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Abstract. This paper addresses the robust matching of lines simulta-
neously to the computation of homographies between two views, when
structure and motion are unknown. Using viewpoint non invariant mea-
sures, such as image dependent parameters, gives a lot of non matched
or wrong matched features. The inclusion of projective transformations
gives much better results with short computing overload. We use line
features which can usually be extracted more accurately than points
and they can be used in cases when there are partial occlusion. In the
first stage, the lines are matched to the weighted nearest neighbor using
brightness-based and geometric-based image parameters. From them, ro-
bust homographies can be computed, allowing to reject wrong matches,
and growing also additional matches in the final stage. Although lines
and points are dual features to compute homographies, some problems
related to data representation and normalization using lines are consid-
ered. Results show that the robust technique turns out stable, and its
application is useful in many situations. We have used it for robot homing
and we also present automatic matching of lines at aerial images.

1 Introduction

In this paper we address the problem of robust matching of lines in two im-
ages when camera motion is unknown. Using lines instead of points has been
considered by some researches [1]. Straight lines can be accurately extracted in
noisy images, they capture more information than points, specially in man-made
environments, and they may be used where occlusions occur.

However, line matching is more difficult than point matching because the end
points of the extracted lines is not reliable. Besides that, there is not geometrical
constraint, like the epipolar, for lines in two images. The putative matching of
features based on image parameters has many drawbacks, giving non matched
or wrong matched features. Previously the problem of wide baseline matching
has been addressed establishing a viewpoint invariant affinity measure [2]. We
use the homography in the matching process to select and to grow previous
matches which have been obtained combining geometric and brightness image
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parameters. Perspective images of plane scenes are usual in perception of man
made environments, and the model to work with them is well known. Points
or lines on the world plane in one image of the world plane are mapped to
points or lines in the other image by a plane to plane homography [3]. This is
an exact transformation for planar scenes or for small baseline image pairs. As
known, there is no geometric constraint for infinite lines in two images, but the
homography can be considered a first approximation for a general 3D scene.

To compute homographies, points and lines are dual geometric entities, how-
ever line-based algorithms are generally more difficult than point-based ones [4].
Thus, some particular problems related to data representation and normalization
must be considered in practice. We compute homographies from corresponding
lines in two images making use of classical normalization of point data [5], and
avoiding singularities.

Robust estimate is actually unquestionable technique to obtain results in real
situations where outliers and spurious data are present [6, 7]. In this paper the
least median of squares method [8] has been used to estimate the homography.
It provides not only the solution in a robust way, but also a list of previous
matches that are in disagreement with it, which allows to reject wrong matches.

The simultaneous computation of matches and projective transformation be-
tween images is useful in many applications, but we have used it for robot hom-
ing. Our algorithm can also be applied in photogrammetry where points are the
feature mostly used [9], but lines are plentiful in urban scenes. We have put into
practice our matching with aerial images obtaining satisfactory results.

2 Basic matching

In several works, the matching is made over close images. In this context, cor-
respondence determination by tracking geometric information along the image
sequence has been proposed as a good solution [10], [11]. We determine corre-
spondences between lines in two images of large disparity without knowledge
about motion or scene structure. We use not only the geometric parameters but
also the brightness attributes supplied by the contour extractor (the lines are
extracted using our implementation of the method proposed by Burns [12]). So,
agl and c (average grey level and contrast) of the line are combined with geo-
metric parameters of the segments such as midpoint coordinates (xm, ym), the
line orientation θ (in 2π range with dark on the right and bright on the left) and
the length l of the extracted line.

Significant motion between views or changes on light conditions and mea-
surements noise makes that few or none of the defined line parameters remain
invariant between images.

2.1 Similarity measures

In the matching process two similarity measures are used, a geometric measure
and a brightness measure. We name rg the difference of geometric parameters
between both images (1, 2), rg = [xm1 − xm2, ym1 − ym2, θ1 − θ2, l1 − l2]

T .
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As previously [11], we define the R matrix to express the uncertainty due to
measurement noise in the extraction of features in each image

R =
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where C = cos θ y S = sin θ. Location uncertainties of segment tips along the
line direction and along the orthogonal direction are represented by σ‖ and σ⊥
respectively. With this geometric representation we can assume no correlation
between midpoint location and θ and l parameters [10].

Additionally we define the diagonal matrix P = diag(σ2
xm

, σ2
ym

, σ2
θ , σ2

l ) to
represent the uncertainty of variation of the geometric parameters due to camera
motion and unknown scene structure.

Thus, from those matrixes we introduce S = R1 + R2 + P to weigh the
variations on the geometric parameters of corresponding lines due to both, line
extraction noise (R1 in image 1 and R2 in image 2) and unknown structure
and motion. Note in R that σ‖ is bigger than σ⊥. Therefore measurement noise
of xm and ym are coupled and the line orientation shows the direction where
the measurement noise is bigger (along the line). However, in P the orientation
does not main because the evolution of the line between images is mainly due
to camera motion which is not dependent on the orientation of the image line.

