
Comparison of Log-Linear Models and
Weighted Dissimilarity Measures

Daniel Keysers1, Roberto Paredes2, Enrique Vidal2, and Hermann Ney1

1Lehrstuhl für Informatik VI, Computer Science Department
RWTH Aachen – University of Technology, D-52056 Aachen, Germany

{keysers, ney}@informatik.rwth-aachen.de

2Instituto Tecnológico de Informática
Departemento de Sistemas Informáticos y Computación
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Abstract. We compare two successful discriminative classification al-
gorithms on three databases from the UCI and STATLOG repositories.
The two approaches are the log-linear model for the class posterior prob-
abilities and class-dependent weighted dissimilarity measures for nearest
neighbor classifiers. The experiments show that the maximum entropy
based log-linear classifier performs better for the equivalent of a single
prototype. On the other hand, using multiple prototypes the weighted
dissimilarity measures outperforms the log-linear approach. This result
suggests an extension of the log-linear method to multiple prototypes.

1 Introduction

In this paper, we compare two classification algorithms that are both discrim-
inative. Algorithms for classification of observations x ∈ IRD into one of the
classes k ∈ {1, . . . ,K} usually estimate some of their parameters in the training
phase from a set of labeled training data {(xn, kn)}, n = 1, . . . , N . The training
procedure can take into account only the data from one class at a time or all of
the competing classes can be considered at the same time. In the latter case the
process is called discriminative. As discriminative training puts more emphasis
on the decision boundaries, it often leads to better classification accuracy.

We examine the connection between two discriminative classification algo-
rithms and compare their performance on three databases from the UCI and
STATLOG repositories [5, 6].

The principle of maximum entropy is a powerful framework that can be used
to estimate class posterior probabilities for pattern recognition tasks. It leads
to log-linear models for the class posterior and uses the log-probability of the
class posterior on the training data as training criterion. It can be shown that
its combination with the use of first-order feature functions is equivalent to
the discriminative training of single Gaussian densities with pooled covariance
matrices [4].



The use of weighted dissimilarity measures, where the weights may depend
on the dimension and class and are trained according to a discriminative crite-
rion, has shown high performance on various classification tasks [9]. Also for this
method, a strong connection to the use of Gaussian densities can be observed if
one prototype per class is used. For more than one prototype per class, the sim-
ilarity leads to a mixture density approach. These connections to the Gaussian
classifier are used to compare the two discriminative criteria.

2 Classification Framework

To classify an observation x ∈ IRD, we use the Bayesian decision rule

x 7−→ r(x) = argmax
k

{p(k|x)} = argmax
k

{p(k) · p(x|k)} .

Here, p(k|x) is the class posterior probability of class k ∈ {1, . . . ,K} given the
observation x, p(k) is the a priori probability, p(x|k) is the class conditional
probability for the observation x given class k and r(x) is the decision of the
classifier. This decision rule is known to be optimal with respect to the number
of decision errors, if the correct distributions are known. This is generally not
the case in practical situations, which means that we need to choose appropriate
models for the distributions.

If we denote by Λ the set of free parameters of the distribution, the maximum
likelihood approach consists in choosing the parameters Λ̂ maximizing the log-
likelihood on the training data:

Λ̂ = argmax
Λ

∑
n

log pΛ(xn|kn) (1)

Alternatively, we can maximize the log-likelihood of the class posteriors,

Λ̂ = argmax
Λ

∑
n

log pΛ(kn|xn) , (2)

which is also called discriminative training, since the information of out-of-class
data is used. This criterion is often referred to as mutual information criterion
in speech recognition, information theory and image object recognition [2, 8].

Discriminative training was used in [9] to learn the weights of a weighted
dissimilarity measure. This weighted measure was used in the nearest neighbor
classification rule improving significantly the accuracy of the classifier in com-
parison to other distance measures, for which the parameters were not estimated
using discriminative training.

3 Maximum Entropy, Gaussian and Log-Linear Models

The principle of maximum entropy has origins in statistical thermodynamics, is
related to information theory and has been applied to pattern recognition tasks



such as language modeling [1] and text classification [7]. Applied to classifica-
tion, the basic idea is the following: We are given information about a probability
distribution by samples from that distribution (training data). Now, we choose
the distribution such that it fulfills all the constraints given by that informa-
tion (more precisely: the observed marginal distributions), but otherwise has
the highest possible entropy. (This inherently serves as regularization to avoid
overfitting.) It can be shown that this approach leads to log-linear models for
the distribution to be estimated.

