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Abstract. The theory of competitive and cooperative dynamical systems has had
some remarkable applications to the biological sciences. The interested reader may
consult the monograph [28] and lecture notes [29] of Smith, and to a forthcoming
review by the authors [11] for a more in-depth treatment.

1 Strong Monotonicity for ODEs

In this brief review we give some of the main results in the theory of competi-
tive and cooperative systems. But first, we give some new strong monotonicity
results for odes. Let J be a nontrivial open interval, D ⊂ IRn be an open set,
f : J × D → IRn be a locally Lipschitz function, and consider the ordinary
differential equation

x′ = f(t, x) (1)

Denote by x(t, t0, x0) the non-continuable solution of the initial value problem
x(t0) = x0 for t0 ∈ J .

A cone K in IRn is a non-empty, closed subset of IRn satisfying K+K ⊂ K,
IR · K ⊂ K and K ∩ (−K) = {0}. We hereafter assume K nonempty interior
in IRn. The order relations ≤, <,¿ are induced by K as follows: x ≤ y if and
only if y−x ∈ K; x < y if x ≤ y and x 6= y, and x ¿ y whenever y−x ∈ IntK.
A cone is a polyhedral cone if it is the intersection of a finite family of half
spaces. The standard cone IRn

+ = ∩n
i=1{x : 〈ei, x〉 ≥ 0} is polyhedral (ei is

the unit vector in the xi-direction) while the ice cream cone K = {x ∈ IRn :
x2
1 +x2

2 + · · ·+x2
n−1 ≤ x2

n, xn ≥ 0} is not. The dual cone K∗ is the set positive
linear functionals, i.e., linear functionals λ ∈ (IRn)∗, the dual space of IRn,
such that λ(K) ≥ 0. If we adopt the standard inner product 〈, 〉 on IRn then
we can identify (IRn)∗ with IRn since for each λ ∈ K∗ we can find a ∈ IRn

such that λ(x) = 〈a, x〉 for all x. We use the following easy result; see e.g.
Walcher [35].
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Lemma 1. Let x ∈ K. Then x ∈ IntK if and only if λ(x) > 0 for all λ ∈
K∗ \ {0}.

We say that (1) is monotone, or order-preserving, if whenever x0, x1 ∈ D
satisfy x0 ≤ x1 and the solutions x(t, t0, x0) and x(t, t0, x1) are defined on
[t0, t1], t1 > t0, then x(t, t0, x0) ≤ x(t, t0, x1) holds for t ∈ [t0, t1].

The vector field f : J × D → IRn is said to satisfy the quasimonotone
condition in D if for every (t, x), (t, y) ∈ J ×D we have

(Q)x ≤ y and φ(x) = φ(y) for some φ ∈ K∗ implies φ(f(t, x)) ≤ φ(f(t, y)).

The quasimonotone condition was introduced by Schneider and Vidyasagar
[25] for finite dimensional, autonomous linear systems and used later by Volk-
mann [34] for nonlinear infinite dimensional systems. The following result is
certainly inspired by a result of Volkmann [34] and work of W. Walter [?]. See
also Uhl [33] and Walcher [35]. The proof appears in [11].

Theorem 1.1 Let f satisfies (Q) in D, t0 ∈ J , and x0, x1 ∈ D. Let <r denote
any one of the relations ≤, <,¿. If x0 <r x1 and t > t0 are such that both
x(t, t0, xi), i = 0, 1 are defined, then x(t, t0, x0) <r x(t, t0, x1). Conversely, if
(1) is monotone, then f satisfies (Q).

It will be useful to specialize to linear systems since it is convenient in the
applications to verify (Q), as well as other monotonicity hypotheses, using
derivatives. Let A(t) be a continuous matrix-valued function defined on the
interval J containing t0 and consider the linear initial value problem for the
matrix solution X:

X ′ = A(t)X, X(t0) = I. (2)

For linear systems, (Q) is equivalent to the following:

(M)for all x ∈ ∂K and λ ∈ K∗ such that λ(x) = 0, λ(A(t)x) ≥ 0.

Therefore, we have the following Corollary of Theorem 1.4.

Corollary 1.1 The matrix solution X(t) satisfies X(t)K ⊂ K for t ≥ t0 for
each t0 ∈ J if and only if for all t ∈ J , (M) holds for the function x → A(t)x.
In fact, (M) implies that X(t)(K \ {0}) ⊂ (K \ {0}) and X(t)IntK ⊂ IntK
for t > t0.

A matrix A is K-nonnegative if A(K) ⊂ K. Corollary 1.1 says that X(t)
is K-nonnegative for t ≥ t0 if (M) holds.