The matching technique in the first stage is made to the nearest neighbor.
The similarity between the parameters can be measured with a Mahalanobis
distance like, dg = rgT S−1rg.

A second similarity measure has been defined for the brightness parameters.
In this case we define the diagonal matrix B = diag(σ2

agl, σ2
c ), where σagl and

σc represent the uncertainty of variations of the agl and c. Both depend on
measurement noise and on changes of illumination between images.

Naming rb the variation of the brightness parameters between both images,
rb = [agl1 − agl2, c1 − c2]

T , the Mahalanobis distance for the similarity between
the brightness parameters is, db = rbT B−1rb.

2.2 Matching criteria

Two image lines are stated as compatible when both, geometric and brightness
variations are small. For one line in the second image to belong to the compatible
set of a line in the first image, the following tests must be satisfied:

– Geometric compatibility. Assuming that the noise is Gaussian distributed,
the similarity distance for the geometric parameters is distributed as a χ2

with 4 d.o.f. Establishing a significance level of 5%, the compatible lines
must fulfill, dg ≤ χ2

4(95%).
– Brightness compatibility. Similarly, refereing to the brightness parameters,

the compatible lines must fulfill, db ≤ χ2
2(95%).
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A general Mahalanobis distance for the six parameters is not used because
the correct weighting of so different information as brightness based and location
based in a sole distance is difficult and could easily lead to wrong matches. Thus,
compensation between high precision in some parameters with high error in other
parameter is avoided.

A line in the first image can have more than one compatible line in the second
image. From the compatible lines, the line having the smallest dg is selected as
putative match. The matching is carried out in both directions from first to
second image and from second to first, in such a way that, a match (n1,n2) is
considered valid when the line n2 is the putative match of n1 and simultaneously
n1 is the putative match of n2.

In practice the parameters σj(j = ⊥, ‖, xm, ym, θ, l, agl, c) introduced in
R,P,B must be tuned according to the estimated image noise, expected camera
motions and illumination conditions, respectively.

3 From lines to homographies

The representation of a line in the projective plane is obtained from the analytic
representation of a plane through the origin: n1x1 +n2x2 +n3x3 = 0. The equa-
tion coefficients n = (n1, n2, n3)T correspond to the homogeneous coordinates
of the projective line. All the lines written as λn are the same than n. The case
n3 = 0 corresponds to a line through the origin of the virtual image plane. As
cameras have a limited field of view, observed lines have usually n3 close to 0.
Similarly, an image point p = (x, y, 1)T is also an element of the projective plane
and the equation n · p = nT · p = 0 represents the belonging of point p to the
line n, which shows the duality of points and lines.

A projective transformation between two projective planes (1 and 2) can be
represented by a linear transformation T21, in such a way that p2 = T21p1. Con-
sidering the above equations for lines in both images, we have n2 =

[
T−1

21

]T
n1.

A homography requires eight parameters to be completely defined, because there
is an overall scale factor. A corresponding point or line gives two linear equa-
tions in terms of the elements of the homography. Thus, four corresponding lines
assure a unique solution for T21, if no three of them are parallel. To have an
accurate solution it is interesting to have the lines as separate in the image as
possible.

3.1 Computing homographies from corresponding lines

Here, we obtain the projective transformation of points (p2 = T21p1), but us-
ing matched lines. To deduce it, we suppose the start (s) and end (e) tips of
a matched line segment to be ps1,pe1,ps2,pe2, which usually will not be cor-
responding points. The line in the second image can be computed as the cross
product of two of its points (in particular the observed tips) as

n2 = ps2 × pe2 = p̃s2pe2, (1)
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where p̃s2 is the skew-symmetric matrix obtained from vector ps2.
As the tips belong to the line we have, pT

s2n2 = 0; pT
e2n2 = 0. As the tips of

line in the first image once transformed also belong to the corresponding line in
the second image, we can write, pT

s1T
T
21n2 = 0; pT

e1T
T
21n2 = 0. Combining with

equation (1) we have,

pT
s1T

T
21p̃s2pe2 = 0 ; pT

e1T
T
21p̃s2pe2 = 0. (2)

Therefore each couple of corresponding lines gives two homogeneous equa-
tions to compute the projective transformation, which can be determined up
to a non-zero scale factor. Developing them in function of the elements of the
projective transformation, we have

(
Axs1 Ays1 A Bxs1 Bys1 B Cxs1 Cys1 C
Axe1 Aye1 A Bxe1 Bye1 B Cxe1 Cye1 C

)
t =

(
0
0

)
,

where t = (t11 t12 t13 t21 t22 t23 t31 t32 t33)T is a vector with the elements of T21 ,
and A = ys2 − ye2, B = xe2 − xs2 and C = xs2ye2 − xe2ys2.

