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Abstract. A key intuition behind probabilistic roadmap planners for motion planning is that
many collision-free paths potentially exist between two given robot configurations. Hence
the connectivity of a robot’s free space can be captured effectively by a network of randomly
sampled configurations. In this paper, a similar intuition is exploited to preprocess molecular
motion pathways and efficiently compute their ensemble properties, i.e., properties character-
izing the average behavior of many pathways. We construct a directed graph, called stochas-
tic conformational roadmap, whose nodes are randomly sampled molecule conformations.
A roadmap compactly encodes many molecular motion pathways. Ensemble properties are
computed by viewing the roadmap as a Markov chain. A salient feature of this new approach
is that it examines all the paths in the roadmap simultaneously, rather than one at a time as
classic methods such as Monte Carlo (MC) simulation would do. It also avoids the local-
minima problem encountered by the classic methods. Tests of the approach on two important
biological problems show that it produces more accurate results and achieves several orders
of magnitude reduction in computation time, compared with MC simulation.

1 Introduction

Probabilistic roadmap (PRM) [1,8,9,13,16,17,25] planners have been successfully
used in recent years to compute collision-free paths for robots with many degrees
of freedom. A classic PRM planner [16] samples at random a robot’s configuration
space to construct a network that approximates the connectivity of the free space,
and then searches the roadmap to process path planning queries. A key intuition
behind PRM planners is that many collision-free paths potentially exist between
two given robot configurations. Hence the connectivity of a robot’s free space can
be captured effectively by a network of randomly sampled configurations connected
by collision-free curves. In this paper, a similar intuition is exploited to develop
an efficient approach for analyzing the motion pathways of molecules during vital
biological processes, such as protein folding and ligand-protein binding.

Molecules can be modeled approximately as articulated structures in 3-D space.
They move under the influence of an energy field that includes van der Waals,
electrostatic, and other potentials. For instance, to carry out biological functions,
protein molecules remarkably assemble themselves, or fold, into unique 3-D struc-
tures called native folds. Protein folding plays a central role in biological pro-
cesses essential to life. Failing to fold into the correct structures has serious conse-
quences, including well-known diseases such as the Creutzfeldt-Jacobs (mad cow)
�
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or Alzheimer’s disease. Despite its importance, the protein folding process remains
a mystery. While it is traditionally studied through tedious and costly laboratory
experiments, computer simulation plays an increasingly important role.

Classic techniques for simulating molecular motion, including Monte Carlo [15]
and molecular dynamics [12] methods, have two major drawbacks:

1. They compute individual pathways, one at a time; however, many interesting
properties of molecular motion, in particular, the ensemble properties, are best
characterized statistically over many pathways. For instance, the “new view” of
protein folding asserts that proteins fold in a multi-dimensional energy funnel
by following a myriad of pathways, all leading to the same native structure.

2. A typical molecular energy function contains many local minima, and the clas-
sic simulation techniques waste considerable computation time trying to escape
from these local minima. This is similar to the behavior of potential field plan-
ners (see, e.g., [6]) in robot motion planning.

The high computational cost of these existing techniques prevents them from being
used to analyze many pathways.

The Stochastic Roadmap Simulation (SRS) framework described in this paper
overcomes both drawbacks [3]. In SRS, we build a network, called stochastic con-
formational roadmap, or just roadmap for short. A roadmap compactly encodes
many pathways and captures the stochastic nature of molecular motion. More pre-
cisely, a roadmap is a directed graph, whose nodes are randomly sampled molecule
conformations. The conformation of a molecule specifies its 3-D structure; the con-
cept is similar to that of the configuration of a robot. An edge between two nodes ���
and ��� in the roadmap carries a weight � � � , which estimates the probability for the
molecule to transition from � � to ��� . Every path in the roadmap corresponds to a po-
tential motion pathway of the molecule. A roadmap thus combines a huge number
of pathways, weighted by the probabilities that the molecule may follow these path-
ways. The construction of the roadmap also circumvents the local-minima problem
encountered by the classic simulation techniques.

The probabilities attached to the edges of a roadmap directly express the stochas-
tic nature of molecular motion. We view the motion of molecules on the roadmap
as a random walk similar to a Monte Carlo (MC) simulation run. At each step of
the random walk, a molecule either stays at the current node or moves to a neigh-
boring node according to the assigned transition probabilities. However, to compute
efficiently the ensemble properties of molecular motion, we avoid explicit simu-
lation. Instead, we treat the roadmap as a Markov chain and apply the first-step
analysis [31] from the Markov chain theory to process all pathways in the roadmap
simultaneously, rather than one at a time as classic methods such as MC simulation
would do. Conceptually, this is equivalent to performing infinitely many simulation
runs simultaneously and extracting statistics from them, but it results in tremendous
gain in computational efficiency.

SRS is by necessity more coarse-grained in sampling than MC simulation. While
a MC simulation run focuses on one individual pathway, SRS must spread the sam-
ples over the entire conformation space. On the other hand, SRS examines many
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motion pathways at once and obtains information not easily accessible by classic
methods. Tests of SRS on a number of protein folding and ligand-protein binding
examples indicate empirically that SRS computes ensemble properties satisfactorily
even with rather coarse roadmaps. In addition, it can be shown formally that, with
appropriately defined edge probabilities, SRS and MC simulation converge to the
same sampling distribution—the Boltzmann distribution—in the limit.

SRS is inspired by the PRM methods for robot motion planning. The stochastic
conformational roadmap is a generalization of the probabilistic roadmap in PRM
planners. In motion planning, the configuration space of a robot is the domain of a
binary function specifying whether a configuration is collision-free. The conforma-
tion space of a molecule or a collection of molecules is the domain of a continuous
energy function governing the motion of the molecules. As a result, the edges of a
stochastic conformational roadmap are weighted with transition probabilities, while
the edges of a probabilistic roadmap are unweighted.

Singh et al. introduced the PRM methods to the study of molecular motion in
their work on ligand-protein binding [27]. Their approach has since been applied to
protein folding as well [2,5,29]. Earlier work treats the roadmap as a deterministic
graph, with heuristic edge weights based on the energy difference between molecule
conformations. The heuristic edge weights measure the energetic difficulty of tran-
sitioning along the edges. Graph search techniques are used to extract “low-energy”
paths from the roadmap. Our stochastic conformational roadmap is fundamentally
different: it defines a Markov chain that captures the stochastic nature of molecular
motion and enables us to analyze globally all the pathways contained in a roadmap
by applying tools from Markov Chain theory. It also allows us to establish a formal
relationship between SRS and the well-established MC method.

This paper combines and extends results presented in [3,4]. It provides addi-
tional experimental results and give new ideas on how efficient sampling strategies
can be eventually designed to extend SRS to very high dimensional conformation
spaces. In the following, we first cover some preliminaries (Sect. 2). We then de-
scribe how to construct a roadmap (Sect. 3) and query it to compute ensemble prop-
erties (Sect. 4). We used SRS to address two biological problems: computing the
probability of folding in protein folding and estimating the escape time in ligand-
protein binding. These experimental results are reported in Sects. 5 and 6.

2 Preliminaries

2.1 Conformation space

The conformation of a molecule determines its 3-D structure. Conformations can be
specified in various ways. For a protein molecule, we can specify the positions of the
constituent atoms or the backbone torsional angles � and � . SRS applies to many
different representations, provided that the conformation of a molecule is specified
by a finite number of parameters that uniquely determine the 3-D position of every
atom in the molecule. Formally, a conformation � of � parameters is specified by a
vector ��� ��� � ���
	�	�	�� �
��
 . The set of all conformations form the conformation space � .
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By determining the molecule’s 3-D structure, the conformational parameters
also determine the interactions between the atoms of the molecule and between the
molecule and the medium, e.g., van der Waals and electrostatic interactions. These
interactions give rise to the attractive and repulsive forces that govern molecular
motion. SRS assumes that these interactions are described by an energy function� � � 
 that depends only on the conformation � of the molecule; it does not require�

to have any particular properties or functional forms.

2.2 Monte Carlo simulation

MC simulation—more precisely, the Metropolis algorithm [20]—is one of the most
common methods for simulating molecular motion. It samples the conformation
space � of a system of molecules in order to study how they relax to or fluctuate
around the equilibrium state. A key property of MC simulation is that, in the limit,
the conformation space is sampled according to the Boltzmann distribution [18].

MC simulation starts at some initial conformation and performs a random walk
in � . Let � be the conformation at the current step of this random walk. To obtain
the next conformation, a conformation ��� is chosen from a small neighborhood of
� , with a uniform or Gaussian distribution centered at � . The move to ��� is accepted
with a probability � that depends on the energy difference � ����� � ��� 

	 � ��� 
 .
Define the Boltzmann factors � �
����� ��	 � ��� 
�������� 
 and ��� �
����� ��	 � � ��� 
�������� 
 ,
where ��� is the Boltzmann constant, and � is the temperature of the system. The
Metropolis criterion prescribes the acceptance probability as� ��� ����� ��	�� � ��� � � 
  "!#���$�%�'&)(( *�+-, ��.-/  10 � 	 (1)

Since ���$�%� �2����� ��	�� � ��� � � 
 , the condition ���$�%�'&)( holds if and only if � ��354
.

So, if a move decreases the energy, it is always accepted; otherwise, it is accepted
with probability

����� ��	�� � ��� � � 
 . If the move from � to ��� is accepted, the simula-
tion transitions to ��� ; otherwise, it stays at � . The procedure then repeats to generate
more sampled conformations, until termination conditions are met (e.g., the maxi-
mal number of steps is reached, or the quantity being computed stabilizes).

This procedure guarantees that if the number of simulation steps is sufficiently
large, the sampled conformations are distributed according to the Boltzmann distri-
bution with the density function6 � � 
 � (798 ����� ��	 � ��� 
�������� 
 �
where

798:�<;>=?����� ��	 � ��� 
���� � � 
 � � is a normalization constant. So any subset@BA � is sampled with probability
6 � @ 
 � ;>C 6 � � 
 � � .

MC simulation is an important tool for studying molecular motion. However,
it is computationally intensive. Each simulation run yields a single pathway, and
the simulation must be run many times over extended durations in order to produce
accurate statistical results. Moreover, the energy function

�
typically contains many

local minima. A MC simulation run spends most of its time overcoming energy
barriers to escape from these local minima. Many similar conformations are sampled
near the same local minimum, but they contain little new information.



Stochastic Conformational Roadmaps 5

2.3 Stationary distribution of a Markov chain

A Markov chain is a stochastic process that takes values from a finite or countable
set of states � ��� � � �
	�	�	 [31]. The probability of going from state � � to � � is � � � , which
depends only on � � and � � . Under suitable conditions, a Markov chain has a limit
distribution � � ��� � � � � �
	�	�	 
 that can be obtained as follows. Starting at an initial
state, perform a random walk over the set of all possible states. At each step of the
random walk, make a move to the next state with the transition probability � � � . If the
random walk continues infinitely, then under the condition that the Markov chain is
ergodic, each node � � is visited with a fixed probability � � in the limit, regardless
of the starting state [31]. So � describes the limit behavior of all possible random
walks. The probability � � gives the fraction of the time that � � is visited in the limit.

The limit distribution � satisfies the following equations [31]:

� � ���
�
� � � � � for all � 	 (2)

With the additional constraints � ��� 4
for all � and � � � � � ( , the solution to (2)

is guaranteed to be a well-defined probability distribution. Equation (2) says that, in
the limit, the distribution � no longer changes from one step of the random walk to
the next. For this reason, � is called the stationary distribution.

If a conformation space is discretized into a finite set of states, MC simulation
over this discretized space can be described by a Markov chain with appropriately
defined transition probabilities. The stationary distribution of the Markov chain then
gives the limit behavior of the MC simulation.

3 Stochastic conformational roadmaps

In Stochastic Roadmap Simulation, we preprocess molecular pathways by precom-
puting a roadmap, which provides a discrete representation of molecular motion. A
roadmap compactly encodes a large number of MC simulation paths simultaneously
and enables us to perform key computation efficiently.

3.1 Roadmap construction

A roadmap � is a directed graph. Each node of � is a randomly sampled conforma-
tion in � . Each (directed) edge from node � � to node ��� carries a weight � � � , which
represents the transition probability of the molecule to move from conformation � �
to ��� . The probability � � � is 0 if there is no edge from � � to ��� . Otherwise, it depends
on the energy difference � � � � �)� � ����
 	 � � � � 
 .

To construct a roadmap, our algorithm first samples conformations indepen-
dently at random from � . Our current implementation samples uniformly by picking
a value for each conformational parameter � � � � � �
	�	�	 uniformly at random from its
allowable range (see Section 7 for a discussion of more efficient sampling strate-
gies). Next, for each node � � , the algorithm finds its nearest neighbors according
to a suitable metric such as the root mean squared distance [18]. It then creates



6 M.S. Apaydın et al.

an edge between � � and every neighboring node � � and attaches to it the transition
probability

� � �
���� � �

��� ����� ��	�� � � ��������� 
  ! � ��� � ��	� � �
� &
(
�

� � *�+�, � .�/  $0 � � (3)

where � � and ��� are the Boltzmann factors at � � and ��� , and � � and � � are the numbers
of neighbors of � � and ��� . If there is no edge between � � and ��� , then they are
considered too far apart for their energy difference to be a good basis for estimating
the transition probability, and we set � � �

� 4
. The molecule can still move from � �

to ��� , but the move must traverse at least one other node of the roadmap. Finally, a
self-transition probability � � �

� ( 	 � ���
 � � � � is attached to each node � � , ensuring
that the transition probabilities from any node sum up to 1.

In contrast to the heuristic edge weights used in [5,27,29], the transition prob-
abilities used in SRS allow us to establish a formal relationship between SRS and
MC simulation [3]. We now describe this important relationship.

3.2 Relationship with Monte Carlo simulation

In MC simulation, we perform a random walk in the conformation space � . We can
perform a similar random walk on the roadmap � : at node � � of � , we choose a
node � � uniformly at random from the set of neighbors of � � and propose a move to
� � . The move is accepted with probability

� � � ��� � ���� ����� ��	�� � � ��������� 
  "! �	� � ������ � ��� & (( *�+�, ��.-/  10 � 	 (4)

Expressions (1) and (4) are similar, except for the extra factor � � ��� � , which is needed
because the neighborhood sizes of all conformations are the same in MC simulation,
but the number of neighbors varies from one node to another for the random walk on
the roadmap. Since node � � has � � neighbors and each one is chosen with probability(%��� � , the transition probability from � � to ��� is � (%� � � 
�� � � , which, after simplifica-
tion, is equal to � � � given in (3). Hence, with our choice of transition probabilities,
every path in the roadmap corresponds to a MC simulation run.

We have also stated in Sect. 2.2 that MC simulation samples conformations with
a distribution that converges to the Boltzmann distribution

6
. So, in the limit, the

probability of sampling any subset
@ A � is6 � @ 
 � (798�� C ����� � 	 � � � 
-������� 
 � � 	

Now we ask the question: what is the limit behavior of SRS? In other words, if we
perform an arbitrary long random walk on the roadmap as described above, what
is the probability of sampling a subset

@ A � ? Since a roadmap defines a Markov
chain with transition probabilities � � � , the limit behavior of SRS is governed by the
the stationary distribution of the Markov chain:

Lemma 1. A stochastic conformational roadmap defines a Markov chain with sta-
tionary distribution

� � � (7�� ����� � 	 � � � � 
���� � � 
 for all � � (5)

where
7 � � � �

����� � 	 � � � � 
���� � � 
 is a normalization constant.
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See Appendix A for the proof. To estimate the probability of sampling a set
@

, we
simply sum the stationary distribution � over all the nodes � � that lie in the set

@
:

� � @ 
 � �
� � � C � � � (7 � �� � � C ����� � 	 � � � � 
-������� 
 	

If SRS represents the stochastic motion of a molecule with the same limit be-
havior as MC simulation, we expect the limit distributions of these two methods to
converge. In other words, given a suitably dense roadmap, � � @ 
 should approximate6 � @ 
 to any arbitrary precision, a result proven in our earlier paper [3].

Although SRS is closely related to MC simulation, it is far more efficient. A
roadmap constructed by SRS combines many MC simulation paths, which can be
processed together using tools from Markov chain theory, as we will see next.

4 Roadmap query

A roadmap � encodes considerable information on molecular motion. Given two
nodes � � and ��� in � , we can compute the most likely pathway from � � to ���
by searching for a minimum-weight path from � � to � � in a graph similar to � ,
but with 	 ���

� � � as edge weights. This leads to results similar to those in earlier
work [5,27,29]. However, since a roadmap explicitly represents the stochastic na-
ture of molecular motion, it allows us to take advantage of powerful tools from the
Markov chain theory. We now focus on one such tool, the first-step analysis.

To illustrate our description with a concrete example, consider a roadmap �
built in the conformation space of a protein whose native fold is known. Let � be a
set of nodes of � in the folded state. In other words, they are structurally close to the
native fold. We are interested in finding, for every node � � in � , the expected number
of transitions � � needed to go from � � to the folded state, i.e., any node in � . A naive
way to compute � � would be to perform many MC simulation runs, starting from
� � , and average the number of transitions taken by each run. Due to the potentially

�	��

��������������������� �����������������������������������

�� 
��!

� " � #%$'&

(   

(  ! (  " (  # � )(  )

*

Fig. 1. First-step analysis.

high variance among independent runs, it
takes a large number of simulation runs for
each node � � in order to get accurate results.

In contrast, the first-step analysis pro-
ceeds by conditioning on the first transition.
Suppose that we start at some node � ��+, � .
After one step of transition, � � is increased
by one, and we either enter the folded state
or reach another node � � +, � . In the for-
mer case, we simply stop. In the latter case,
the expected number of steps from then on
is � � . So we have the following system of linear equations:

� � � (.- �
� � ��/ � � �10 4 - �

� � ���/ � � �20�� � for every � � +, � 	 (6)

In the second term of (6), � � � is multiplied by zero, because we stop as soon as we
enter the folded state. See Fig. 1 for an illustration. The linear system (6) contains
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one equation and one unknown for each node � � +, � . By solving this system, we
obtain � � for all the nodes simultaneously, without any explicit simulation.

To solve the linear system, let us rewrite (6) in the matrix form:
t
�

Q 0 t - b � (7)
where Q is a matrix with the transition probabilities � � � as the entries, t is the vector
of unknowns � � , and b is a vector collecting the remaining constant terms in (6).
Since a roadmap usually contains many nodes, the size of the coefficient matrix
I 	 Q is large (I is the identity matrix). Direct methods for solving (7), based on,
e.g., Gaussian elimination, are impractical. However, it can be shown that a unique
solution to (7) exists. So iterative methods can be used instead. In fact, the naive
iteration t

����� ��� �
Q 0 t

��� � - b is guaranteed to converge to the unique solution.
This simple iterative method amounts to performing many simulation runs simul-
taneously using matrix multiplication. More efficient iterative methods, such as the
conjugate gradient method [23], can also be used. Finally every roadmap node is,
by construction, connected to only a small number of neighboring nodes, resulting
in a sparse matrix Q. The sparsity can be exploited to accelerate the iterative solver.

5 Computing the probability of folding

In this and next section, we use SRS to compute two ensemble properties: the prob-
ability of folding in protein folding and the escape time in ligand-protein binding.

Protein folding is one of the most marvelous processes in nature. Under suitable
conditions, proteins go through a series of geometric transformations and arrive at
the native folds where they perform intricate biological functions. There are large
on-going efforts to understand the folding process (e.g., [14,22]): What geometric
transformations does a protein go through during folding? Which conformations are
“closer” to the native fold along the folding pathways?

To address this type of questions, the probability of folding (P �
	�� 
 )—also known
as the transmission coefficient—has been introduced to measure how far away a
protein conformation is from the native fold kinetically [11]. For a folding process
dominated by two stable states, a folded state � and an unfolded state � , the P �
	�� 

value � for a conformation � is the probability of reaching � before � , starting from
� . If � 3 4 	�� , then the protein is more likely to fold first than to unfold first, and
therefore � is kinetically closer to the folded state [11]. Trivially, if � is in � , then
� � ( , and if � is in � , then � � 4

. The P �
	�� 
 value at � is not associated with any
particular folding pathway, but depends on all possible pathways from � . It is thus
an ensemble property that describes the average behavior of the folding process.

5.1 Algorithmic details

Using SRS, we can compute P �
	�� 
 as follows. Let � � � � � ( ��� �
	�	
	 be the nodes in a
roadmap, and � � be the P �
	�� 
 value for � � . After constructing the roadmap, first-step
analysis yields the following equation for every node � � not in � or � :

� � � �
� � ��/ � � � 0�(.- �

� � ��� � � � 0 4 - �
� � �� � /���� �

� � � 0�� � � (8)
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which is obtained by conditioning on the first transition. After one step of transition,
we have three cases. In the first case, we reach a node in � . Then, we have reached
� before � with probability 1. In the second case, we reach a node in � . Then, we
have reached � before � , and the probability of reaching � before � is 0. In the
third case, we reach a node � � in neither � nor � . The probability ��� then depends
on the value of � � . Linear system (8) has the same matrix form as the example in
Sect. 4. A unique solution exists and can be obtained by an iterative solver.

