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Abstract. In this paper, we consider the process algebra ACPL, which mod-
els the basics of agent communication. This algebra combines the information-
processing aspects of Concurrent Constraint Programming (CCP) with a general-
isation of the synchronous handshaking communication mechanism of Commu-
nicating Sequential Processes (CSP). The operational semantics of ACPL is given
in terms of a transition system that consists of local and global transition rules.
The local rules describe the operational behaviour of agents, like the local effects
of communication actions. The global rules define the operational behaviour of
multi-agent systems including the matching of communication actions. We show
how ACPL provides a general basis to address the semantics of agent communi-
cation languages such as KQML and FIPA-ACL. Finally, we address several exten-
sions of the basic algebra.

1 Introduction

One of the topics of current research on multi-agent systems is the development of
standard agent communication languages that enable agents from different platforms to
interact with each other on a high level of abstraction [21,30]. The most prominent com-
munication languages are the language KQML [13] and the language FIPA-ACL [14,24].
In essence, an agent communication language provides a set of communication acts
that agents in a multi-agent system can perform. The purpose of these acts is to convey
information about an agent’s own mental state with the objective to effect the mental
state of the communication partner.

Communication actions of agent communication languages are comprised of a num-
ber of distinct layers. Figure 1 depicts the three-layer model of KQML. The first layer of
KQML consists of the informational content of the communication action. This content
is expressed in some agreed-upon language, like a propositional, first-order or other
knowledge representation language. The second layer of the communication action ex-
presses a particular attitude towards the informational content in the form of a speech
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Fig. 1. Layers of the agent communication language KQML

act [1,29]. Examples of speech acts are tell to express that the content is believed to
hold, untell to express that the content is not believed to hold or ask to ask whether
the content is believed to hold. Finally, the third layer deals with the mechanics of com-
munication, involving aspects like the channel along which the communication takes
place and the direction of the communication (that is, sent or received).

An example of a communication action is: c ! ask(p). The content layer of the
action consists of the proposition p, the message layer of the speech act ask and the
communication layer of the communication channel c and the operator “!”. The operator
“!” indicates that the message is sent along the communication channel (the anticipated
receipt of messages will be indicated by the operator “?”).

For a clear understanding of agent communication we find it important not to con-
sider communication actions in isolation, but to study them in the larger context of the
multi-agent system in which they are performed. In this larger context, we can study
aspects of conversations and dialogues, such as the specific order in which communi-
cation actions are executed, the conditions under which they take place and the effects
they have on the (mental) states of the agents that are involved (see also [17]). There-
fore, we add one extra level to the three-layer model of KQML, namely the layer of the
multi-agent system. We consider multi-agent systems that are defined in terms of a par-
ticular programming language. We assume the programming language to contain basic
programming concepts, such as actions to examine and manipulate an agent’s mental
state, the aforementioned communication actions for interaction between agents, op-
erators to make complex agent programs and operators to combine individual agent
programs to form multi-agent programs.

Process Algebra

The main principle of structured programming, as originally advocated by Dijkstra, is
that under all circumstances a programmer must keep the program within his or her
intellectual grasp [7,8]. During the last decades many formalisms have been developed
to obtain a thorough understanding of the different aspects of programming. Process
Algebra is the common name of a family of abstract programming notations for rea-
soning about concurrently executing, communicating computer systems. These frame-
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works concentrate on the essential features of programming and thereby abstract from
all implementation details.

In a process algebra, a process is defined in terms of a set of basic operators, like
sequential composition, choice, parallelism and looping. These operators are typically
given semantics through a structural operational semantics, originally developed by
Plotkin [25]. An example is one of the rules that governs parallel composition:

P
l−→ P ′

P ‖ Q l−→ P ′ ‖ Q
The rule states that if it is possible for a process P to perform a computation step l,
yielding process P ′ , then it is also possible for the parallel composition of P and Q,
to perform the computation step l, yielding the parallel composition of P ′ and Q. This
reflects the interleaving model of parallel execution.

