Skip to main content

Expected Shortest Paths for Landmark-Based Robot Navigation

  • Chapter
Algorithmic Foundations of Robotics V

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 7))

Abstract

In this paper we address the problem of planning reliable landmark-based robot navigation strategies in the presence of significant sensor uncertainty. The navigation environments are modeled with directed weighted graphs in which edges can be traversed with given probabilities. To construct robust and efficient navigation plans, we compute expected shortest paths in such graphs. We formulate the expected shortest paths problem as a Markov decision process and provide two algorithms for its solution. We demonstrate the practicality of our approach using an extensive experimental analysis using graphs with varying sizes and parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Becker, J. Salas, K. Tokusei, and J.-C. Latombe. Reliable navigation using landmarks. In Proceedings of IEEE International Conference on Robotics and Automation, pages 401–406, June 1995.

    Google Scholar 

  2. D. M. Blei and L. P. Kaelbling. Shortest paths in a dynamic uncertain domain. In Proceedings of the IJCAI Workshop on Adaptive Spatial Representations of Dynamic Environments, 1999.

    Google Scholar 

  3. A. Briggs, D. Scharstein, and S. Abbott. Reliable mobile robot navigation from unreliable visual cues. In Donald, Lynch, and Rus, editors, Algorithmic and Computational Robotics: New Directions, A. K. Peters, pages 349–362, 2001.

    Google Scholar 

  4. A. Briggs, D. Scharstein, D. Braziunas, C. Dima, and P. Wall. Mobile robot navigation using self-similar landmarks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2000), pages 1428–1434, April 2000.

    Google Scholar 

  5. C. Fennema, A. Hanson, E. Riseman, J. R. Beveride, and R. Kumar. Model-directed mobile robot navigation. IEEE Transactions on Systems, Man, and Cybernetics, 20 (6): 1352–1369, 1990.

    Article  Google Scholar 

  6. L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration space for fast path planning. In Proceedings of IEEE International Conference on Robotics and Automation, pages 2138–2145, May 1994.

    Google Scholar 

  7. A. Lazanas and J.-C. Latombe. Landmark-based robot navigation. Algorithmica 13(5): 472–501, May 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Lin and R. Tummala. Mobile robot navigation using artificial landmarks. Journal of Robotic Systems, 14 (2): 93–106, 1997.

    Article  Google Scholar 

  9. M. Mani, A. Zelikovsky, G. Bhatia, and A. Kahng. Traversing probabilistic graphs. Technical Report 990010, UCLA, 1999.

    Google Scholar 

  10. B. Nickerson, P. Jasiobedzki, D. Wilkes, M. Jenkin, E. Milios, J. Tsotsos, A. Jepson, and O. N. Bains. The ARK project: Autonomous mobile robots for known industrial environments. Robotics and Autonomous Systems, 25: 83–104, 1998.

    Article  Google Scholar 

  11. M. H. Overmars and P. Svestka. A probabilistic learning approach to motion planning. In Goldberg, Halperin, Latombe, and Wilson, editors, 1994 Workshop on the Algorithmic Foundations of Robotics, A. K. Peters, pages 19–37, 1995.

    Google Scholar 

  12. C. Owen and U. Nehmzow. Landmark-based navigation for a mobile robot. In Proceedings of Simulation of Adaptive Behaviour. MIT Press, 1998.

    Google Scholar 

  13. C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer Science, 84: 127–150, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability that a graph is connected. SI AM Journal of Computing, 12 (4), November 1983.

    Google Scholar 

  15. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, New York, NY, 1994.

    Book  MATH  Google Scholar 

  16. D. Scharstein and A. Briggs. Real-time recognition of self-similar landmarks. Image and Vision Computing, 19 (ll): 763–772, September 2001.

    Article  Google Scholar 

  17. R. Sim and G. Dudek. Mobile robot localization from learned landmarks. In Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), Victoria, BC, October 1998.

    Google Scholar 

  18. R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan. Xavier: An autonomous mobile robot on the web. IEEE Robotics and Automation Magazine, 1999.

    Google Scholar 

  19. R. Simmons and S. Koenig. Probabilistic navigation in partially observable environments. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 1080–1087, 1995.

    Google Scholar 

  20. C.J. Taylor and D. J. Kriegman. Vision-based motion planning and exploration algorithms for mobile robots. In Goldberg, Halperin, Latombe, and Wilson, editors, 1994 Workshop on the Algorithmic Foundations of Robotics, A. K. Peters, pages 69–83, 1995.

    Google Scholar 

  21. S. Thrun, M. Beetz, M. Bennewitz, W. Burgaxd, A. B. Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algorithms and the interactive museum tour-guide robot Minerva. International Journal of Robotics Research, 19 (11), 2000.

    Google Scholar 

  22. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal of Computing, 8 (3), August 1979.

    Google Scholar 

  23. F. Zanichelli. Topological maps and robust localization for autonomous navigation. In Proceedings of the International Joint Conference on Artificial Intelligence, Workshop ROB-2, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Briggs, A.J., Detweiler, C., Scharstein, D., Vandenberg-Rodes, A. (2004). Expected Shortest Paths for Landmark-Based Robot Navigation. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics