combined corner and edge detector, in: Alvey Vision
Conference, Manchester, U.K., 1988, pp. 147–151.

12. K. Laws, Textured image segmentation, Tech. Rep. 940, Image Processing Insti-
tute, University of Southern California, Los Angeles, California (1980).

13. P. J. Rousseeuw, A. M. Leroy, Robust Regression and Outlier Detection, John
Wiley and Sons, New York, 1987.

Recovering Camera Motion in a Sequence of Underwater Images 7

Acquire
Image

Mosaic Actualization
with curr. Image I kc()

Mosaic Controller Mosaic Engine

Detection of
Interest Points

...

m1

c

mn

c

Region
Correlation

r
Hc()k

Motion
Estimation

Outlier Rejection

...

m1

c

mn

c

...

m1

r

mn

r

...

m1

c

mm

c

...

m1

r

mm

r

Correct
Lens Dist.

Reference
image I kr()

Current
image I kc()

Selection of a new
Ref. Image ()I kr

Time UPDATE
1k = k +

Ir

Ic

Grab
next image

Yes

Yes

No

No

I km()

Select a new
Reference

Image I kr()?

Update
Mosaic Im?

3 3(1)r

c k
´

- =H I (1) ()r r

c ck k- =H H

(1)r

c k -H

Fig. 1. Bloc diagram illustrating the relationship between the mosaic controller and
the mosaic engine.

g
7

g
8

g
6

g
5

g
3

g
2

g
4

g
1

g
0

Fig. 2. Point characterization is performed by computing texture at 9 neighboring
locations (g0, g1, ..., g8).

8 Rafael Garcia et al.

Fig. 3. Resulting mosaic after processing a sequence of 876 images. The vehicle starts
its motion at the top-left of the image and then moves down performing several loops.