Usually, processes are considered with respect to a particular sort of observational
behaviour. Two processes are considered equivalent if they exhibit the same observa-
tional behaviour. Equivalences can be formally proven by means of rewriting systems
that consist of axioms and inference rules in the form of algebraic equivalences. An
example of an algebraic equivalence is:

P ‖ Q = Q ‖ P
expressing that parallel composition is a commutative operator.

The main algebraic approaches to concurrency are Hoare’s Communicating Sequen-
tial Processes (CSP) [19,6], Milner’s Calculus of Communicating Systems (CCS) [22],
and Bergstra & Klop’s Algebra of Communicating Processes (ACP) [3]. Over the last
years, many extensions and refinements of these algebras have been developed, like
extensions with time [2], channel-passing (e.g., π-calculus [23]), constraints [5], and
higher-order communication [32] in which processes themselves can be passed in a
communication step.

In [4,9,10,11,12], a process algebra for agent communication has been developed.
The computational model of this algebra, which is called Agent Communication Pro-
gramming Language (ACPL), consists of an integration of the declarative paradigm
of Concurrent Constraint Programming (CCP) [27] and the imperative programming
paradigm of CSP. The constraint programming techniques are used to represent and
process information, whereas the communication mechanism of ACPL is based upon a
generalisation of the synchronous handshaking mechanism of CSP. The generalisation
consists of the exchange of information, i.e., constraints, instead of the communication
of simple values. In essence, a communication step consists of a handshake between an
agent that sends information ϕ and an agent that anticipates the receipt of information
ψ, where for successful communication it is required that ϕ contains at least as much
information as ψ.

The paper is organised as follows. In Section 2, we define the syntax of the multi-
agent language ACPL. The structural operational semantics of this language is described
in Section 3. The subject of Section 4 is the application of the framework to agent
communication languages as FIPA-ACL and KQML. Finally, in Section 5, we wrap up
and provide some pointers to extensions of the basic algebra.
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2 Syntax

In this section, we introduce the syntax of ACPL, which like Concurrent Constraint Pro-
gramming is parameterised by a constraint system that is used to represent information.

Definition 1 (Constraint systems)
A constraint system C is a tuple (C,�,∧, true, false), where C (the set of constraints,
with typical element ϕ) is a set ordered with respect to �, ∧ is the least upperbound
operation, and true, false are the least and greatest elements of C, respectively.

A constraint system is an abstract model of information. It consists of a set of ba-
sic pieces of information, which can be combined to form more complex constraints
by means of a conjunction operator “∧”. For instance, constraints can be formulas
from propositional logic, like p and p → q. Constraints are ordered by means of an
information-ordering. That is, ϕ � ψ denotes that ϕ contains less information than
ψ. For instance, q contains less information than p ∧ (p → q). Usually, the reverse of
the information-ordering is used, which is called the entailment relation (e.g., a PRO-
LOG interpreter, a theorem-prover and so on), denoted as “ �”. For instance, we have
p∧(p → q) � q. The entailment relation for instance indicates how the agent deals with
negations; i.e., whether it employs a negation-as-failure strategy, a finite-failure strat-
egy, and so on. Moreover, it can be thought of representing the agent’s decision-making
capabilities.

In order to model hiding of local variables and parameter passing in constraint pro-
gramming, in [28] the notion of a constraint system is enriched with a hiding operator∃x

(which in the CCP literature is called a cylindrification operator, following [18]). This
operator satisfies the usual properties of existential quantification, such as ϕ � ∃xϕ,
ϕ � ψ implies ∃xϕ � ∃xψ, ∃x∃yϕ ≡ ∃y∃xϕ and ∃x(ϕ ∧ ∃xψ) ≡ ∃xϕ ∧ ∃xψ,
where ≡ denotes logical equivalence. We use the notation ϕ[y/x] to denote the formula
∃x(dxy � ϕ), which can be intepreted as the formula obtained from ϕ by replacing all
the free occurrences of x by y. We also assume the generalisation ϕ[ȳ/x̄] to sequences
of variables.

