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Abstract

A broadcast encryption scheme allows the sender to securely distribute data to a
dynamically changing set of users over an insecure channel. One of the most challenging
settings for this problem is that of stateless receivers, where each user is given a fixed
set of keys which cannot be updated through the lifetime of the system. This setting
was considered by Naor, Naor and Lotspiech [NNL01], who also present a very efficient
“subset difference” (SD) method for solving this problem. The efficiency of this method
(which also enjoys efficient traitor tracing mechanism and several other useful features)
was recently improved by Halevi and Shamir [HS02], who called their refinement the
“Layered SD” (LSD) method. Both of the above methods were originally designed to
work in the centralized symmetric key setting, where only the trusted designer of the
system can encrypt messages to users. On the other hand, in many applications it is
desirable not to store the secret keys “on-line”, or to allow untrusted users to broadcast
information. This leads to the question of building a public key broadcast encryption
scheme for stateless receivers; in particular, of extending the elegant SD/LSD methods
to the public key setting. Naor et al. [NNL01] notice that the natural technique for
doing so will result in an enormous public key and very large storage for every user.
In fact, [NNL01] pose this question of reducing the public key size and user’s storage
as the first open problem of their paper. We resolve this question in the affirmative,
by demonstrating that an O(1) size public key can be achieved for both of SD/LSD
methods, in addition to the same (small) user’s storage and ciphertext size as in the
symmetric key setting.

1 Introduction
Broadcast Encryption. Broadcast encryption provides a convenient way to distribute
digital content to subscribers over an insecure broadcast channel. Namely, it allows the
sender to deliver information to a dynamically changing sets of users in such a way that only
the “qualified” users can recover the data. Not surprisingly, it has found many applications
including pay-TV systems, distribution of copyrighted material, streaming audio/video and
many others.

Since its introduction by Fiat and Naor [FN93], the problem received significant atten-
tion, and many of its variants have been studied. To name just a few, the set of receivers can
be fixed, slowly changing or rapidly changing; the scheme can support a single, bounded or
unbounded number of broadcasts; it might or might not be possible to periodically refresh
users’ secret keys; the scheme might support bounded or unbounded number of “revoked”



users; it might be possible to trace “pirates” who gave away an illegal decryption device
(this is called traitor tracing); the scheme could be private or public key based; etc. We
mention just several of the relevant works [WHA97, LS98, MS98, WGL98, CGI+99, CMN99,
GSY99, KRS99, GSW00, NP00, TT01].

We study one of the most difficult variants of the problem when the receivers are state-
less. Namely, each user is given a fixed set of keys which cannot be updated through the
lifetime of the system. In particular, they do not change when other users join or leave
the system, or evolve based on the history of past transmissions. Instead, each transmis-
sion must be decrypted solely on the base of the fixed initial configuration of each user’s
decryption device. As argued by Naor, Naor and Lotspiech [NNL01] (who were the first to
explicitly concentrate on this scenario), the stateless receivers case is quite common. For
example, the receivers might not be constantly on-line to view past history or update their
secret keys, or the keys might be put “once-and-for-all” into a tamper-resistant device. Ad-
ditionally, the scheme should support an unbounded number of broadcasts, and be capable
— at least in principle — to revoke an a-priori unbounded number of users (possibly at
the cost of reduced efficiency). In particular, even the coalition of all the “non-privileged”
users combined cannot decrypt a given transmission, even if this set is adaptively chosen
by a central adversary. Finally, the above features also imply that consecutive broadcasts
can revoke arbitrary and potentially unrelated subsets of users, and no “key maintenance”
is necessary.

Up to date, the only type of scheme enjoying all these properties was designed by Naor
et al. [NNL01] (and was recently improved by Halevi and Shamir [HS02]). We will describe
these schemes in more detail shortly.

Public vs. Symmetric Key. As we mentioned, one important distinction between various
broadcast encryption schemes is whether they are public key or symmetric key based. In the
latter variant, only the trusted designer of the system can broadcast data to the receivers. In
other words, in order to encrypt the content, one needs to know some sensitive information
(typically, the secret keys of all the users of the system) whose disclosure will compromise
the security of the system. Even though symmetric key broadcast encryption is sufficient
for many applications, it has a few shortcomings. For example, it requires the sender to
store all the secret keys of the system, making it a single point of failure. Additionally, in
certain situations we would like to allow possibly untrusted users to broadcast information,
which is not possible in the symmetric setting.

In contrast, in the public key setting the trusted designer of the system publishes a short
public key which enables anybody to broadcast data, thus overcoming the above mentioned
deficiencies of the symmetric setting.

The original schemes of [NNL01] were primarily designed for the symmetric key setting.
Briefly, the so called Subset-Cover methodology of [NNL01] (described in detail later) has the
system designer (called the Center) generate many “computationally unrelated” secret keys
k1 . . . kw (where w is “large”) and distribute various subsets of these keys to different users.
To encrypt the message to a specified subset of privileged users, a certain small, carefully
chosen subset of these keys is used. Even though this suggests that the Center must store
all w keys, this typically does not have to be the case. Indeed, standard symmetric key tools
like pseudorandom functions can be used to significantly compress the storage requirement
of the Center (typically, to a single random seed). This is indeed the case for the two specific



instantiations of the Subset-Cover framework proposed by [NNL01] — the Complete Subtree
(CS) method and a more efficient Subset Difference (SD) method — as well as for the further
improved Layered Subset Difference (LSD) method of [HS02]. Similarly, even though each
user might need to have too many of the secret keys k1 . . . , kw (which is really the case in
the more efficient SD/LSD methods), it is possible — albeit somewhat more difficult — to
compress the user’s storage using similar tools, as was indeed done by [NNL01].

As already noted by Naor et al. [NNL01], the general Subset-Cover framework can in
principle be adapted to the public key setting, by having each key kj replaced by some pair
of public/secret keys (PKj , SKj). Unfortunately, the simple compression methods of the
symmetric key setting are much harder to come by in the public key setting. Even ignoring
the problem with the user’s storage, the natural implementation will have to publish all
the local public keys PK1, . . . , PKw, yielding a huge public key for the system. Naor et
al. [NNL01] briefly mention that the tools from Identity-Based Cryptography [Sha84] seem
to overcome this problem, (we explain this below). In particular, they seem to resolve it
completely at least for the (less efficient) CS method, where each user needs to know very
few secret keys anyway. However, the Identity-Based Encryption (IBE) scheme alone does
not seem to be sufficient for the more efficient SD/LSD methods, since it does not resolve
the problem of compressing large storage requirement of each user. In fact, the question
of efficiently extending the SD (and similar LSD) method(s) to the public key setting was
given as the first open problem in [NNL01].

Our Main Result. We resolve this problem in the affirmative, by non-trivially utilizing
the concept of Hierarchical Identity-Based Encryption (HIBE) [GS02, HL02]. In particular,
we show that one can get essentially all the benefits of the symmetric key versions of the
SD/LSD methods (including the same small storage per user) in the public key setting,
while having a fixed constant size public key. As an intermediate step toward this goal, we
indicate which changes should be made to the general Subset-Cover framework of [NNL01]
in order to translate it to the public key setting, and also formally verify that “plain” IBE

is indeed sufficient to translate the (less efficient) CS method to the public key setting. The
particular parameters we get can be summarized as follows when revoking r out of N total
users (in all cases, the public key size and the storage of the Center are O(1)):

• CS method. The ciphertext consists of r log(N/r) identity based encryptions, each
users stores O(log N) keys and needs to perform a single identity based decryption.

• SD method. The ciphertext consists of (2r−1)hierarchical identity based encryptions
(of “depth” at most log N each), each users stores O(log2 N) keys and needs to perform
a single hierarchical identity based decryption.

• LSD method. For any ǫ > 0, the ciphertext consists of O(r/ǫ) hierarchical identity
based encryptions (of “depth” at most log N each), each users stores O(log1+ǫ N) keys
and needs to perform a single hierarchical identity based decryption.

Interestingly, when instantiated with best currently known IBE [BF01] and HIBE [GS02]
schemes, the CS method actually becomes slightly preferable to the “in principle” more
efficient SD/LSD methods. This is due to the fact that the length of the encryption of
the specific HIBE [GS02] is proportional to the “depth” in the hierarchy (see Appendix A).
Thus, the actual transmission rate in SD/LSD methods deteriorates to O(r log N), as in



the CS method (while the latter still having a smaller storage requirement per user and
a slightly cheaper decryption time). Still, if a more efficient HIBE is found, the original
“transmission rate” advantages of the SD/LSD methods will again kick into effect.

Comparison to Existing Public Key Schemes. There already exist several (quite
similar to each other) public key broadcast encryption schemes [NP00, TT01, DF02] in the
stateless receivers scenario, all based on the decisional Diffie-Hellman assumption. However,
all these schemes can revoke up to at most an a-priori fixed number of users, rmax. Moreover,
the size of the transmission is O(rmax) even if no users are revoked. In contrast, the SD/LSD
methods allow to revoke a dynamically changing (and potentially unbounded) number of
users r, at the cost of having O(r)-size ciphertext transmission. More importantly, the
reason the schemes of [NP00, TT01, DF02] support only a bounded number of revoked
users, is that the public key (as well as encryption/decryption times) are proportional to
rmax. In contrast, the analogs of CS/SD/LSD schemes we construct all have a constant size
public key, and the decryption time is at most logarithmic in the total number of users N .
Finally, the schemes of [NP00, TT01, DF02] support only a limited form of traitor tracing
(either “non-black-box” or “black-box confirmation”), while (as was shown in [NNL01])
the CS/SD/LSD methods enjoy a significantly more powerful kind of “black-box” traitor
tracing.

On a technical note, the Subset-Cover framework of [NNL01] supports only the so called
CCA1-security [BDJR97] (chosen ciphertext security in the pre-processing mode [DDN00]),
since the message is encrypted independently with several “computationally unrelated” keys.
On the other hand, the recently proposed scheme of [DF02] supports full chosen ciphertext
security (so called CCA2 [BDJR97, DDN00]). Even though it seems hard to extend the
Subset-Cover framework to achieve CCA2-security, it is possible to achieve a slightly relaxed
(but essentially as useful) notion of gCCA2-security recently proposed by [Sho01, ADR02].

2 Definitions
2.1 Broadcast Encryption

Definition 1 (Broadcast Encryption Scheme)
A Broadcast Encryption Scheme is a quadruple of poly-time algorithms (KeyGen, Reg, Enc,
Dec), where:

• KeyGen, the key generation algorithm, is a probabilistic algorithm used by the Center
to set up all the parameters of the scheme. KeyGen takes as input a security parameter
1λ and possibly a revocation threshold rmax (i.e. the maximum number of users that
can be revoked) and generate the public key PK and the master secret key SK.

• Reg, the registration algorithm, is a probabilistic algorithm used by the Center to com-
pute the secret initialization data to be delivered to a new user when he/she subscribes
to the system.

• Enc, the encryption algorithm, is a probabilistic algorithm used to encapsulate a given
session key k in such a way that the revoked users cannot recover it. Enc takes as input
the public key PK, the session key k and a set R of revoked users (with |R| ≤ rmax,
if a threshold has been specified to the KeyGen algorithm) and returns the ciphertext
to be broadcast.



• Dec, the decryption algorithm, is a deterministic algorithm that takes as input the
secret data of a user u and the ciphertext broadcast by the Center and returns the ses-
sion key k that was sent if u was not in the set R when the ciphertext was constructed,
or the special symbol ⊥ otherwise.

All the schemes that we will discuss are completely flexible in terms of the revocation
threshold rmax, i.e. they can tolerate an unbounded number of revoked users, at the only
cost of increasing the length of the ciphertext.

