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Abstract. We present two novel bounds for the classification error that,
at the same time, can be used as practical training criteria. Unlike the
bounds reported in the literature so far, these novel bounds are based on
a strict distinction between the true but unknown distribution and the
model distribution, which is used in the decision rule. The two bounds we
derive are the squared distance and the Kullback-Leibler distance, where
in both cases the distance is computed between the true distribution
and the model distribution. In terms of practical training criteria, these
bounds result in the squared error criterion and the mutual information
(or equivocation) criterion, respectively.

1 Introduction

The classification error is the most important performance criterion in any pat-
tern recognition task. The goal of this work to establish a direct relationship
between practical training criteria and exact upper bounds for the classification
error. There are three novel contributions of this paper:

— All the considerations will be based on the model-based classification error
as opposed to the Bayes classification error. The Bayes error is only of theo-
retical value, because it requires the true but unknown distribution. Instead,
we will use the model distribution in the decision rule whose parameters
have to be learned from training data.

— Since the classification error is difficult to handle, we will derive two upper
bounds that are more convenient for mathematical analysis.

— Using these bounds, we derive two practical training criteria which are well
known in pattern recognition and show that they are related to upper bounds
of the model-based classification error.

The concept of using the classification error directly as training criterion
is widely known in pattern recognition [7, pp.46/47], [9, pp.106/107]. However,
these studies always use the Bayes classification error. In addition, upper bounds

are reported, but again only for the Bayes classification error [7, pp.46/47], [10].
In [6], the model-based classification error is studied, but only for two-class
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problems. Vapnik’s framework of empirical risk minimization [6, pp. 187],[18]
is more concerned with statistical fluctuations from one sample set to another
sample set, and the reference error rate is not the Bayes classification error.
To the best of our knowledge, the exact mathematical dependence between the
model-based classification error and the possible training criteria has not been
studied before.

2 Model-Based Decision Rule and Classification Error

2.1 Classification Task and True Distribution

In statistical pattern recognition, we consider the observation (or feature) vector
z € X ¢ R” and the class index ¢ = 1, ..., C' to be random variables with a joint
distribution:

pair of random variables:  (z,¢)

with true distribution:  pr(z,¢) = pr(z) pr(clz) (1)

The classification task is to determine for each observation vector = the associ-
ated class index c. For such a task, the minimum classification error is obtained
for the Bayes decision rule in which the class posterior distribution pr(c|x) plays
a crucial role. We will refer to it simply as the true distribution.

2.2 Model Distribution and Associated Decision Rule

In all practical applications, the true distribution pr(c|z) is not known, and we
can use only a so-called model distribution py(c|z) instead. For such a model
distribution, the functional dependence of the class index ¢ on the observation
vector x is fully specified using some unknown parameter set . The choice of
this functional dependence is very much application specific. A large number of
widely used techniques in pattern recognition fit into this interpretation. Exam-
ples are artificial neural networks or any type of discriminant functions, decision
tree (CART) approaches, the single Gaussian and Gaussian mixture classifiers
and maximum entropy (or log-linear) models. In case of observation vectors over
a time axis, Hidden Markov models are typically used.

To be more exact, the model distribution py(c|z) is a posterior distribution
over the classes c=1,...,C:

model distribution:  py(c|x)
with: 0 < py(c|z) Zpﬂ(dx) =1 (2)

We interpret it as the score of the hypothesis that the observation x has been
generated by the class ¢, and thus it is a natural requirement to normalize these
scores in such a way that, for each observation z, they sum up to unity. Note
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that, for non-negative scores py(c, x), we can always satisfy this constraint by
simple re-normalization.

To find the unknown class identity of an observation x, we define the model-
based decision rule:

decision rule ¢y (+): co: X —{1,..,C}
x — cy(x) := arg max {pﬁ(c|x)} (3)

In order to avoid an awkward notation, we use only the parameter ¢ as index on
the decision rule to express the dependence on the full model distribution py(c|z).
We use the attribute model-based to distinguish this decision rule from the Bayes
decision rule where the true but unknown distribution pr(c|z) is needed. In the
following, the goal will be to study whether and how the classification error of
the model-based decision rule will get close to the minimum classification error.

2.3 Model-Based Classification Error

When using such a decision rule 2z — ¢y(x), we have a classification error count
e(z,c) for a joint event (x,c):

e(x,c):=1—d(cy(x),c) (4)

where (-, ) denotes the Kronecker delta. The local classification error Ey{e|z}
is the z-conditional expectation of e(x,c¢), which is obtained by using the true
class posterior distribution pr(c|a) in the point x of the observation space:

Eg{elx} := Zpr(c|:1:) : [1 —d(cy(z),0)

= 1—pr(cs(z)]x) (5)

The global classification error Ey{e} is obtained by integrating over the whole
space of observations x:

Eg{e} = / dx pr(z) Eg{e|x} (6)

Ideally, we would like to directly minimize this classification error in order to
learn the unknown parameter set 1. However, the direct solution to this optimiza-
tion problem is extremely difficult for two reasons: First, there are two extreme
nonlinearities, namely the maximum operations and the Kronecker delta. Sec-
ond, we have to compute the expectation over the true distribution pr(x) which
however is unknown and for which only a training sample is available.

3 Bounds for Local Classification Error

In this section, we will derive bounds for the local classification error when the
decision rule Eq.(3) is used with any type of model py(c|z). We will start with
the z-conditional, i.e. local, classification error and consider the global classifi-
cation error later.
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3.1 Principle

It is well known that the global minimum of the error rate is obtained by the
Bayes decision rule:

x — ci(x) := arg max {pr(c\x)} (7)

i.e. when the true (but unknown) posterior distribution pr(c|x) is used as model
distribution py(c|z). The associated local Bayes classification error E,{e|z} is:

E{elz} =1 —pr(c.(z)|z) (8)

Therefore, the Bayes error is also the absolute minimum of any model py(c|x)
(for a fized type of observations z), and we will consider the difference be-
tween the model-based classification error Fy(e|z) and the Bayes classification
error E,{e|z}. In the following, we will derive an inequality of the form:

Eglelz) — E{elz) <a- ‘

pr(-fe) = pofa)| ©)

where we have a positive constant o and we use a suitable norm || - || of a C-
dimensional difference vector between the true distribution pr(c|z) and the model
distribution py(c|z). Depending on the type of norm || - ||, we will refer to these
bounds as l1,ls and [, bounds.

3.2 Basic Inequality

Using the basic definitions introduced so far, we can write down the following
sequence of equations and inequalities:

Epfelz} — E. {6|33} =
= [1 — pr(cy(z ] [1 e (z )\x)}
prc.(@)|z) —prics(x
pr(

- )le)
< pr(ea(@)|a) = pr(eo(@)]z) + po(co@)|e) = po(e.()|) (10)
- [m(c*(x)\x)—m(c*(x)\x)} [po(co(@)la) = priea (@)|a)]

< |pr(ea@)e) = po(e@)o)| + pricoa(@le) - polea@)le)| (1)

Here, the first inequality Eq.(10) is true because, by the definition of the model-
based decision rule x — cg(z), we must have for any class c:

py(clz) < max {py(elz)} = po(co()]z) (12)

The second inequality Eq.(11) results simply from the application of the triangle
inequality.
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3.3 Local Bounds

From the inequality Eq.(11), we immediately obtain what will be referred to
as [; bound:

Eg{elz} — E{ele} < |pr(clz) — po(cla)] (13)
It is easy to verify that this bound is also correct in the special case: cy(z) =
¢« (). In addition, we can also immediately establish the /., bound (or maximum

bound) and the lo bound:

Eofela} — Efelr} <2 max { [pr(clz) — po(cla)| } (14)

<2. \/Z [pr(cle) — polelz)? (15)

We would like to emphasize that each of these three local bounds is tight in
the following sense. When the model distribution py(c|z) approaches the true
distribution pr(c|x), the bound goes to zero so that the model-based classification
error Fy{e|x} approaches the Bayes classification error E.{e|z}.