Aditionally, in order to model the dynamics of belief bases, we assume a particular
belief update operator [15]. We use the notation ϕ ◦ ψ to denote an agent’s belief base
ϕ that has been updated with the information ψ. A constraint system together with
existential quantification ∃x and an update operator ◦ constitute a belief system.

The main objective of the programming language defined below is to provide a
generic framework for the exchange of information in multi-agent systems, which ab-
stracts from the specific nature of the underlying belief system.

In the following definition, we assume a given set Chan of (unidirectional) com-
munication channels, with typical element c.

In the remainder of this paper, we assume a particular belief system B to be given.

Definition 2 (Basic actions)
The basic actions of the programming language are defined as follows:

a ::= c!ϕ | c?ϕ | query(ϕ) | update(ϕ).
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The execution of the output action c!ϕ consists of sending the information ϕ along the
channel c, which has to synchronise with a corresponding input c?ψ, for some ψ with
ϕ � ψ. In other words, the information ϕ can be sent along a channel c only if some
information entailed by ϕ is anticipated to be received. The execution of an input action
c?ψ, which consists of anticipating the receipt of the informationψ along the channel c,
also has to synchronise with a corresponding output action c!ϕ, for some ϕ with ϕ � ψ.
The execution of a basic action query(ϕ) by an agent consists of checking whether
the private store of the agent entails ϕ. On the other hand, the execution of update(ϕ)
consists of updating the belief base with ϕ.

In the following definition, we assume a given set Proc of procedure identifiers,
with typical element p.

Definition 3 (Statements)
The behaviour of an agent is then described by a statement S:

S ::= a · S | S1 + S2 | S1 & S2 | locxS | p(x̄) | skip.

Statements are thus built up from the basic actions using the following standard pro-
gramming constructs: action prefixing, denoted by “·”; non-deterministic choice, de-
noted by “+”; internal parallelism, denoted by “&”; local variables, denoted by ∃xS,
which indicates that x is a local variable in S; and (recursive) procedure calls of the
form p(x̄), where p ∈ Proc constitutes the name of the procedure and x̄ denotes a se-
quence of variables which constitute the actual parameters of the call. We assume that
no information on a local variable x can be communicated. Hence, we additionally re-
quire that in ∃xS the variable x does not occur free in a communication of S; that is, for
every communication action c?ϕ or c!ϕ of S we have ∃xϕ ≡ ϕ. Finally, skip denotes
the empty statement.

Definition 4 (Multi-agent systems)
A multi-agent system A is defined as follows:

A ::= 〈D,S, ϕ〉 | A1 ‖ A2 | δH(A).

A basic agent in a multi-agent system is represented by a tuple 〈D,S, ϕ〉. The set D
consists of procedure declarations of the form p(x̄) :− S, where x̄ denote the formal
parameters of p and S denotes its body. In order to facilitate the operational description
of procedure calls, we assume that D satisfies the following property:

if p(x̄) :− S ∈ D then p(ȳ) :− S[ȳ/x̄] ∈ D

for all x̄ and ȳ, where S[ȳ/x̄] denotes the statement S in which each constraint ϕ is
replaced by ϕ[ȳ/x̄]. The statement S in 〈D,S, ϕ〉 describes the behaviour of the agent
with respect to its private store ϕ. The threads of S, i.e. the concurrently executing
substatements of S, interact with each other via the private store of the basic agent by
means of the actions query(ψ) and update(ψ). As in the operational semantics below
the set D of procedure declarations will not change, we usually omit it from notation
and simply write 〈S, ϕ〉 instead of 〈D,S, ϕ〉.
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Additionally, a multi-agent system itself consists of a collection of concurrently op-
erating agents that interact with each other only via a synchronous information-passing
mechanism by means of the communication actions c!ψ and c?ψ. Our choice for syn-
chronous communication is motivated by the fact it can be used to model asynchronous
communication as well, as we will see in Section 4. Note that we restrict to the paral-
lel composition of agent systems, and leave sequential composition, non-deterministic
choice and recursion at the level of multi-agent systems out of consideration.

Finally, the encapsulation operator δH with H ⊆ Chan , which stems from the
process algebra ACP, is used to define local communication channels [3]. That is, δH(A)
denotes a multi-agent system in which the communication channels inH are for internal
use only and hence, cannot be used for communication with agents outside the system.

3 Operational Semantics

In this section, we consider the structural operational semantics of ACPL.

3.1 Transition Systems

The central idea of structural operational semantics is to define the meaning of a pro-
gram directly in terms of the behaviour that it exhibits. More specifically, the behaviour
of a program can be modelled as a sequence of transitions between consecutive con-
figurations. A configuration denotes the state of the program at a particular point in its
execution. A transition corresponds to an individual computation step of the program,
reflecting the effects on the current configuration.

A simple and elegant formalism to define structural operational semantics is via
the well-known technique of transition systems, originally developed in [25]. In short, a
transition system collects a set of rules that are used for the formal derivation of compu-
tation steps of a program. These rules define the effects that the different programming
constructs have on the current configuration of the program. Such a configuration not
only contains a description of the state of the program, but also the part of the program
that still needs to be executed after the transition. In its most general form, a transition
looks as follows:

〈P, σ〉 −→ 〈P ′ , σ′〉.

It denotes a computation step of the program P which changes the current state of the
system σ to the state σ′ , where P ′ is identified to be the part of the program P that
still needs to be executed. Assuming that programs have been defined inductively, we
can define the transitions of a program in terms of the transitions of its components.
For example, the transitions of a sequential composition of two programs P1 and P2

can be derived from the transitions of P1 and the transitions of P2. That is, the com-
pound program performs the computation steps that the program P1 executes, and upon
termination of P1, the computation steps that P2 performs.
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In general, transitions are formally derived by means of transition rules, which are
of the following format:

〈P1, σ1〉 −→ 〈P ′
1, σ

′
1〉

...
〈Pn, σn〉 −→ 〈P ′

n, σ
′
n〉

〈P, σ〉 −→ 〈P ′, σ′〉 if cond

Such a rule denotes that the transition below the line can be derived if the transitions
above the line are derivable, provided that the condition cond holds. Sometimes, we
write transition rules with several transitions below the line. They are used to abbreviate
a collection of rules each having one of these transitions as its conclusion. A rule with
no transitions above the line is called an axiom, and is simply written as 〈P, σ〉 −→
〈P ′, σ′〉. A transition system is then a set of of transition rules.

In order to be able to describe communication, we can make use of labelled transi-
tion systems in which the transitions are of the following form:

〈P, σ〉 l−→ 〈P ′ , σ′〉.
The label l in this transition is used to denote the mode of the computation step. In our
case, we distinguish between three different modes; viz., internal computation steps,
input actions and output actions.

The advantage of using transitions systems is that they allow the operational seman-
tics to closely follow the syntactic structure of the language. As an effect, if we view the
configurations of the form 〈P, σ〉 as states of an abstract machine then the transitions
specify the actions that this machine should perform. In fact, this machine could act as
an interpreter for the language.

3.2 Local Transitions of ACPL

The structural operational semantics of ACPL is defined by means of a local and a global
transition system. Given a set of declarationsD, a local transition is of the form

〈S, ϕ〉 l−→ 〈S ′ , ψ〉
where either l equals τ in case of an internal computation step, that is, a computation
step which consists of the execution of skip or a basic action of the form query(ϕ) or
update(ϕ), or l is of the form c!ϕ or c?ϕ, in case of a communication step. We employ
the symbol E to denote successful termination.