Following [NNL01], we briefly define the CCA1-security of broadcast encryption (as
stated earlier, one can define CCA2-security as well). Upon seeing the public key PK, the
adversary repeatedly perform (in any adaptively-chosen order) the following two steps: (1)
corrupt any user u, thus obtaining the secret information u got when joining the system
(let us denote by R the final set of corrupted users; in case rmax is specified, we require
|R| ≤ rmax); (2) ask any user to decrypt a ciphertext of its choice. Then the adversary
selects some session key k and gets back the value Enc(PK, k′,R), where k′ is either equal
to k, or equal to a totally random session key. The scheme is CCA1-secure if no polynomial
adversary can distinguish these two cases with non-negligible advantage.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme is a Public Key Cryptosystem where public keys
can be arbitrary bitstrings, from which a trusted entity known as Private Key Generator
(PKG) can extract the corresponding private keys.

The main advantage of such Cryptosystems is that each user can have as public key
some identifier ID that everybody knows (e.g. his/her e-mail address), so that there is no
need any more for the use of certificates binding a given public key to its legitimate holder.

Although a formal definition of IBE cryptosystems have been known for a while [Sha84],
the first fully functional proposal fitting all the requirements appeared only quite recently
in [BF01] (see Appendix A).

Definition 2 (Identity-Based Encryption Scheme)
An Identity-Based Encryption scheme is a quadruple of poly-time algorithms (Setup, Extract,

Encrypt, Decrypt), where:

• Setup is a probabilistic algorithm used by the PKG to initialize the global parameters
of the system. Given a security parameter 1λ, Setup generates the system parameters
params and a secret key master-key. Then, the PKG publishes params as the global
public key and keeps master-key secret.

• Extract is a (possibly) probabilistic algorithm used by the PKG to derive private keys
from arbitrary identifiers. Extract takes as input params, an identifier ID ∈ {0, 1}∗

and master-key, and returns the private key d capable of decrypting ciphertexts in-
tended for the holder of the given identifier ID.

• Encrypt is a probabilistic algorithm used to securely send a message M to the user
with identifier ID within the IBE system with global public key params. Encrypt takes
as input params, ID and M and returns a ciphertext C.



• Decrypt is a deterministic algorithm used to recover the message M from a ciphertext
C intended for a user with identifier ID. Decrypt takes as input params, ID, C and
the private key d (corresponding to ID) and returns M .

Clearly, these four algorithms should satisfy the standard consistency constraint: for
all possible values of the global parameters params output by Setup, and for all identifiers
ID ∈ {0, 1}∗, if d is the private key extracted from ID using master-key then for all message
M it must be that:

Decrypt(params, ID, Encrypt(params, ID, M), d) = M.

As before, we briefly define the CCA1-security of IBE’s, even though the currently known
IBE’s support a stronger kind of CCA2-security. Upon seeing the public params, the adver-
sary can adaptively perform the following two steps in any order: (1) perform an extraction
query for any identifier ID that it chooses, thus learning the corresponding private key d of
this user (let us denote by R the final set of corrupted users); (2) ask any user with identifier
ID to decrypt a given ciphertext C chosen by the adversary. Then the adversary selects some
message M and some identifier ID 6∈ R, and gets back the value Encrypt(params, ID, M ′),
where M ′ is either equal to M , or is equal to a totally random message. The scheme is
CCA1-secure if no polynomial adversary can distinguish these two cases with non-negligible
advantage.

2.3 Hierarchical Identity-Based Encryption

HIBE is a natural and very powerful extension of a regular Identity-Based Encryption.
Intuitively, HIBE allows to organize the users into a tree hierarchy. Each user gets the
secret key from its parent in the hierarchy (and all the users share a few global parameters).
Now, anybody can encrypt message to any given user by only knowing its position in the
hierarchy, specified as an ID-tuple (or hierarchical identifier), HID ≡ (ID1, . . . , IDt). This
means that the user is located at level t and its ancestors, starting from the parent up to
the root, have hierarchical identifiers (ID1, . . . , IDt−1), (ID1, . . . , IDt−2), . . ., (ID1), root.

Definition 3 (Hierarchical Identity-Based Encryption Scheme)
A Hierarchical Identity-Based Encryption (HIBE) scheme is a five-tuple of probabilistic
polynomial-time algorithms (Root Setup, Lower-level Setup, Extract, Encrypt, Decrypt), where:

• Root Setup is run by root to start-up an instance of HIBE. Root Setup takes as input
a security parameter 1λ, and returns the global public key params to be made available
to everybody, and the master secret key master-key to be known only by the root.

• Lower-level Setup takes as input an ID-tuple (ID1, . . . , IDt) (t > 0) and the corre-
sponding secret key, and returns some local secret information which can be used in
the Extract procedure below. Notice that the output cannot contain any parameter that
needs to be made public, but only private information to be stored at the local node.

• Extract is run by a user with ID-tuple (ID1, . . . , IDt) (t = 0 corresponds to root) to
compute, using params, its secret key, and maybe other local secret data output by
Lower-level Setup when t > 0, the secret key for an immediate lower level child with
ID-tuple of the form (ID1, . . . , IDt, IDt+1).



• Encrypt takes as input params, the recipient’s ID-tuple (ID1, . . . , IDt) and a message
M , and returns the ciphertext C intended for user (ID1, . . . , IDt).

• Decrypt is run by the user (ID1, . . . , IDt) to recover the plaintext M from the ciphertext
C, given as input params, (ID1, . . . , IDt), C and the user’s private key.

As expected, the correctness property states that the user with hierarchical identifier
HID≡ (ID1, . . . , IDt) should always correctly recover messages encrypted for him/her. We
notice that in the case of HIBE, all the ancestors of the given user can understand the
messages encrypted for this user. For example, one way to do it would be to first derive
the corresponding secret key for the descendant by running a series of Extract operations,
and then to decrypt the ciphertext. In specific schemes, however, there might be a more
efficient/direct way to perform such decryption. For example, the HIBE of [GS02] enjoys
a more efficient decryption by any ancestor of the given node than by the node itself (see
Appendix A).