Using four corresponding lines, we can construct a 8 × 9 matrix M. The
solution corresponds with the eigenvector associated to the least eigenvalue (in
this case the null eigenvalue) of the matrix MT M. In order to have a reliable
transformation, more than the minimum number of matches and an estimation
method may be considered. Thus from n matches a 2n × 9 matrix M can be
built, and the solution t can be obtained from SVD decomposition of this matrix
[3]. In this case the relevance of each line depends on its observed length, because
the cross product of the segment tips is related to the segment length.

It is known that a previous normalization of data avoids problems of numer-
ical computation. As our formulation only uses image coordinates of observed
tips, data normalization proposed for points [5] has been used.

3.2 Robust estimation

The least squares method assumes that all the measures can be interpreted with
the same model, which makes it to be very sensitive to out of norm data. Ro-
bust estimation tries to avoid the outliers in the computation of the estimate.
From the existing robust estimation methods [6], we have chosen the least me-
dian of squares method. This method makes a search in the space of solutions
obtained from subsets of minimum number of matches. The algorithm to obtain
an estimate with this method can be summarized as follows:

1. A Monte-Carlo technique is used to randomly select m subsets of 4 features.
2. For each subset S, we compute a solution in closed form TS .
3. For each solution TS , the median MS of the squares of the residue with

respect to all the matches is computed.
4. We store the solution TS which gives the minimum median MS .
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A selection of m subsets is good if at least in one subset the 4 matches are
good. Assuming a ratio ε of outliers, the probability of one of them been good
can be obtained [8] as, P = 1 − [

1− (1− ε)4
]m. For example, if we want a

probability P = 0.999 of having one good at least, with ε = 35% of outliers, the
number of subsets m should be 34.

Once the solution has been obtained, the outliers can be selected from those
of maximum residue. As in [6] the threshold is fitted proportional to the stan-
dard deviation of the residue, estimated as [8], σ̂ = 1.4826 [1 + 5/(n− 4)]

√
MS .

Assuming that the measurement error is Gaussian with zero mean and standard
deviation σ, then the square of the residues follows a χ2

2 distribution with 2 de-
grees of freedom. Taking, for example, that 95% probability is established for the
line to fit in the homography (inlier) then the threshold will be fixed to 5.99 σ̂2.

4 Final matches

From here on, we introduce the geometrical constraint introduced by the esti-
mated homograpy to get a bigger set of matches. Actually we compute an only
homography in the image. This would be right if the scene points were on a
plane. Although this fails in some situations, the results are good when the dis-
tance from the camera to the scene is large enough with respect to the baseline.
For example, this assumption gives very good results in robot homing, where
image disparity is mainly due to camera rotation, and therefore the sole homog-
raphy captures the robot orientation, that is the most useful information for a
robot to correct its trajectory. We have also made some experiments to segment
into several scene planes, to obtain line matching in more general situations.
This segmentation of planes could be very useful to make automatic 3D model
of urban scenes.

Our objective here is to obtain at the end of the process more good matches,
also eliminating wrong matches given by the basic matching. Thus final matches
are composed by two sets. The first one is obtained from the matches selected
after the robust computation of the homography that passe additionally an over-
lapping test compatible with the transformation of the segment tips. The second
set of matches is obtained taking all the segments not matched initially and those
being rejected previously. With this set of lines a matching process similar to
the basic matching is carried out. However, now the matching is made to the
nearest neighbor segment transformed with the homography. The transforma-
tion is applied to the end tips of the image segments using the homography T21

to find, not only compatible lines but also compatible segments in the same line.
In the first stage of the matching process there was no previous knowing of

camera motion. However in this second step the computed homography provides
information about expected disparity and therefore the uncertainty of geometric
variations can be reduced. A new tuning of σxm , σym , σθ and σl, must be consid-
ered. To automate the process, a global reduction of these parameters has been
proposed and tested in several situations, obtaining good results with reductions
about 1/5. As the measurement noise (σ‖ and σ⊥) has not changed, the initial



Robust line matching and estimate of homographies simultaneously 7

1

2

3
4

5

67

8

9

10 11
12

13

14

15

16

17

18

19

20
21

22

23
24 25

26 27

28

1

2

3
4

5

67

8

9

1011
12

13

14
15

16

17

18

19

20
21

22
2324 25

26 27

28

Fig. 1. Images showing the final matches when the robot rotates 18 degrees. Only one
match is no good (10), which is a wrong match as segment although good as line.

tuning is maintained in this second step. Note that the brightness compatibility
set is the initially computed, and therefore it must not be repeated.