The domain D is p-convex if for every x, y ∈ D satisfying x ≤ y the line
segment joining them also belongs to D. Let ∂f

∂x (t, x) be continuous on J ×D.
We say that f (or (1)) is K-cooperative if for all t ∈ J, y ∈ D, (M) holds
for the function x → ∂f

∂x (t, y)x. By Corollary 1.1 applied to the variational
equation

X ′(t) =
∂f

∂x
(t, x(t, t0, x0))X, X(t0) = I

we conclude that if f is K-cooperative then X(t) = ∂x
∂x0

(t, t0, x0) is K-positive.
Straightforward arguments lead to the following result.
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Theorem 1.2 Let ∂f
∂x (t, x) be continuous on J ×D. Then (Q) implies that f

is K-cooperative. Conversely, if D is p-convex and f is K-cooperative, then
(Q) holds.

If K = IRn
+, then it is easy to see by using the standard inner product

that we may identify K∗ with K. The quasimonotone hypothesis reduces to
the Kamke condition [22, 14]: x ≤ y and xi = yi implies that fi(t, x) ≤
fi(t, y). This holds by taking φ(x) = 〈ei, x〉 and noting that every φ ∈ K∗

can be represented as a positive linear combination of these functionals. If f
is differentiable, the Kamke condition implies

∂fi

∂xj
(t, x) ≥ 0, i 6= j. (3)

Conversely, if ∂f
∂x (t, x) is continuous on J × D and satisfies (3) and if D is

p-convex, then the Kamke condition holds.
Stern and Wolkowicz [32] give necessary and sufficient conditions for (M)

to hold for matrix A relative to the ice cream cone K = {x ∈ IRn : x2
1 +

x2
2 + · · · + x2

n−1 ≤ x2
n, xn ≥ 0}. Let Q denote the n × n diagonal matrix

with first n − 1 entries 1 and last entry −1. Then (M) holds for A if and
only if QA + AT Q + αQ is negative semidefinite for some α ∈ IR. Their
characterization extends to other ellipsoidal cones.

Additional hypotheses are required for establishing the strong order pre-
serving property and here we provide full details following [11]. Recall that the
matrix A is strongly positive if A(K \ {0}) ⊂ IntK. The following hypothesis
for the matrix A follows Schneider and Vidyasagar [25].

(T)for all x 6= 0, x ∈ ∂K, there exists ν ∈ K∗ such that ν(x) = 0 and
ν(Ax) > 0.

Our next result was proved by Elsner [3] for the case of constant matrices,
answering a question in [25]. Our proof follows that of Theorem 4.3.26 of
Berman et al [1].

Proposition 1.1 Let the linear system (2) satisfy (M). Then the fundamental
matrix X(t1) is strongly positive for t1 > t0 if there exists s satisfying t0 <
s ≤ t1 such that (T) holds for A(s).

Proof: If not, there exists x > 0 such that the solution of (2) given by y(t) =
X(t)x satisfies y(t1) ∈ ∂K \ {0}. By Corollary 1.1, y(t) > 0 for t ≥ t0 and
y(t) ∈ ∂K for t0 ≤ t ≤ t1. Let s ∈ (t0, t1] be such that (T) holds for A(s).
Then there exists ν ∈ K∗ such that ν(y(s)) = 0 and ν(A(s)y(s)) > 0. As
ν ∈ K∗ and y(t) ∈ K, h(t) := ν(y(t)) ≥ 0 for t0 ≤ t ≤ t1. But h(s) = 0 and
d
dt |t=sh(t) = ν(A(s)y(s)) > 0 which, taken together, imply that h(s− δ) < 0
for small positive δ, giving the desired contradiction.

Proposition 1.2 leads immediately to a result on strong monotonicity for
the nonlinear system (1).
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Theorem 1.3 Let D be p-convex, ∂f
∂x (t, x) be continuous on J × D, and f

be K-cooperative. Let B = {(t, x) ∈ J ×D : (T) does not hold for ∂f
∂x (t, x)}.

Suppose that for all (t0, x0) ∈ J × D, the set {t > t0 : (t, x(t, t0, x0)) ∈ B}
is nowhere dense. Then x(t, t0, x0) ¿ x(t, t0, x1) for t > t0 for which both
solutions are defined provided x0, x1 ∈ D satisfy x0 < x1. In particular, this
holds if B is empty.