Consider a set of so-called feature functions {fi}, i = 1, . . . , I that are sup-
posed to compute ‘useful’ information for classification:

fi : IRD × {1, . . . ,K} −→ IR : (x, k) 7−→ fi(x, k)

It can be shown that the resulting distribution that maximizes the entropy has
the following log-linear or exponential functional form:

pΛ(k|x) =
exp [

∑
i λifi(x, k)]∑

k′ exp [
∑

i λifi(x, k′)]
, Λ = {λi}. (3)

Interestingly, it can also be shown that the stated optimization problem is convex
and has a unique global maximum. Furthermore, this unique solution is also the
solution to the following dual problem: Maximize the log probability (2) on the
training data using the model (3).

A second desirable property of the discussed model is that effective algorithms
are known that compute the global maximum of the log probability (2) given a
training set. These algorithms fall into two categories: On the one hand, we have
an algorithm known as generalized iterative scaling [3] and related algorithms
that can be proven to converge to the global maximum. On the other hand, due
to the convex nature of the criterion (2), we can also use general optimization
strategies as e.g. conjugate gradient methods.

The crucial problem in maximum entropy modeling is the choice of the ap-
propriate feature functions {fi}. In general, these functions depend on the clas-
sification task considered.

The straight forward way to define feature functions for classification pur-
poses is to directly use the features provided for the specific task. Consider
therefore the following first-order feature functions for log-linear classification:

fk,i(x, k′) = δ(k, k′) xi ,

fk(x, k′) = δ(k, k′) ,

where δ(k, k′) := 1 if k = k′, and 0 otherwise denotes the Kronecker delta func-
tion. The Kronecker delta is necessary here to distinguish between the different
classes. It can be shown that maximum entropy training using first-order features
is equivalent to the discriminative training of single Gaussian densities with glob-
ally pooled covariance matrices using the criterion (2) [4]. Furthermore, we may
also consider products of feature values for the feature functions (second-order
features) by including

fk,i,j(x, k′) = δ(k, k′) xixj , i ≥ j .



In this case, the maximum entropy training is equivalent to the discriminative
training of single Gaussian densities with full, class-specific covariance matrices,
where the constraint on the covariance matrices to be positive (semi-) definite is
relaxed [4]. The correspondences can be derived by observing that the functional
form of the class posterior

p(k|x) =
p(k) N (x|µk, Σk)∑
k′ p(k′) N (x|µk′Σk′)

also leads to a log-linear expression like (3) for the appropriate choice of feature
functions. These correspondences to Gaussian models with one prototype justify
the classification of the log-linear approach to be a ‘one-prototype’ approach.

4 Class-Dependent Weighted Dissimilarity Measures

In [9], a class-dependent weighted dissimilarity measure for nearest neighbor
classifiers was introduced. The squared distance is defined as

d2(x, µ) =
∑

d

(
xd − µd

σkµd

)2

, Λ = {σkd, µd},

where d denotes the dimension index and kµ is the class the reference vector
µ belongs to. The parameters Λ are estimated with respect to a discriminative
training criterion that takes into account the out-of-class information and can
be derived from the minimum classification error criterion:

Λ̂ = argmin
Λ

∑
n

min
µ:kµ=kn

dΛ(xn, µ)

min
µ:kµ 6=kn

dΛ(xn, µ)
(4)

In other words, the parameters are chosen to minimize the average ratio of the
distance to the closest prototype of the same class with respect to the distance
to the closest prototype of the competing classes.

To minimize the criterion, a gradient descent approach is used and a leav-
ing one out estimation with the weighted measure is computed at each step of
the gradient procedure. The weights selected by the algorithm are those weights
with the best leaving one out estimation instead of the weights with the mini-
mum criterion value. In the experiments, only the weights {σkd} were estimated
according to the proposed criterion. The references {µk} were chosen as the
means for the one-prototype approach and in the multiple-prototype approach
the whole training set was used.

Also in this approach, we have a strong relation to Gaussian models. Consider
the use of one prototype per class. The distance measure then is a class-dependent
Mahalanobis distance with class-specific, diagonal covariance matrices

Σk = diag(σ2
k1, . . . , σ

2
kD).



Table 1. Corpus statistics for the three databases used in the experiments from the
UCI and STATLOG repositories, respectively.

corpus name MONK DNA LETTER

# classes 2 3 26

# features 17 180 16

# training samples 124 2 000 15 000

# test samples 432 1 186 5 000

The decision rule is then equivalent to the use of single Gaussian models in
combination with an additional factor to compensate for the missing normal-
ization factor of the Gaussian. In the case of multiple prototypes per class, the
equivalence is extensible to mixtures of Gaussian densities.