We can improve the accuracy and potentially the speed of the iterative solver by
setting all the self-transition probabilities in the roadmap to 0 and renormalizing the
other probabilities. Set

� �� � � 4
for all � �

� �� � � � � � � � � �
 � � � � for all �1+��� (9)

and solve the linear system

� � � �
� � ��/ � �� � 0�(.- �

� � ��� � �� � 0 4 - �
� � �� � /���� �

� �� � 0�� � 	 (10)

If we think in terms of performing a random walk on the roadmap as described in
Sect. 3.2, then setting the self-transition probabilities to 0 means never staying at
the current node. It is easy to verify that linear systems (8) and (10) have the same
solution by substituting (9) into (10). However, if we write (10) in the matrix form,
the coefficient matrix I 	 Q contains 1 in all its diagonal entries, which are greater
than or equal to the corresponding entries in the matrix for (8). So (10) tends to be
better conditioned, resulting in more stable, faster solution by iterative methods.

5.2 Experimental results

We now present results on three examples. The first one uses a relatively simple
synthetic energy function in a 2-D conformation space, and the other two use real
protein data. We compare the results from SRS to those from MC simulation, and
demonstrate that SRS reduces the running time by several orders of magnitude and
is more accurate. The main reason for using synthetic data in the first example is that
MC simulation takes extremely long computation time on real proteins. The simpler
synthetic energy function allows us to perform more extensive comparisons.
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Fig. 2. The scatter plot of
P � ��� � values from MC sim-
ulation and from SRS on a
synthetic energy function.

Synthetic data The synthetic energy function in a
2-D conformation space is constructed from a linear
combination of radially symmetric Gaussians, with a
paraboloid centered at the origin. The centers, the de-
cay rates, and the heights of the Gaussians are picked
at random. The function has two global minima, one
of which represents the native fold. When constructing
a roadmap in this hypothetical conformation space, we
use the Euclidean distance in the 2-D space for finding
neighboring nodes.

We used SRS to compute P � 	 � 
 for 101 sampled
conformations with a roadmap of 10102 nodes, and
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Fig. 3. The correlation coefficient � as a func-
tion of the number of nodes in the roadmap. The
three curves correspond to MC simulation with���������
	��
���
	����
��� independent runs per node.
As � increases, the correlation between the re-
sults from the two methods improves.

then used MC simulation to compute the results for the same conformations. In the
MC simulation, we performed 500 independent runs for each conformation. Each
run stops as soon as it enters a small neighborhood of a conformation in the folded or
the unfolded state. The results computed with the two methods are plotted along the
two axes in Fig. 2. All the points in the plot lie close to the diagonal line, indicating
that the results from the two methods are in good correspondence.

We conducted further tests by varying the number of nodes sampled by SRS and
the number of independent MC simulation runs per node. In each test, we summa-
rize the correspondence between the results from the two methods by their (normal-
ized) correlation coefficient, which is defined as

� ��� ��� 
 � � � ��� 	 � � � � ����
� � � � � 	 � � � � 
�� � � � � 	 � ��� � 


for two vectors � and � , where � 0 � denotes the operation of taking the average.
Note that � is always between 	 ( and ( , with ( indicating perfect correlation, 	 (
indicating perfect inverse correlation, and

4
indicating no correlation. Fig. 3 shows

the results of these additional tests. The horizontal axis of the graph is the number
of nodes in the roadmap, and the vertical axis is the correlation coefficient � . The
graph contains three curves, corresponding to different numbers of independent MC
simulation runs per node. These curves show a generally similar trend. Initially �
improves quickly as the number of nodes in the roadmap increases. The curves then
flatten out after a certain point. It is not immediately clear whether they will reach
1, which indicates perfect correlation. Since � measures only the correspondence
between the two methods and we do not know the ground truth, these general trends
do not tell us whether the discrepancy is due to the inaccuracy in SRS or the variance
inherent in MC simulation. However, we can get a hint by comparing the three
curves. For a roadmap of a given size, � generally improves as we increase the
number of independent MC simulation runs per node. This seems to indicate that
SRS is more accurate: when the number of independent MC simulation runs per
node increases, the variance of MC simulation decreases, and simultaneously, the
results get closer to those obtained from SRS.