Proof: We apply the formula

x(t, t0, x1)− x(t, t0, x0) =
∫ 1

0

∂x

∂x0
(t, t0, sx1 + (1− s)x0)(x1 − x0)ds

where X(t) = ∂x
∂x0

(t, t0, y0) is the fundamental matrix for (2) corresponding
to the matrix A(t) = ∂f

∂x (t, x(t, t0, y0)). The left hand side belongs to K \ {0}
if x0 < x1 by Theorem 1.5 and Theorem 1.4 but we must show it belongs to
IntK. For this to be true, it suffices that for each t > t0 there exists s ∈ [0, 1]
such that the matrix derivative in the integrand is strongly positive. In fact,
it is K-positive by Corollary 1.1 for all values of the arguments with t ≥ t0
so application of any nontrivial φ ∈ K∗ to the integral gives a nonnegative
numerical result. If the condition mentioned above holds then the application
of φ to the integrand gives a positive numerical result for all s′ near s by con-
tinuity and Lemma 1.1 and hence the integral belongs to IntK by Lemma 1.1.
By Proposition 1.2, ∂x

∂x0
(t, t0, y0) is strongly positive for t > t0 if (T) holds for

A(r) = ∂f
∂x (r, x(r, t0, y0)) for some r ∈ (t0, t]. But this is guaranteed by our

hypotheses.

The somewhat stronger condition of irreducibility may be more useful in
applications because there is a large body of theory related to it [2, 1]. A
closed subset F of K that is itself a cone is called a face of K if x ∈ F and
0 ≤ y ≤ x (inequalities induced by K) implies that y ∈ F . For example,
the faces of K = IRn

+ are of the form {x ∈ IRn
+ : xi = 0, i ∈ I} where

I ⊂ {1, 2, · · ·n}. For the ice-cream cone K = {x ∈ IRn : x2
1 +x2

2 + · · ·+x2
n−1 ≤

x2
n, xn ≥ 0}, the faces are the rays issuing from the origin and passing through

its boundary vectors. A K-positive matrix A is K-irreducible if the only faces
F of K for which A(F ) ⊂ F are {0} and K. The famous Perron-Frobenius
Theory is developed for K-positive and K-irreducible matrices in Berman and
Plemmons [2]. In particular, the spectral radius of A is a simple eigenvalue of
A with corresponding eigenvector in IntK. The next result is adapted from
Theorem 4.3.17 of Berman et al. [1].

Proposition 1.2 Let A be a matrix such that B := A + αI is K-positive for
some α ∈ IR. Then B is K-irreducible if and only if (T) holds for A.

Motivated by Proposition 1.3, we introduce the following hypothesis for
matrix A.



Competitive and Cooperative Systems: a mini-review 5

(I) There exists α ∈ IR such that A + αI is K-positive and K-irreducible.

In the special case that K = IRn
+, n ≥ 2, matrix A satisfies (I) if and

only if aij ≥ 0 for i 6= j and for every non-empty, proper subset I of
N := {1, 2, · · · , n}, there is an i ∈ I and j ∈ N \ I such that aij 6= 0.
This is equivalent to the assertion that the incidence graph of A is strongly
connected. See Berman and Plemmons [2].

The following is a direct corollary of Theorem 1.6.

Corollary 1.2 Let D be p-convex, ∂f
∂x (t, x) be continuous on J × D and f

be K-cooperative. Let B̃ = {(t, x) ∈ J × D : (I) does not hold for ∂f
∂x (t, x)}.

Suppose that for all (t0, x0) ∈ J × D, the set {t > t0 : (t, x(t, t0, x0)) ∈ B̃}
is nowhere dense. Then x(t, t0, x0) ¿ x(t, t0, x0) for t > t0 for which both
solutions are defined provided x0, x1 ∈ D satisfy x0 < x1. In particular, this
holds if B̃ is empty.

Corollary 1.2 is an improvement of the restriction of Theorem 10 of Kunze
and Siegel [15] to the case that K has nonempty interior. Their results also
treat the case that K has empty interior in IRn but nonempty interior in some
subspace of IRn.

Theorem 4.3.40 of Berman et al. [1] implies that for polyhedral cones a
matrix A satisfies (M) and (T) if and only if there exists α ∈ IR such that
A + αI is K-positive and K-irreducible. Therefore, for polyhedral cones like
IRn

+, Corollary 1.2 and Theorem 1.6 are equivalent.

2 Competitive and Cooperative Systems

We now focus on the autonomous system of ordinary differential equations

x′ = f(x) (4)

where f is continuously differentiable on an open subset D ⊂ IRn. Let φt(x)
denote the solution of (4) that starts at the point x at t = 0. φt will be referred
to as the flow corresponding to (4). We sometimes refer to f as the vector field
generating the flow φt. We introduce following mild dissipativity condition for
our next result.

(A)For each x ∈ D, φt(x) is defined for all t ≥ 0 and φt(x) ∈ D. Moreover,
for each bounded subset A of D, there exists a compact subset B = B(A)
of D such that for each x ∈ A, φt(x) ∈ B for all large t.

The following result should be viewed as prototypical of the generic con-
vergence result that may be proved using general results in [30, 28].