Finally, we briefly define the CCA1-security of HIBE’s. Intuitively, it more or less states
that only the designated user (ID1, . . . , IDt) and its ancestors can decrypt messages sent
to this user, while no other user of the system can. Upon seeing the public key params,
the adversary repeatedly perform (in any adaptively-chosen order) the following two steps:
(1) learn the private key d corresponding to any ID-tuple (ID1, . . . , IDt) that it chooses, by
means of an extraction query (let us denote by R the final set of corrupted users); (2) ask
any user with any ID-tuple (ID1, . . . , IDt) to decrypt a given ciphertext C chosen by the
adversary. Then the adversary selects some message M and some ID-tuple (ID1, . . . , IDt)
such that (ID1, . . . , IDi) 6∈ R for 0 ≤ i ≤ t (so that no ancestor of this user is corrupted),
and gets back the value Encrypt(params, (ID1, . . . , IDt), M

′), where M ′ is either equal to
M , or is equal to a totally random message. The scheme is CCA1-secure if no polynomial
adversary can distinguish these two cases with non-negligible advantage.

3 The Subset-Cover Framework
In [NNL01], the authors presented the Subset-Cover Framework as a formal environment
within which one can define and analyze the security of revocation schemes. Briefly, the
main idea of the framework is to define a family S of subsets of the universe N of users in
the system, and to associate each subset with a key, which is made available exactly to all
the users belonging to the given subset. When the Center wants to broadcast a message to
all the subscribers but those in some set R, it “covers” the set N \R of “privileged” users
using subsets from the family S (i.e. the Center determines a partition of N \R, where all
the subsets are elements of S), and then encrypts the session key used to masquerade the
message with all the keys associated to the subsets in the found partition.

A revocation scheme within the Subset-Cover framework is fully specified by defining the
particular Subset-Cover family S used, the cover-finding algorithm and the key assignment
employed to deliver to each user the keys corresponding to all the sets the user belongs
to. We remark that the key assignment method does not necessarily give each user all the
needed keys explicitly, but may provide some succinct representation sufficient to efficiently
derive all the needed keys.

As specific examples, the Complete Subtree (CS) method and the Subset Difference (SD)
method were formalized and proven secure within the Subset-Cover framework; recently,



in [HS02] the Layered Subset Difference (LSD) method was introduced as an improvement
on the SD method, that achieves a lower per user storage requirement at the cost of a small
increase in the length of each broadcast.

Although all the above methods were proposed for the symmetric setting, in some appli-
cations it might be desirable to have revocation schemes within the Subset-Cover framework
in the public key scenario. To this aim, in [NNL01] the authors presented a general technique
to transpose any Subset-Cover revocation scheme to the asymmetric setting. The basic idea
of this method is to make the public keys associated to each subset in the family S available
to all the (not necessarily trusted) parties interested in broadcasting information, in the
form of a Public Key File (PKF).

The price paid for the full generality of this technique is a high inefficiency in term
of storage required to maintain and distribute the PKF. However, for specific schemes, it
might be possible to come up with public key cryptosystems that allows to compress the
PKF to a reasonable size. For instance, it was already observed in [NNL01] that the use of
an Identity-Based Encryption (IBE) scheme (such as the one proposed in [BF01]) would be
helpful for the CS method. A solution for the more interesting case of the SD method (or
equivalently for the LSD scheme) was left as an open problem.

We answer the question in the affirmative, by showing that any Hierarchical Identity-
Based Encryption (HIBE) scheme can be used to reduce the PKF to O(1) size, while main-
taining the same small storage for every user. As a warm-up, we first briefly describe the CS
method (referring the interested reader to [NNL01] for more details) and then we show how
to take advantage of the properties of an IBE scheme to extend the CS method. Afterwards,
we describe the SD method and its extension to the public key setting by means of any
HIBE scheme. We also show that the same technique can be used for the LSD variant as
well.

For each method, our emphasis will be on developing its characteristic key assignment
to the users, since this is the main difficulty we will face. In other words, we will not discuss
in any detail the algorithmic technicalities needed to find the subset cover for the set of
privileged users, since these methods remain identical to the symmetric key setting.

A note on Key Indistinguishability. To prove the generic security of the Subset-
Cover framework for a given key assignment in the symmetric setting, [NNL01] introduced
an intermediate notion of key indistinguishability. Intuitively, it stated that any secret key
kj corresponding to the subset Sj remains pseudorandom to the adversary, even if he/she
learns all the secret information belonging to all the users outside of Sj . Obviously, such
intermediate notion does not make sense in the public key setting, since secret keys are
never pseudorandom in public key cryptography. Instead, we notice that the argument
of [NNL01] easily extends to the public key setting, provided the public key encryption
corresponding to the set Sj remains “secure” (in this case, CCA1-secure) even when the
adversary learns all the secret information belonging to all the users outside of Sj . We omit
the obvious formalization of this claim.

4 Public Key Extension of the CS Method
The Original Scheme. In the CS scheme, the users are organized in a tree structure:
for the sake of simplicity, let us assume that the total number N of users in the system is
a power of 2 (i.e. N = 2t, for some integer t), and let us associate each user to a leaf of



the complete binary tree T of height t. The Subset-Cover family S is then set to be the
collection of all the complete subtrees of T . More precisely, if vj is a node in T , the generic
Sj ∈ S is the set of all the leaves of the complete subtree of T rooted at vj (thus, in this
case |S| = 2N − 1).

To associate a key to each element of S, the Center simply assigns, during an initial-
ization step, a random number Lj to each node vj in T , and then Lj is used to perform
all the encryption/decryption operations relative to the subset Sj . Furthermore, since each
user needs to know the keys corresponding to all the subsets he/she belongs to, during the
subscription step the Center gives the subscriber all the keys Lj relative to each node vj in
the path from the root down to the leaf representing the subscriber.