We also compared the running time of the two methods. The running time of
SRS consists of the time to construct the roadmap and the time to solve a linear
system of equations. On real proteins, the first part is dominated by the time to
evaluate the energy of sampled nodes and the time to find neighboring nodes. The
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Table 1. Running times of 100 MC simulation runs per conformation on the synthetic energy
function. The first row gives the number of conformations for which P � ��� � is computed. The
second row gives the corresponding running times.

No. Conf. 10 20 30 40 50 60 70 80 90 100
Time (sec.) 866 1588 2356 3191 4026 4913 5621 6404 7203 8077

second part depends on the size of the linear system, hence on the number of nodes
in the roadmap. The running time of MC simulation is dominated by the time to
compute the energy of sampled conformations.

In our current implementation, the roadmap construction part of SRS is coded in
C++, and the linear system solver, in Matlab. MC simulation is implemented entirely
in C++. The timing results reported here were obtained on a 1GHz Pentium-III PC
with 1GB of memory. In a typical run on the synthetic energy function, SRS took
about 8 seconds to construct a roadmap of 10,000 nodes, and 3 seconds to solve the
linear system and obtain P � 	 � 
 values for all the nodes. The running times of MC
simulation is tabulated in Table 1. As expected, the running time of MC simulation
is linear in the number of conformations processed. Although we did not perform
MC simulation on all 10,000 conformations, we can easily infer that that the running
time would be around 800,000 seconds.

1ROP and 1HDD We also tested SRS on two real proteins (Fig. 4), repressor of
primer and engrailed homeodomain, which are identified as 1ROP and 1HDD, re-
spectively, in the Protein Data Bank [7]. 1ROP is a dimer that consists of two iden-
tical parts called monomers. As in [30], we study one monomer in isolation. The
monomer contains 56 residues forming two � helices connected by a loop. 1HDD
contains 57 residues forming three � helices packed against each other.

Our implementation represents a protein as a sequence of vectors, each repre-
senting a secondary structure element [5,26]. In this vector-based representation,
1ROP has 6 degrees of freedom (dofs), and 1HDD has 12 dofs. Our energy func-
tion uses an H-P model [30] consisting of two terms, measuring the hydrophobic
interaction and the excluded volume, respectively. In both SRS and MC simulation,
we discard conformations that cause steric hindrance, i.e., self-collision of atoms in
the protein. We define the folded state to contain all conformations within a small
root mean squared distance (RMSD) of the native fold (3 Å for 1ROP and 5 Å for
1HDD), and the unfolded state to contain all the conformations within 10 Å of the
fully-extended conformation. The roadmap construction software uses the RMSD
as a metric to find neighboring nodes, as it better measures the similarity between
two protein conformations than the Euclidean distance.

For each protein, we computed the P �
	�� 
 values at about 45 randomly selected
conformations using both SRS and MC simulation. With SRS, we computed the
estimates with roadmaps having increasing numbers of nodes. In MC simulation,
we performed up to 300 independent runs for each of the selected conformations.
The results, shown in Fig. 5, suggest conclusions similar to those obtained from
the synthetic energy function. First, SRS estimates generally improve very fast as
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Fig. 4. Two proteins used
in the experiments: 1ROP
and 1HDD (circled) in
complex with DNA.
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Fig. 5. The correlation of
P � ��� � values for 1ROP and
1HDD, computed by SRS
and MC simulation.

the roadmap size increases. Second, the correlation tends to increase as we perform
more MC runs per node. We also compared the P � 	 � 
 values obtained from the two
methods using their average absolute differences, instead of their correlation coeffi-
cients. The conclusion is similar.

The total time to generate a roadmap of � 4�4�4 nodes and compute the P �
	�� 
 val-
ues for all these nodes was about 1.5 hours. In comparison, it took an average of five
to six hours on the same machine to execute 300 MC simulation runs required to
estimate P � 	 � 
 at just one conformation. To compute P �
	�� 
 at the 45 selected confor-
mations, MC simulation took about 250 hours, while SRS took only 1.5 hours for
all 5000 conformations. So SRS reduced the running time by at least four orders of
magnitude in these examples.

6 Estimating the escape time from a ligand-protein binding site

Ligand-protein binding is another important biological process, in which a small
molecule, called a ligand, is bound to a specific site, usually a cavity on the surface
of a receptor protein in order to inhibit or enhance activities of the protein. Studying
ligand-protein binding helps in discovering new pharmaceutical drugs. For exam-
ple, drug molecules have been designed to bind to the active site of the enzymatic
protein HIV-1 protease. They block access to the active site of the amino acid chains
forming part of the HIV virus and thus disable the activation of the mature virus.