5 Connection between the two Classifiers

As discussed in the two previous sections, the two approaches are equivalent to
the use of discriminative training for single Gaussian densities with some addi-
tional restrictions. This implies that the main difference between the classifiers
is the criterion that is used to choose the class boundaries:

Gaussian densities: criterion: maximum likelihood (1); decision boundary:
linear (pooled covariance matrices) or quadratic (class-specific covariance
matrices)

log-linear model: criterion: maximum mutual information (maximum likeli-
hood of the posterior) (2); decision boundary: linear (first-order feature func-
tions) or quadratic (second-order feature functions)

weighted dissimilarity measures: criterion: intra-class distances versus inter-
class distances (4); decision boundary: quadratic (one prototype per class)
or piecewise quadratic (multiple prototypes per class)

6 Databases and Results

The experiments were performed on three corpora from the UCI and STATLOG
database, respectively [5, 6]. The corpora were chosen to cover different proper-
ties with respect to the number of classes and features and with respect to the
size. The statistics of the corpora are summarized in Table 1. MONK is an arti-
ficial decision task with categorical features also known as the monk’s problem.
For the experiments, the categorical features were transformed into binary fea-
tures. For the DNA task, the goal is to detect gene intron/exon and exon/intron
boundaries given part of a DNA sequence. Also for this task, the categorical
features were transformed into binary features. Finally, the LETTER corpus
consists of printed characters that were preprocessed and a variety of different
features was extracted.

Table 2 shows a summary of the results obtained with the two methods. The
figures show the following tendencies:



Table 2. Experimental results for the three databases used with different settings of
the algorithms given as error rate (er) in %. The number of parameters (#param.)
refers to the total number of parameters needed to completely define the classifier.

MONK DNA LETTER
method er[%] #param. er[%] #param. er[%] #param.

single Gaussian 28.5 51 9.5 720 41.6 432

log-linear, first-order 28.9 36 5.6 543 22.5 442
second-order 0.2 308 5.1 48 873 13.5 3 562

weighted dissimil., one prot. 16.7 68 6,7 1 080 24.1 832
multiple prot. 0.0 2 142 4.7 360 540 3.3 240 416

best other [5, 6] 0.0 - 4.1 - 3.4 -

– Considering the four approaches that can be labeled ‘one-prototype’ (single
Gaussian, both log-linear models and the one-prototype weighted dissimilar-
ity measure), the discriminative approaches generally perform better than
the maximum likelihood based approach (single Gaussian).

– For the two log-linear approaches, the second-order features perform better
than the first-order features.

– On two of the three corpora, the log-linear classifier with first-order features
performs better than the one-prototype weighted dissimilarity measure using
a smaller number of parameters.

– On all of the corpora, the log-linear classifier with second-order features
performs better than the one-prototype weighted dissimilarity measure, but
using a larger number of parameters.

– The weighted dissimilarity measures using multiple prototypes outperforms
the other regarded (‘one-prototype’) approaches on all tasks and is compet-
itive with respect to the best known results on each task.

Note that second-order features perform better here although estimation of full,
class-specific covariance matrices is problematic for many tasks. This indicates a
high robustness of the maximum entropy log-linear approach. Note further that
both the one-prototype weighted dissimilarity classifier and the log-linear model
with second-order features lead to quadratic decision boundaries, but the former
does not take into account bilinear terms of the features, which is the case for
the second-order features.

The high error rate of the log-linear model with first-order features on the
MONK corpus was analyzed in more detail. As this task only contains binary
features, also the one-prototype weighted dissimilarity classifier leads to linear
decision boundaries here (x2 = x ⇔ x ∈ {0, 1}). Therefore it is possible to infer
the parameters for the log-linear model from the training result of the weighted
dissimilarity classifier. This showed that the log-likelihood of the posterior (2) on
the training data is lower than that resulting from maximum entropy training
, which is not surprising as exactly this quantity is the training criterion for
the log-linear model. But interestingly the same result holds for the test data
as well. That is, the maximum entropy training result has higher prediction



accuracy on the average for the class posterior, but this does not result in better
classification accuracy. This may indicate that on this corpus with very few
samples the weighted dissimilarity technique is able to better adapt the decision
boundary as it uses a criterion derived from the minimum classification error
criterion.

7 Conclusion

A detailed comparison of two discriminative algorithms on three corpora with
different characteristics has been presented. The discriminative approaches gen-
erally perform better than the maximum likelihood based approach.

A direct transfer of the maximum entropy framework to multiple prototypes
is difficult, as the use of multiple prototypes leads to nonlinearities and the
log-linear model cannot be directly applied any more.

The consistent improvements obtained with weighted dissimilarity measures
and multiple prototypes in combination with the improvements obtained by us-
ing second-order features suggest possible improvements that could be expected
from a combination of these two approaches.
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