Notice that also the Center needs to keep track of all these keys: to limit the memory
usage, a solution could be to use a pseudo-random function to derive all the 2N − 1 keys
from some fixed, short seed.

As for the efficiency of the scheme, we notice that the storage requirement on each
subscriber is just O(log N), with a transmission rate (i.e. the length of the broadcast
message) of r log N

r , due to the fact that the cover algorithm needs a logarithmic number
of subtrees to exclude each of the r revoked users in R (see [NNL01] for more details).

Extension to the Public Key Setting. As mentioned above, a naive approach to the
problem of transposing the CS method to the asymmetric setting yields a total number of
2N − 1 public keys. The cause of the inefficiency of such solution is that all the public keys
are stored explicitly in the PKF; to overcome this problem we have to employ a scheme
that allows an implicit and compact representation of the PKF from which to easily extract
the needed information: the functionalities of any Identity-Based Encryption scheme come
handy in this situation, yielding the efficient solution described below.

As a preliminary step, a fixed mapping is introduced to assign an identifier ID(Sj) to
each subset Sj of the family S. For example, a simple mapping could be to label each edge
in the complete binary tree T with 0 or 1 (depending on whether the edge connects the
node with its right or left child), and then assign to the subset Sj rooted at vj the bitstring
obtained reading off all the labels in the path from the root down to vj .

Afterwards, the Center runs the Setup algorithm of an IBE scheme to create an instance
of the system in which it will play the role of the Private Key Generator (PKG). Then, the
Center publishes the parameters of the system params and the description of the mapping
used to assign an identifier to each subset: these two pieces of data constitute the PKF,
and requires O(1) space.

To generate the private key LPri
j corresponding to each subset Sj ∈ S, the Center sets:

LPri
j ← Extract(params, ID(Sj), master-key).

At this point, the Center can distribute to each subscriber the private data necessary to
decrypt the broadcast, as in the original, symmetric scheme. Moreover, whenever a (not
necessarily trusted) party wants to broadcast a message, it can encrypt the session key
k used to protect the broadcast under the public keys LPub

ij
= ID(Sij ) relative to all the

subsets that make up the cover of the chosen set of privileged users. To this aim, this party
only needs to know the parameters of the IBE system params and the description of the
mapping ID(·), and then it can compute:



Cj ← Encrypt(params, ID(Sij ), k)

for all the subset Sij in the cover.

Security. The formal CCA1-security of the scheme follows almost immediately from the
powerful security definition of IBE. Indeed, when revoking some set R of users, the adversary
does not learn any of the secret keys used for transmitting the message to the remaining
users N\R (since only sets disjoint from R are used in the cover), so the CCA1-security
of broadcast encryption immediately follows by a simple hybrid argument over the sets
covering N\R.

A Concrete Instantiation. Finally, if we apply the above idea in conjunction with the
specific IBE scheme proposed in [BF01] (see Appendix A), the public key extension matches
the original variant in all the efficiency parameters; more precisely, the storage requirement
on each user is still O(log N) and the transmission rate is r log N

r , where r = |R|.

5 Public Key Extension of the SD Method
To improve the transmission rate, the SD scheme uses a more sophisticated Subset-Cover
family S: each user will belong to more subsets, thus allowing for greater freedom (and hence
higher efficiency) in the choice of the cover. On the flip side, this will create a problem of
compressing the user’s storage which will need to be addressed.

As before, the users are associated to the leaves of the complete binary tree T , but the
generic subset Sij is now defined in term of two nodes vi, vj ∈ T (with vi ancestor of vj),
which we will call respectively primary root and secondary root of Sij . Specifically, each
subset Sij consists of all the leaves of the subtree rooted at vi except those in the subtree
rooted at vj .

1

Due to the large number of subsets that contain a given user, it is no longer possible
to employ an information-theoretic key assignment, directly associating a random key to
each element in the family S (as it was done in the CS method), because this would require
each subscriber to store a huge amount of secret data: to overcome this problem, a more
involved, computational technique is required.

The idea behind the solution proposed in [NNL01] is to derive the set of actual keys
{Lij} from some set of “proto-keys” {Pij} satisfying the following properties:

1. given the proto-key Pij it is easy to derive the key Lij ;

2. given the proto-key Pil it is easy to derive the proto-key Pij , for any node vj descendent
of node vl;

3. it is computationally difficult to obtain any information about a proto-key Pij without
knowing the proto-key Pil for some ancestor vl of vj (and descendent of vi).

In particular, the last property implies that given the knowledge of the key Lij it is com-
putationally difficult to recover the proto-key Pij .

Once we have defined a way to generate a family of proto-keys featuring the above
properties (which we will call a “proto-key assignment”), it is possible to make available to

1The denomination of the SD method is due to the fact that each subset Sij can be expressed as the
set-difference of the two subsets Si and Sj as defined in the CS method: Sij = Si \ Sj .



each subscriber the O(N) secret keys corresponding to all the subsets he/she belongs to,
by giving him/her only O(log2 N) proto-keys, as described below.

Let u be the leaf representing the user within the tree T and let rT be the root of T .
Furthermore, let rT ≡ u0, u1, . . . , ut ≡ u be all the ancestors of u on the path from rT down
to u, and denote by sh the sibling of uh, h = 1, . . . , t.

By definition, the subtree difference sets Sij containing u are precisely those whose
primary root vi is one of the uh’s and whose secondary root vj is a descendent2 of sh′ for
some h′ > h.

For instance, among the subsets whose primary root is rT , the ones containing u are
those whose secondary root vj is a descendent of some sh. Notice that, by the first property
of the proto-keys assignment described above, to compute the key LrT vj

corresponding
to such subset, it is enough to know the proto-key PrT vj

, which in turn (for the second
property) can be obtained from the proto-key PrT sh

; thus, by giving the user the t = log N
proto-keys PrT s1

, . . . ,PrT st , he/she will be able to efficiently compute the keys relative to
all the subsets SrT vj

he/she belongs to.
Repeating the same reasoning for all the log N ancestor uh of u, we can conclude that

O(log2 N) proto-keys suffice to allow the user u to recover all the O(N) relevant keys.