Definition 5 (Transitions for basic actions)

〈query(ϕ), ψ〉 τ−→ 〈E,ψ〉 if ψ � ϕ
〈update(ϕ), ψ〉 τ−→ 〈E,ψ ◦ ϕ〉
〈c!ϕ, ψ〉 c!ϕ−→ 〈E,ψ〉
〈c?ϕ, ψ〉 c?ϕ−→ 〈E,ψ〉
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The actions query(ϕ) and update(ϕ) are the familiar operations from CCP which
allow an agent to inspect and update its private store. The semantics of the basic action
update is defined in terms of the belief update operator ◦ from the belief system B.
By adding new information the store can become inconsistent, such as for instance
if the action update(x = 1) is performed in a situation where the store contains the
information x = 0. We assume that such conflicts are resolved by the belief update
operator ◦.

In the third transition, the information ϕ to be sent does not necessarily follow from
the agent’s belief base ψ. The programmer can try to accomplish sincerity by letting the
output action precede by a test that ϕ follows indeed from the information store:

query(ϕ) · c!ϕ
In this case, the communication action will only be executed in case the test query(ϕ)
has been successfully executed first. However, in the case of multiple concurrently op-
erating threads in an agent, it is possible that the consecutive execution of these two
actions is interleaved by another action that updates the private store. Due to this in-
termediate update it is possible that the information ϕ will not be entailed by the store
at the moment of communication. Thus, sincerity assumes either that an agent has one
single thread or that its belief base shows monotonically increasing behaviour; i.e., in-
formation is only added to the store and not removed from it.

In the fourth transition, the information ϕ that is anticipated to be received is not
automatically added to the agent’s belief state. The addition of this information can be
controlled by the programmer through a subsequent execution of the update operator:

c?ϕ · update(ϕ).

Furthermore, we have the following rules for action prefixing, procedure calls and
the programming constructs for non-deterministic choice and parallel composition.

Definition 6 (Transition for prefixing)

〈a, ψ〉 l−→ 〈E,ψ′〉
〈a · S, ψ〉 l−→ 〈S, ψ′〉

The computation step of a prefixed statement a · S corresponds to the execution of
its prefix a. That is, the transition of the prefixed statement a · S is inferred from the
transition of the action a, in which the label l is propagated together with the change
of the private store from ψ to ψ′ . Finally, the statement S is identified to be the part of
a · S that needs to be executed next.

Definition 7 (Transition for internal parallelism)

〈S1, ψ〉 l−→ 〈S ′
1, ψ

′〉
〈S1 & S2, ψ〉 l−→ 〈S ′

1 & S2, ψ
′〉

〈S2 & S1, ψ〉 l−→ 〈S2 & S ′
1, ψ

′〉
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A derivation rule that has two transitions below the line, is a shorthand notation for
two derivation rules that each have one of these two transitions as its conclusion. The
execution of a parallel statement S & T is modelled as an interleaving of the compu-
tation steps of S and T . That is, an execution step of the composed statement S & T
is given by a computation step of one the statements S and T . Therefore in the above
transition rule, the transition of the statement S1 induces a transition of the compound
statement S1 & S2 in which it acts as the left operand, as well a transition of the com-
pound statement S2 & S1 in which it acts as the right operand. The statements S ′

1 & S2

and S2 & S ′
1 then denote the part of the composed statements that remains to be exe-

cuted, respectively.

Definition 8 (Transition for non-deterministic choice)

〈S1, ψ〉 l−→ 〈S ′
1, ψ

′〉
〈S1 + S2, ψ〉 l−→ 〈S ′

1, ψ
′〉

〈S2 + S1, ψ〉 l−→ 〈S ′
1, ψ

′〉
The computation steps of a non-deterministic choice S + T are given by the tran-

sitions of either of the statements S and T . Hence, in the transition rule above, the
transition of S1 yields a transition for the compound statement S1 + S2 as well as for
the compound statement S2 +S1. The part of the non-deterministic choice that remains
to be executed is given by S ′

1. The rule reflects that “+” is a commutative operator. Due
to non-deterministic choice the execution of a multi-agent system can lead to different
ending states. Note the difference with the rule for internal parallelism in which the
statement S2 remains to be executed as well.

Definition 9 (Transition for local variables)

〈S, ϕ ◦ ∃xψ〉 l−→ 〈S ′ , ψ′〉
〈locϕ

xS, ψ〉 l−→ 〈locϕ′
x S

′, ψ ◦ ∃xϕ′〉
The syntax of the language is extended with a construct of the form locϕ

xS denoting
that in the statement S the variable x is a local variable, where the constraint ϕ collects
the information on the local variable x. In this notation, the statement locxS is written
as loctruex S, denoting that the local constraints on x are initially empty.

The idea of the transition rule is that the transition of the construct locϕ
xS is derived

from the transition of the statement S. In order to achieve this, we need to replace the
constraints on the global variable x in the state ψ (if present) by the constraints ϕ on the
local variable x. This yields the state ϕ◦∃xψ. The statement S is then executed relative
to this state. After one computation step, ϕ′ denotes the new state and S ′ represents the
part of S that still remains to be executed. In order to obtain from ψ′ the resulting store,
we remove the constraints on the local variable x from it and add the remainder to the
old private store ψ, yielding the new state ψ ◦ ∃xϕ

′ . Finally, the constraints on the local
variable x need to be stored for later use; hence, the statement locϕ′

x S
′ denotes the part

of the program that needs to be executed next.
Note that no information on the local variable x can be communicated, because by

definition x does not occur free in ϕ in case l is of the form c?ϕ or c!ϕ.
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Definition 10 (Transition for procedure calls)

〈p(ȳ), ψ〉 τ−→ 〈S, ψ〉 where p(ȳ) :− S ∈ D

The transition of a procedure call is given by the replacement of the call by the body
of the procedure.

Definition 11 (Transition for skip)

〈skip, ψ〉 τ−→ 〈E,ψ〉
The rule shows that the statement skip always succeeds and has no effects on the

information store ψ.

3.3 Global Transitions of ACPL

A global transition is of the form A
l−→ A′ , where l indicates whether the transition

involves an internal computation step, that is, l = τ , or a communication, that is, l = c!ϕ
or l = c?ϕ.

Definition 12 (Transitions for multi-agent systems)
The following rule describes parallel composition by interleaving of the basic actions:

A1
l−→ A′

1

A1 ‖ A2
l−→ A′

1 ‖ A2

A2 ‖ A1
l−→ A2 ‖ A′

1

In order to describe the synchronisation between agents we introduce a synchronisation
predicate |, which is defined as follows. For all c ∈ Chan and ϕ, ψ ∈ B, if ϕ � ψ then

(c!ϕ | c?ψ) and (c?ψ | c!ϕ).

In all other cases, the predicate | yields the boolean value false. We then have the fol-
lowing synchronisation rule:

A1
l1−→ A′

1 A2
l2−→ A′

2

A1 ‖ A2
τ−→ A′

1 ‖ A′
2

if l1 | l2

This rule shows that an action of the form c?ψ only matches with an action of the form
c!ϕ in case ψ is entailed by ϕ. In all other cases, the predicate | yields false and therefore
no communication can take place.

Finally, encapsulation of communications along a set of channels H is described
by the rule:

A
l−→ A′

δH(A) l−→ δH(A′)
if chan(l) ∩H = ∅

where chan is defined by chan(c!ϕ) = chan(c?ϕ) = {c} and chan(τ) = ∅.
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4 Agent Communication Languages

The framework ACPL provides a general basis for the semantics of agent communi-
cation languages. Consider the different layers of the agent communication language
KQML in Figure 1. Constraint systems can be used to represent the content layer. With
respect to the second layer we assume an extension of the entailment relation of the
constraint system that includes speech acts. For example, a KQML expression consist-
ing of a content expression ϕ that is encapsulated in a message wrapper containing the
speech act untell, which allows to derive negative information in terms of the closed
world assumption [26], is represented by the expression untell(ϕ). This operator can
be defined by an extension of the information ordering of the constraint system. For
instance, given the constraints ψ and ϕ, we define:

ψ � ϕ ⇔ ψ � untell(ϕ).

Assuming that ψ represents the belief base of an agent, this rule formalises the closed
world assumption. Assuming ¬p � p, we can for instance derive: ¬p � untell(p).
Note that we cannot derive untell(p) � ¬p.