5 Experimental Results

A set of experiments with different kind of images has been carried out to test
the algorithm proposed. The images correspond to different applications: Indoor
robot homing, architectural models and aerial images. In the algorithms there
are extraction parameters which allows to obtain more or less lines according
to its minimum length and minimum gradient. There are also parameters to
match the lines, whose tuning has turned out simple and quite intuitive. In the
experiments we have used some small variations with respect to the following
tentative tuning parameters σ⊥ = 1, σ‖ = 10, σagl = 8, σc = 4, σxm =
60, σym = 20, σθ = 2, σl = 10. When these changes are important we indicate
them in the particular experiment.

We have applied the algorithm presented for robot homing. In this application
the robot must go to previously learnt positions using a camera [13]. The robot
corrects its heading from the computed projective transformation between learnt
and actual images.

In this experiment a set of robot rotations (from 2 to 20 degrees) has been
made. The camera center is about 30 cm. out of the axis of rotation of the robot
and therefore this camera motion has a short baseline. In Table 1 the number
of matches in the three steps with this set of camera motions are shown. The
number of lines extracted in the reference image is 112.

From this experiment the progressive advantage of the simultaneous compu-
tation of the homography and matching can be seen. When the image disparity
is small, the robust estimation of the homography does not improve the basic
matching. However, with a disparity close to 70% of the image size, the basic
matching produces a high ratio of wrong matches (> 30%), that are automat-
ically corrected in the final matching. We observe that in this case the system
also works even with a large image disparity.
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Robot Rotation σxm Basic After T21 Final

4◦ 60 73 (5W) 56 (1W) 76 (0W)

8◦ 60 53 (6W) 31 (0W) 52 (0W)

12◦ 100 41 (9W) 30 (2W) 33 (1W)

16◦ 100 27 (9W) 17 (3W) 30 (1W)

20◦ 140 28 (10W) 17 (1W) 24 (0W)
Table 1. Number of matches in the tree steps of the algorithm, with some robot
rotation, indicating also the number of wrong matches (W). Here, the matches that
are good as lines but wrong as segments (not overlapped) are considered wrong.
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Fig. 2. Images of other indoor scene showing the final matches (66). All of them are
good when considered as lines, although two of them are wrong as segments.

To simplify, only the images corresponding to the 18 degrees of robot rotation
are shown. A 38 % of wrong matches are given by the basic matching. At the
final matching stage, all the matches are good when considered as lines, although
one of them can be considered wrong as segment (Fig. 1).

Other experiments have been carried out indoor. In Fig. 2 we show the two
images taken with a stereo system having 30cm. of baseline. The number of lines
extracted are 83 and 93 respectively. The basic matching gives a 45 matches but
16% are wrong matches. After the computation of the homography all are good
but only 35 matches remain. At the final stage 66 matches are given, and only
two can been considered wrong as segment, although they are good as lines.

5.1 Aerial images

In this experiment, two aerial images with quite large stereo between them are
used (Fig. 3). In photogrammetry applications putative matching has usually
a high ratio of spurious results. This is confirmed in our case, where the basic
matching has given a ratio of wrong matches higher than 50% , which is the
theoretical limit of least median of squares method. However, if we select a
smaller percent of the squares of the residue instead of the median, the robust
method works properly. The results in Fig. 3 have been obtained with a percent
of 30%. The basic matching provides 121 matches, 64 of them being wrong.
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The robust computation of the homography provides 55 matches, 11 of them
being wrong as segment but good as infinite line. Among the 105 final matches,
there are only 3 wrong matches which correspond to contiguous cars. Note that
the final matches are duplicated with respect to the matches obtained with the
homography. Note also that the final matches selected are mainly located on
the ground. There are some lines on the roofs of the buildings but they are
nearly parallel to the flight of the camera which is coherent with the model of
homography used.
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Fig. 3. Two aerial images with quite large stereo. The first row shows the lines extracted
(approximately 300 lines/image). From them, the basic matching provides 121 matches
(64 being wrong). Second row shows the matches at the final stage (105 matches, 3
being wrong that are corresponding to contiguous cars).

6 Conclusions

We have presented and tested a method to automatically obtain matches of lines
simultaneously to the robust computation of homographies. The robust compu-
tation works especially well to eliminate outliers which may appear when match-
ing is based on image properties and there is no information of scene structure
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or camera motion. The homographies are computed from lines extracted and
the use of lines has advantages with respect to the use of points. The geometric
mapping between uncalibrated images provided by the homography turns out
useful to grow matches and to eliminate wrong matches.

All the work is made automatically with only some previous tuning of param-
eters related to expected camera motion. As can be seen in the experiments, the
proposed algorithm works with different types of scenes and the tuning phase
is simple and intuitive. As limitation of this work, the matching depends on
the mapping between the lines and the homography computed. So, plane scenes
or situations where disparity is mainly due to rotation, give the best results.
However, it is also possible to compute several homographies according to scene
structure which is the goal we are actually working for.
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