The Original Scheme. We now describe the key assignment for the SD method of [NNL01]
as a particular instance of the proto-key assignment described above.

In the initialization phase, the Center associates to each internal node vi in T a random
number Labeli, which can be thought as the proto-key Pii for the improper subtree dif-
ference set Sii. Then, to generate the proto-keys for all the subsets Sij , a pseudo random
generator G : {0, 1}n −→ {0, 1}3n is used, where n is the desired length of the keys Lij . For
notational convenience, given an input x, we will denote with GL(x) the n leftmost bits of
G(x), with GR(x) the n rightmost bits of G(x), and with GM (x) the remaining n central bits
of G(x).

Using the generator G, we can express the relationship between a proto-key Pij and the
proto-key Pil (with vl parent of vj) as follows:3

Pij =

{

GL(Pil) if vj is the left child of vl

GR(Pil) if vj is the right child of vl

Furthermore, the key Lij associated to the subset Sij can be derived from the proto-key
Pij as Lij = GM (Pij).

By construction, the first two properties of the proto-key assignment are satisfied; as for
the third one, the use of a pseudorandom generator guarantees the computational hardness
of obtaining any information about a proto-key Pij or a key Lij , without knowledge of any
proto-key Pil, for some vl ancestor of vj .

Notice that the Center can avoid to store all the N − 1 labels Labeli by reusing the
technique of the generator G. Namely, the Center associates to the root rT of the tree T
a random seed s of length n; to generate each Labeli, it repeatedly applies the generator
G taking, at each edge on the path going from the root down to the node vi, the left part
GL or right part GR depending on the direction of the edge, and finally applying GM once
it gets to the node vi.

2For our purposes, a node v will be considered among its own descendents.
3In [NNL01], the authors refer to what we call here the “proto-key” Pij as Labeli .



As already observed, the use of a proto-key assignment allows to cut the storage re-
quirement on the subscribers down to O(log2 N). More interestingly, since in [NNL01] the
authors showed how to cover any privileged set excluding r revoked users using only 2r− 1
subsets, the SD scheme enjoys an O(r) transmission rate, thus being the only known broad-
cast encryption scheme supporting any number of revocations at the cost of a proportional
increase in the length of the ciphertext (and independent of the total number of users).

Extension to the Public Key Setting. To extend the SD scheme to the asymmetric
scenario, one would like to generalize the basic idea used for the case of the CS method:
namely, define an ID mapping for all the subsets Sij ∈ S and then employ an IBE scheme
to extract all the relevant private keys. However, as already observed, to avoid an explosion
of the user’s storage, it is necessary to use a scheme satisfying the characteristic properties
of a “proto-key assignment”, whereas ordinary IBE schemes do not seem to support the
crucial property, since this requires the capability of deriving “children” proto-keys from a
given proto-key. Luckily, the more powerful notion of general Hierarchical Identity-Based
Encryption (such as the one recently proposed in [GS02]), offers all the functionalities
needed, leading to the solution described below.

First, to define a mapping HID(·) assigning a hierarchical identifier to each set Sij of the
family S, we will reuse the ID(·) mapping introduced in the public key extension of the CS
method, which associates to each node in the tree T a bitstring of 0’s and 1’s, depending
on its position within T .

Preliminarely, we extend the ID(·) mapping to the improper subsets of the form Sii,
letting ID(Sii) = ID(vi). Next, we notice that if vi is an ancestor of vj and we think of
ID(vi) and ID(vj) as hierarchical sequences of one-digit identifiers (rather than as unique,
monolithic IDs), then ID(vi) will be a prefix of ID(vj). So let us denote with ID(vj)\ID(vi)
the hierarchical identifier made up by the sequence of single-bit identifiers in the suffix of
ID(vj) coming right after the prefix ID(vi).

Now we can define the HID(·) mapping on all the elements of S as follows:

HID(Sij) = (ID(Sii), [ID(vj)\ID(vi)], 2)

where the operator “,” is used to highlight the juxtaposition of hierarchical identifiers.
Notice, the depth of this identifier is two plus the depth of vi relative to vj in our tree, and
the symbol 2 is used as terminator (we will see why soon).

Once the HID(·) mapping has been specified, to complete the initialization phase, the
Center runs the Setup algorithm of a HIBE scheme and publishes params and a description
of the mapping HID(·) as the Public Key File. Besides, the distribution of the secret
decryption data to the subscribers will be carried out as another instantiation of the proto-
keys assignment, as described below.

The key LPri
ij relative to a given subset Sij will be the private key extracted from the

public key LPub
ij = HID(Sij). As described in Section 2.3, to extract the private key LPri

ij

from the hierarchical identifier HID(Sij) = (ID(Sii), [ID(vj)\ID(vi)], 2), it is necessary to
know the private key Pij of the local PKG corresponding to its parent (ID(Sii), [ID(vj)\
ID(vi)]), or of any ancestor of HID(Sij) lying higher in the tree hierarchy. Such key Pij is
defined to be the proto-key associated to Sij ; formally:4

4We remark that the values of keys and proto-keys are not uniquely defined by these probabilistic assign-



LPri
ij ← Extract(params, (ID(Sii), [ID(vj)\ID(vi)], 2),Pij)

Pij ← Extract(params, (ID(Sii), [ID(vj)\ID(vi)]),Pil)

Pii ← Extract(params, (ID(Sii)), master-key)

where vl is the parent of vj , and master-key is the master key output by the Setup algorithm
and known only to the root PKG, role that in our setting is played by the Center.

From the above definitions, it is clear that the first two properties of a proto-key assign-
ment are fulfilled; on the other hand, the validity of the third one hinges upon the security
of the HIBE scheme, that ensures the computational difficulty of obtaining a private key for
any identifier without knowing the private key of a local PKG lying higher in the hierarchy
of the system.