Theorem 2.1 Let the hypotheses of Theorem 1.6 hold for (4), assume D =
IRn or D = IRn

+, and assume that (A) holds. Then the set C of convergent
points contains an open and dense subset of D.
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We say that (4) is K-competitive in D if the time-reversed system x′ =
−f(x) is K-cooperative. Observe that if (4) is a K-competitive system with
flow φt then the time reversed system above is a K-cooperative system with
flow ψt where ψt(x) = φ−t(x), and conversely. Therefore, by time reversal,
a competitive system becomes a cooperative system and vice-versa. We will
sometimes drop the K from K-cooperative (competitive) when no confusion
may result.

Let A be an invariant set for (4) with flow φt (i.e. φt(A) = A for all t) and
let B be an invariant set for the system y′ = F (y) with flow ψt. We say that
the flow φt on A is topologically equivalent to the flow ψt on B if there is a
homeomorphism Q : A → B such that Q(φt(x)) = ψt(Q(x)) for all x ∈ A and
all t ∈ IR. The relationship of topological equivalence says, roughly, that the
qualitative dynamics of the two flows are the same. With these definitions, we
can state a result of Hirsch [4].

Theorem 2.2 The flow on a compact limit set of a competitive or cooperative
system in IRn is topologically equivalent to a flow on a compact invariant set
of a Lipschitz system of differential equations in IRn−1.

The Poincaré-Bendixson Theorem for three dimensional cooperative and
competitive systems is the most notable consequence of Theorem 1.9. It was
proved by Hirsch [10] who improved earlier partial results [4, 26].

Theorem 2.3 (Poincaré-Bendixson Theorem for 3-Dimensional Competitive
and Cooperative Systems) A compact limit set of a competitive or cooperative
system in IR3 that contains no equilibrium points is a periodic orbit.

The following result of Smith [28] is useful for verifying that an omega
limit set is a periodic orbit.

Theorem 2.4 Suppose that D ⊂ IR3 contains a unique equilibrium p for the
competitive system (4) and it is hyperbolic. Suppose further that its stable
manifold W s(p) is one-dimensional and tangent at p to a vector v À 0. If the
orbit of q ∈ D \ W s(p) has compact closure in D, then ω(q) is a nontrivial
periodic orbit.

The existence of v À 0 usually follows from the Perron-Frobenius Theo-
rem. Zhu and Smith [37] establish the existence of an orbitally asymptotically
stable periodic orbit if (4) is dissipative and f is analytic. Ortega and Sánchez
[?] observed that the above results hold for general cones.

Competitive systems arise naturally from models in the biological sciences,
not just in population biology. The following, taken from de Leenheer and
Smith [12], illustrates this point. Consider an individual infected with a virus
V which attacks target cells T producing infected cells T ∗ which in turn each
produce on average N virus particles during their lifetimes. Following Perelson
et al. [24], who focus on HIV, we obtain the following system for the dynamics
of the vector of blood-concentrations (T, T ∗, V ) ∈ IR3

+.
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Ṫ = f(T )− kV T

Ṫ ∗ = −βT ∗ + kV T (5)
V̇ = −γV + NβT ∗ − kV T.

Perelson et al. [24] take f(T ) ≡ δ − αT + pT (1 − T
Tmax

) with δ, α, p, Tmax

positive and denote by T̄ the positive root of f(T ) = 0. The basic reproductive
number for the model, R0 = kT̄ (N − 1)/γ, gives the number of infected T
cells produced by a single infected T cell in a healthy individual.

Among other results, de Leenheer and Smith [12] prove the following.

Theorem 2.5 If R0 > 1, in addition to the unstable virus-free state E0 ≡
(T̄ , 0, 0), there is a “chronic disease” steady state Ee ≡ (Te, T

∗
e , Ve) given by

Te = T̄ /R0, T ∗e = γVe/(N − 1)β, Ve = f(Te)/kTe.

which is locally attracting if f ′(Te) ≤ 0. The omega limit set of every solution
with initial conditions satisfying T ∗(0) + V (0) > 0 either contains Ee or is a
nontrivial periodic orbit. There exist parameter values for which Ee is unstable
with a two dimensional unstable manifold. In this case, there exists an orbitally
asymptotically stable periodic orbit; every solution except those with initial
data on the one-dimensional stable manifold of Ee or on the T axis converges
to a non-trivial periodic orbit.

System (5) is competitive with respect to the cone K := {T, V ≥ 0, T ∗ ≤
0}. The change of variables T ∗ → −T ∗ results in a system the Jacobian for
which has non-positive off-diagonal terms on the relevant domain and hence is
competitive in the IR3

+-sense. In [12], it is shown that Ee is unstable with a two-
dimensional unstable manifold when kTmax > β+γ+ 2γ

N−1 and p is sufficiently
large. The final assertion of Theorem 1.12 follows from Theorem 1.11; domain
D is chosen to exclude E0. The existence of an orbitally asymptotically stable
periodic orbit uses the analyticity of the system and results of [37].
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