The anti-monotonicity property of the untell operator is expressed by:

untell(ψ) � untell(ϕ) ⇔ ϕ � ψ.

So, for instance, we have untell(p) � untell(p∧q), or in other words untell(p∧q)
contains less information than untell(p).

The general use of the entailment relation in the semantics of communication ac-
tions allows us to abstract from among others the following :

– the particular syntax of information, for instance, untell(p∧q) entails untell(q∧
p) and vice versa.

– redundant logical strength, e.g., untell(p) entails untell(p ∧ q).
– the kind of communicated information, e.g., simple constraints on the domain of

discourse or information containing speech acts.

The third layer involves the communication channel and the direction of commu-
nication. At this level, we consider the interplay between sending and anticipating the
receipt of information. In ACPL, the basic communication mechanism is synchronous.
A synchronous communication step consists of a handshake between an agent that per-
forms a communication action of the form c ! speech act1(ϕ1) and an agent that per-
forms a matching communication act of the form c ? speech act2(ϕ2) along the same
channel c. For them to match it is required that the sent message speech act1(ϕ1)
contains at least as much information as the message that is anticipated to be received,
or in terms of the entailment relation:

speech act1(ϕ1) � speech act2(ϕ2).

For instance, employing the above stipulations, we have that c ! ¬p matches with
c ? untell(p), but c ! untell(p) does not match with c ? ¬p.
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Thus, the basic communication mechanism of ACPL is synchronous, i.e., the re-
ceipt of information takes place at the same time at which it is sent. Our choice for
synchronous communication is motivated by the fact that in the field of concurrency
theory, asynchronous communication can be modelled in terms of synchronous com-
munication [20]. In particular, asynchronous communication can be modelled in our
agent framework by means of communication facilitators. This is illustrated in the next
example.

Example 13 Sending a question ask(ϕ) along a channel c without waiting for its an-
swer (to be received along a channel d) can be described by the following code:

c!ask(ϕ) · (S1 & (d?ϕ · S2 + d?untell(ϕ) · S3)),

where S1 represents the remaining activities of the agent and S2 and S3 represent the
agent’s subsequent responses to the receipt of the answersϕ and untell(ϕ), respectively.

Secondly, the corresponding receipt of a question ask(ϕ) along a channel c, will
be handled by the addressed agent’s communication facilitator Fac which satisfies the
following recursive equation:

Fac :− c?ask(ϕ) · ((e?ϕ · d!ϕ) & Fac),

where e denotes an internal channel connecting the facilitator with the agent. Note that
consequently this facilitator in fact describes a bag of received requests (along channel
c) for answering ψ.

Obviously, this basic form of asynchronous dialogue can be extended to more in-
volved patterns of interaction.

As an additional example we consider the KQML speech acts ask one, which is
used to ask for one instantiation of the specified question. In the concurrency frame-
work of ACP [3], value-passing can be modelled by synchronisation of actions and
non-deterministic choice. Similarly, in our framework, we can model the generation
and communication of solutions to constraints as described by the KQML speech acts
like ask one in the following way.

Example 14 Anticipated responses (to be received along channel c) to the KQML ex-
pression ask one(ϕ) can be modelled as follows:

∑

i∈I

c?ϕ(θi) · Si,

where
∑

represents non-deterministic choice and the set {θi | i ∈ I} denotes the set of
all suitable substitutions, ϕ(θi) denotes the application of the substitution θi to ϕ and
Si represents the corresponding subsequent reaction.

For instance, consider the question ask one(price(x, item464 )) to ask for the price
of a particular item. Let us assume that prices can be any natural number between 0 and
1000. The reception of an answer to the question can then be described by:

∑

i∈[0..1000]

c?price(i, item464 ) · Si.
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5 Conclusions and Further Reading

In this paper, we have considered the process algebra ACPL, which models the basics
of agent communication. This algebra combines the information-processing aspects of
CCP with a generalisation of the synchronous handshaking communication mechanism
of CSP. The operational semantics of ACPL is given in terms of a transition system that
consists of local and global transition rules. The local rules describe the operational
behaviour of agents, like the local effects of communication actions. The global rules
define the operational behaviour of multi-agent systems including the matching of com-
munication actions. We have shown how ACPL provides a general basis to address the
semantics of agent communication languages.

The basic algebra ACPL has been extended in several different directions. We con-
clude the paper by considering a number of these extensions.

Full Abstraction The operational semantics of ACPL describes the behaviour of a multi-
agent system in terms of its computations. In general, however, we are not interested
in all details of the behaviour that a particular system exhibits. That is, we want to
reason about a multi-agent system at a higher level of abstraction, namely at a level
that captures the aspects that are visible to an external observer. In [4], we consider the
observable behaviour of a multi-agent system to be the final information stores as com-
puted by the individual agents in a system. In order to describe this notion of observable
behaviour in a compositional way, we have developed a form of denotational seman-
tics, called failure semantics, which is shown to be a fully-abstract characterisation of
the notion of observables. For instance, with respect to this observable behaviour, the
following algebraic laws hold. If ϕ � ψ then:

c!ϕ = c!ϕ+ c!ψ
c?ψ = c?ψ + c?ϕ

The crucial observation here is that any communication action that for instance matches
c ! p also matches c ! p ∧ q. In general, we could say that sending a message includes
sending all messages that contain less information. Similarly, any communication ac-
tion that matches c ? p ∧ q also matches c ? p. In other words, anticipating the receipt
of a messages includes anticipating the receipt of all messages that contain more infor-
mation.

Specification and verification Once the semantics of a programming language has been
established, it allows us to consider the specification and verification of agent commu-
nication. Verification amounts to the process of checking whether a program satisfies
desired behaviour as expressed by a specification, like for instance the conversation
policy [16] that if an agent A is asked by an agent B whether a particular proposition
holds thenA subsequently answersB whether it believes the proposition to hold or not.
In [12], a compositional verification calculus for ACPL is defined. This calculus can be
used to verify that a particular multi-agent system satisfies its specification. On the ba-
sis of this calculus it is possible to implement (semi-)automatic verification procedures.
This is a subject of future research.
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Translations In [11], we consider communicating agents that employ different vocab-
ularies to represent information. In order to communicate some translations between
these vocabularies need to generated. Instead of being defined in advance, we consider
translations that are dynamically constructed during execution of the system. These
translations are based both on the information that the agents exchange and the under-
lying ontologies that they employ. This yields a framework that can be used to study
and analyse experiments as performed in the research on the origins of language, like
for instance dialogue games in which the purpose of communication is to develop a
mutual understanding of the agents’ vocabularies [31]. This is also a subject of further
research.

Agents and objects In [10], it is studied in which way concepts and techniques that
have been developed in the object-oriented paradigm, can be adopted and adjusted for
multi-agent systems. In particular, we study in which way the rendezvous communi-
cation mechanism of object-oriented programming can be generalised to structure the
exchange of information between agents. A central concept of this chapter is the con-
cept of a question invocation by analogy with the concept of a method invocation from
object-oriented programming.

Groups Finally, we mention here some related work by De Vries et al. [33,34], where
an abstract programming language for agent interaction is proposed, called GrAPL. This
language contains constructs for coordinating group activity (group communication,
formation, and collaboration). There are definite similarities between GrAPL and ACPL:
both are given operational (process-algebraic) semantics, both employ the idea of a
CSP-like synchronisation for communication between agents, and in both languages the
communicated information is viewed as comprising constraints in a constraint system.
The main difference is that in ACPL bilateral communication is used while in GrAPL this
idea is extended to groups of agents that tell each other constraints about (parameters
of) actions to be performed by them. In [33, Chapter 6] this idea is extended further
to the communication of partial plans, i.e. orders on actions, as well as who is willing
to do what, between agents in a group so that in effect the agents are able to perform
distributive planning.
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