Direct consequence of the application of the proto-key assignment to the public key
extension, is that the storage requirement on each subscriber is still O(log2 N). On the
other hand, the cover finding algorithm characteristic of the SD method ensures that 2r−1
ciphertexts will suffice in the worst case to broadcast the session key to all the privileged
users in the system.

Security. The formal CCA1-security of the scheme again follows almost immediately from
the powerful security definition of HIBE. Indeed, when revoking some set R of users, none
of the proto-keys the adversary learns is an ancestor of any of the hierarchical identifies
corresponding to the sets covering N\R. This property is fairly easy to verify, and a simple
hybrid argument will again complete the security proof. We remark that only CCA1-security
is achieved by the SD (as well as the CS) scheme(s), since the adversary is disallowed to
ask the decryption oracle after the challenge is obtained. And, indeed, it is easy to see that
one cannot achieve CCA2-security by following the Subset-Cover framework, since each user
can decrypt only one of several independent encryptions of the message.

A Concrete Instantiation. We now consider how an actual implementation of our
public key extension would perform in the practice. Since the only known implementation
of a fully functional HIBE is the one recently proposed in [GS02], we discuss its efficiency
below (see Appendix A).

One interesting characteristic of the HIBE of [GS02] is that a ciphertext encrypted for
a given user in the system can be easily recovered by any of its ancestor — actually, the
decryption process gets more and more efficient as we go higher in the hierarchy. As a
consequence, instead of deriving the private key LPri

ij required to decrypt the ciphertext
from its “ancestor” proto-key Pil, the user can directly obtain the message broadcast using
Pil itself, thus saving up to O(log N) factor in the decryption time.

On the flip side, the specific HIBE of [GS02] yields ciphertexts whose length is propor-
tional to the nesting depth of the hierarchical identifier to which the encrypted message
is being sent: it follows that the transmission rate of such a concrete instantiation of our
public key extension would be O(r log N), due to the fact that the hierarchical identifier
HID(Sij) can have nesting depth proportional to the height t = log N of the tree T .

Therefore, when used in conjunction with the HIBE of [GS02], the asymmetric variation
of the SD scheme proposed above leads to the same decryption time and transmission rate

ments. In particular, deriving the value of the “same” key twice from some of its ancestors will likely result
in different keys. However, any value we get is equally functional by the definition of HIBE.



of the public key extension of the CS method, while imposing a greater storage requirement
on each single user. Nevertheless, we feel that our technique gives an interesting solution to
the problem of obtaining a fixed Public Key File size, when generalizing the SD method to
the asymmetric setting: besides, if a more efficient implementation of HIBE should become
available, the parameters of our scheme would automatically improve, possibly reaching the
efficiency of the SD method for the symmetric scenario.

6 Public Key Extension of the LSD Method
The Original Scheme. Recently, an improvement to the SD method, known as the
Layered Subset Difference (LSD) method, was proposed in [HS02]. In its basic form,
this method reduces the amount of secret data that each subscriber needs to store, from
O(log2 N) to O(log3/2 N), at the cost of doubling the maximum size of the cover. The
authors also presented a generalization of the basic scheme that achieves a storage require-
ment of O(log1+ǫ N), for any ǫ > 0, while increasing the length of the broadcast by a factor
of 1/ǫ, which still yields a transmission rate of O(r), for fixed values of ǫ.

The main idea behind the LSD scheme is to reduce the size of the family S by only
considering a subcollection S ′ of useful subsets. The key observation to reach this goal is
that any subtree difference set Sij can be rewritten as the disjoint union Sik ∪ Skj , for any
node vk lying in the path from vi to vj .

To define the sub-collection S ′, consecutive levels of the tree T are grouped into layers,
and certain subsets of S are called local or special. In particular, local subsets are those
whose primary and secondary roots both lie within the same layer, while special subset
are those having as their primary root a node lying exactly on the boundary between two
adjacent layers. The sub-collection S ′ consists exactly of all the local and special subsets
of S. In this way, the number of proto-keys that each user needs in order to decrypt each
broadcast can be reduced, while the Center can preserve the functionalities of the system by
at most doubling the size of the cover. This is because any subset Sij ∈ S can be obtained
as the union of a local subset and a special subset in S ′.

Extension to the Public Key Setting. Since the LSD scheme only differs from the
SD method of [NNL01] for the use of a smaller subcollection S ′ of the Subset-Cover family
S, we can extend it to the asymmetric setting applying exactly the same idea used to
generalize the SD method to the public key scenario: indeed, any HIBE scheme can be
employed to distribute the necessary proto-keys to the users of the system, according to
the same label-distribution strategy defined for the original LSD scheme in its conventional
symmetric mode.

A Concrete Instantiation. As for the efficiency parameters of such public key extension,
we can repeat the same discussion outlined for the SD scheme: namely, if we use the HIBE

proposed in [GS02] (which is currently the only known implementation of a fully functional
HIBE scheme), the public key extension maintains the same storage requirement as the
original, symmetric LSD scheme, whereas the transmission rate deteriorates by a factor
of log N . Again, should a more efficient HIBE scheme be proposed, our solution would
consequently improve, approaching the performance of the conventional LSD scheme.



6.1 Inclusion-Exclusion Trees
In [HS02], the authors also considered an alternative approach to the problem of specifying
the set of revoked users R that shouldn’t be a able to recover the broadcasted message.
Such technique is based on the use of Inclusion-Exclusion Trees (IE-Trees), which offer a
convenient way of describing a large set of privileged users with relative few nested inclusion
and exclusion conditions on the nodes of the tree T .

The advantage of such technique is that from an IE-Tree it is possible to derive a cover
whose size is proportional to the number of conditions specified by the IE-Tree itself.