4 Bounds for Global Classification Error

In this section, we will establish bounds for the global classification error that
have similar properties as the bounds for the local classification error.

4.1 From Local to Global Bounds

We consider the difference between the model-based classification error Ey{e|z}
and the Bayes classification error E,{e|z}:

Epfelr} — Ei{ele} < g(2)

where g(z) stands for one of the local bounds derived so far. We move from local
to global bounds by integrating over the whole space of observations using the
true probability (density) distribution pr(x):

Eofe} - Bufe) = [ dopr(a) (Eofelo} ~ Eufele))
< [dapr(@)g(o) (16)

In carrying out the integration, the local inequality is preserved and we obtain
a global inequality. Now it turns out that, in order to arrive at useful bounds, it
is helpful to consider the squared difference:

(Eﬂ{e} —E*{e})Q < (/d:vpr(:v)g(:v)>2
< / dz pr(z) g (x) (17)
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The second inequality is true because for any function # — g(x) we have the

inequality:
(/ dxpr<x>g<x>)2

since: 0 < Var{g(z)} := E{[g(z) — E{g(x)}]*}
= B{g*(x)} — E*{g(x)}

where E{-} denotes the statistical expectation using the distribution pr(z). The
ultimate justification for considering the squared difference in the classification
error will be the usefulness of the practical training criteria to be presented in
Section 5.

IN

/ dz pr(z) ¢* (z) (18)

4.2 Squared Distance Bound

We start with the local bound Eq.(15) and immediately obtain the global bound
using Eq.(17):

(Eg{e} - E*{e})2 <4. /dxpr Z [pr(c|z) — po( c\x)} (19)

This global bound will be called squared error bound because it is based on the
squared difference between the true distribution pr(c|z) and the model distribu-
tion py(c|z).

4.3 Kullback-Leibler Bound

To derive this bound, we make use of the Pinsker inequality for two probability
distributions p. and ¢. (with normalization ) p. = >.q. = 1) [5, p. 300],[17]:

2
1 qc
5 (Z ‘pc - qc|> S - ch IOg p_ (20)

The term on the right-hand side of this inequality is known as the Kullback-
Leibler distance (or relative entropy) between the two distributions p. and ¢. [5,
p. 18]. It was originally introduced in the context of statistics and information
theory without any link to the classification error rate. We use the Kullback-
Leibler distance as a distance between the true distribution pr(c|z) and the
model distribution py(c|x).

Inserting the local bound Eq.(13) into Eq.(17), we obtain the global bound:

(Eofe) - Bode)) < [ doprto (Z pricle) = po c|x>|>
-2 xpr(x r(c|lz) lo po(clz)
< 2/dp<>;p<|>1gp (21)

r(clx)
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Each of the two global bounds Eqs.(19) and (21) is tight: When the model
distribution approaches the true distribution, the bound goes to zero, and so does
the difference between model-based classification error and Bayes classification
€error.

5 Empirical Training Criteria

In this section, we will show how each of the global bounds can be used directly
as training criterion to learn the unknown parameter set ¢ from a set of training
data.

5.1 From Error Bounds to Empirical Training Criteria

The approach is based on re-writing the inequality for each of the classification
error bounds in the form:

(Eﬁ{e} - E*{e})2 < /d:z: 3 pr(z,e) ho(z,c) (22)

with a suitable function hy(z,c). To obtain a practical training criterion, we
apply two steps:

— For the classification error Ey{e} to approach the Bayes error E,{e}, we
tighten the bound on the right-hand side by minimizing it over the unknown
parameter set 9.

— Now, of course, the true distribution pr(x, ¢) is not known, and we have only
access to a representative sample, i.e. a set of labelled observations from the
task for which we want to design our pattern classification system:

('rnv Cn)v n= 17 ) N

i.e. observation x, with class label ¢,. Using this set of labelled training
data, we define the empirical distribution

| X
pr(xz,c) = N Z 0(z, ) (e, en)

where, for continuous-valued observations z, §(z, x,,) is the Dirac delta func-
tion rather than the Kronecker delta.

The training criterion for determining the optimum parameter set Y can now be
written as:

0= argngn {/dm Zpr(:z:,c) hg(x,c)}
1N ) N
= argrrgn {N ngl hﬂ(xna Cn)} = argngn {; hﬂ(xnu Cn)} (23)
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If, in addition to determining the optimum parameter set 1§, we want to estimate
the classification error using this method, we have to be careful and avoid too
optimistic an estimate [8, p. 248]. In other words, the approach presented here
does not address the problem of overfitting.

5.2 Squared Error Criterion

To derive the squared error criterion, we use the following identity [13]:

> lpr(elz) = po(cla))* =

= pr(eln) Y Ipo(¢la) — 8( )] — (1—Zpr2<c|x>> (24)

c!

This identity has been re-discovered several times in the context of statistical
pattern recognition and artificial neural networks. The earliest reference (using
a different framework of notation) we know is [15]. Inserting this identity into
Eq.(19) and dropping the terms independent of ¥}, we arrive at the following
training criterion for the unknown parameter set :

N
9 = argmﬂin { Z Z [po (¢ |zn) — 5(0’7cn)]2} (25)
n=1 ¢

This is the standard training criterion used for neural networks and other types
of discriminant functions, namely the sum of the squared differences between the
actual network output and the desired output for each output node [7, p. 290].
If the model distribution is non-parametric, i.e. has enough degrees of freedom,
the global optimum can be really attained (on the training data), and the model
distribution is then identical to the true distribution. This is the case for deci-
sion trees [3] with a non-parametric model distribution for the discrete-valued
observations z. The minimum values of the training criterion is then the second
term (with a positive sign) on the right-hand side of Eq.(24), which is referred
to as Gini criterion.

5.3 Kullback-Leibler Criterion

From the Kullback-Leibler bound, we obtain the practical training criterion by
simply separating the model distribution py(c|z) and dropping the constant
terms:

N
0 = arg mgX{ > log p@(cnwn)} (26)

n=1

This is the general form of a maximum likelihood criterion. Here, we have the
likelihood of the class posterior distribution py(c|z) as opposed to the class
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conditional distribution py(z|c). This criterion has become popular in the context
of so-called discriminative training and is referred to under different names:
conditional mazimum likelihood [4, 12] and maximum mutual information [1, 14].
In the framework of information theory, the training criterion can be interpreted
as the empirical expectation of the model-based equivocation, which, in the
special case of constant class probabilities, is equivalent to mutual information.
In the context of decision trees [3], the criterion is called entropy criterion.

6 Discussion

We have derived two novel bounds for the model-based classification error: the
squared distance bound and the Kullback-Leibler bound, both of which result in
widely used practical training criteria. Although both these quantities have been
used before in statistical pattern recognition, they were not known to provide
strict bounds for the model-based classification error.

It is interesting to note that, in a Bayesian framework independent of the clas-
sification error, some authors [2, pp.67-81] have analyzed criteria for estimating
unknown probability distributions and have considered two specific criteria that
have attractive properties. These two criteria are identical to the two training
criteria that we have derived here. They are referred to as the quadratic and the
logarithmic scoring function.

The bounds we have presented are based on the square of the difference
between the model-based classification error and the Bayes classification error.
The open question is how this is related to approaches where the smoothed
classification error is used directly as training criterion [11, 16].
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