Without going in the details of this approach (for which we refer the reader to [HS02]),
we notice here that our extension to the Public Key setting can be coupled with the use of
IE-Trees in the case of both the SD scheme and the LSD scheme, since once a cover of the
set of privileged users has been obtained, both the encryption and the decryption steps can
be performed making use of our HIBE-based technique presented above.
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A Currently Best IBE/HIBE Schemes
We briefly describe the currently best IBE scheme of [BF01] and the HIBE [GS02]. We will
only describe the “basic” chosen plaintext (CPA) secure versions of these schemes, since
both schemes utilize random oracles, and amplifying the security from CPA to CCA1/CCA2

can be done by a variety of standard means in the random oracle model (see [BF01, GS02]
for the details). Also, since the HIBE of [GS02] is a generalization of the IBE of [BF01], we
first describe their common features.

Common Features.. Let G1, G2 be two cyclic groups of a large prime order q, where G1

is represented additively, and G2 multiplicatively. We assume the existence of a symmetric
bilinear mapping ê : G1 × G1 → G2. Namely, for any P, Q ∈ G1, a, b ∈ Zq, we have:

ê(aP, bQ) = ê(bP, aQ) = ê(P, Q)ab = ê(Q, P )ab (1)

We assume also the existence of the parameter generation algorithm I which, on input 1λ,
outputs a prime q, the description of G1, G2 of order q and a bilinear map ê, so that ê is
polynomial-time computable in λ. We mention that the security of both schemes below is
based on the Bilinear Diffie-Hellman (BDH) assumption: for random P ∈ G1, a, b, c ∈ Zq,
it is computationally hard to compute ê(P, P )abc ∈ G2 when given only P, aP, bP, cP .

IBE of [BF01]. We follow the same notation as the the one we will later use for the HIBE

of [GS02].

• Setup. Run I(1λ) to get G1, G2, ê, pick a random s0 ∈ Zq, P0 ∈ G1, set Q0 = s0P0, and
output params = (G1, G2, ê, P0, Q0, H1, H2), master-key = s0. Here H1 : {0, 1}∗ →
G1, H2 : G2 → {0, 1}n are cryptographic hash functions, modeled as random oracles
(i.e., they output a truly random string on every input), and n is the length of the
messages encrypted.

• Extract. Set the secret key of user ID to S1 = s0P1, where P1 = H1(ID) is a random
point in G1 derived from ID by means of a random oracle.

• Encrypt. To encrypt a message M ∈ {0, 1}n for user ID using public value Q0, compute
P1 = H1(ID) ∈ G1, choose a random r ∈ Zq, set g = ê(Q0, rP1) ∈ G2 and return
C = [rP0, M ⊕ H2(g)].

• Decrypt. To decrypt C = [U0, V ] using S1 and Q0, set f0 = ê(U0, S1) and output
V ⊕ H2(f0).

To see the correctness of the decryption, notice that:

f0 = ê(U0, S1) = ê(rP0, s0P1)
(1)
= ê(s0P0, rP1) = ê(Q0, rP1) = g.

HIBE of [GS02]. We will see that the IBE scheme above is the special case of the scheme

below when depth t = 1.

• Root Setup. Same as Setup for IBE. Namely, run I(1λ) to get G1, G2, ê, pick a random
s0 ∈ Zq, P0 ∈ G1, set Q0 = s0P0, and output params = (G1, G2, ê, P0, Q0, H1, H2),
master-key = s0.

• Lower-level Setup. Each user at level t ≥ 1 picks a random local secret st ∈ Zq (recall,
root has s0) and keeps it secret.



• Extract. Every user (ID1, . . . , IDt) at level t ≥ 0 will have a secret point St ∈ G1

(see below; we assume that the root has S0 = 0G1
), and (t − 1) “translation points”

Q1 . . . Qt−1 ∈ G1 (notice, Q0 is in the public key). Recursively, to assign the secret key
to its child IDt+1, the parent (ID1, . . . , IDt) computes Pt+1 = H1(ID1 . . . IDt+1) ∈ G1,
picks a random st ∈ Zq, sets the child’s secret point St+1 = St + stPt+1, the child’s
final translation point Qt = stP0, and sends to the child the values St+1, Qt together
with its own t−1 translation points Q1 . . . Qt−1. Unwrapping the notation, the child’s
secret key is (St+1 =

∑t+1
i=1 si−1Pi, Q1 = s1P0, . . . , Qt = stP0).

• Encrypt. To encrypt a message M ∈ {0, 1}n for (ID1, . . . , IDt) using public value Q0,
compute Pi = H1(ID1 . . . IDi) ∈ G1 for all 1 ≤ i ≤ t, choose a random r ∈ Zq, set
g = ê(Q0, rP1) ∈ G2 and return:

C = [rP0, M ⊕ H2(g), rP2, . . . , rPt]

Intuitively, the first two components correspond to the IBE encryption we described
earlier for the top-level user (ID1). Unfortunately, user (ID1, . . . , IDt) cannot quite
decrypt it using its “translated” secret point St+1, so additional values rP2, . . . , rPt

are given. Combining them with secret translation points Q1 . . . Qt−1, the message M
is recovered. This is described below.

• Decrypt. To decrypt C = [U0, V, U2, . . . , Ut] using St and Q1 . . . Qt−1, set f0 =
ê(U0, St), fi = ê(Qi−1, Ui) for 2 ≤ i ≤ t and output M = V ⊕ H2(f0/(f2 . . . ft)).

To see the correctness of the decryption, notice that:

f0 = ê(U0, St) = ê(rP0,
t

∑

i=1

si−1Pi) =
t

∏

i=1

ê(rP0, si−1Pi)

(1)
=

t
∏

i=1

ê(si−1P0, rPi) = ê(Q0, rP1) ·
t

∏

i=2

ê(Qi−1, Ui) = g · f2 · · · ft

Finally, we remark on the specific feature of the above scheme. The ciphertext for the user
at level t literally contains the shorter ciphertext for every ancestor of the user. Thus, it is
more efficient to decrypt for the ancestor than for the user itself.