A receptor protein may have several potential binding sites. Therefore, it is im-
portant to be able to predict which is the active site, the site that enables specific
biological functions, e.g., inhibition or catalysis. Let us consider the conformation
space � of a ligand-protein complex with a suitably defined energy function. A
bound conformation � , � generally corresponds to a local energy minimum and



Stochastic Conformational Roadmaps 13

has a “funnel of attraction” around � to stabilize the ligand. At the active site, the
ligand is usually bound with very high affinity, and so it takes much longer to escape
from the corresponding funnel, compared with other potential binding sites. We hy-
pothesize that the longer escape time results from higher energy barriers around the
active site and it may serve as a basis for prediction. We thus examine the ligand-
protein binding process using a dynamic model. In contrast, most existing methods
for analyzing ligand-protein binding use static models and consider only the energy
of the final bound conformation of the ligand-protein complex (e.g., see [21,33]).

Following [10], we define the funnel of a bound conformation � as the set of
conformations within 10 Å of � in RMSD. We then use SRS to compute the expected
number of transitions for the ligand to reach a conformation outside of the funnel
and use it as an approximation to the escape time.

6.1 Algorithmic details

Given a suitable energy function for the ligand-protein complex, we first construct
a roadmap to capture the motion of the ligand and then apply first-step analysis to
obtain a system of equations similar to (6). Let

�
be the set of roadmap nodes in the

funnel of the bound conformation ��� . Let � � be the expected number of transitions
to reach a conformation outside of

�
, starting from a node � � , �

. We have

� � � (.- �
� � ���� � � �10 4 - �

� � ��� � � � 0�� � for every � � , � 	 (11)

The solution to this system of equations gives an approximation of the escape time
for every node in the funnel, including the bound conformation ��� .

6.2 Experimental results

We applied our method to seven different ligand-protein complexes whose active
sites are known. They are listed in Table 2. For each complex, we assume that the
protein is rigid, and that the ligand is flexible with varying number of torsional dofs
listed in column 3 of the table. Our energy function models the ligand-protein inter-
actions by incorporating terms for van der Waals and electrostatic interactions [28].

To find potential binding sites, we picked 10,000 conformations at random and
performed descent from them until we reached local energy minima. For each com-
plex, four low-energy conformations that are less than 5 Å to the protein surface and
are separated by greater than 10 Å in RMSD were selected along with the known
active site as the potential bound conformations.

We computed 20 roadmaps of 10,000 nodes each for every potential binding
site. The nodes were uniformly sampled in a region within 15 Å in RMSD of the
bound conformation. We then solved for the escape times using (11). The results
were averaged and listed in columns 5–8 of Table 2. Every row of the table shows
the estimates of escape times for the various binding sites of a ligand-protein com-
plex. In four of the seven cases, the escape time for the active site is larger than
those for the other binding sites by at least two orders of magnitude, clearly distin-
guishing the active site. In two other cases (1LDM and 1CJW), the escape time for
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Table 2. Escape times from potential binding sites for seven ligand-protein complexes.

Protein Ligand dofs Binding Sites
Active 1 2 3 4

1LDM oxamate 7 5.8e+06 1.6e+07 1.1e+06 3.7e+06 4.5e+05
1AO5 IPM 10 4.1e+10 1.2e+07 7.9e+06 1.2e+05 2.9e+04
3TPI PTI 13 1.0e+10 1.1e+06 1.8e+05 1.0e+05 6.6e+05
4TS1 hydroxylamine 9 2.4e+10 5.4e+06 4.2e+07 7.2e+05 2.2e+06
1CJW COT 21 6.3e+06 8.2e+06 5.6e+05 1.5e+05 1.9e+05
1AID THK 14 1.4e+06 2.8e+07 5.0e+05 1.2e+05 2.1e+06
1STP streptavidin 11 7.0e+08 6.4e+06 2.2e+06 8.5e+05 2.0e+06

the active site is close to the largest. In one case (1AID), the escape time fails to
give a clear indication on the active site. The failure may have several causes. The
size of the roadmaps may be too small to estimate the escape times accurately. The
energy function that we use may not be detailed enough to capture all significant
interactions between the ligand and the protein. Finally, it is possible that the active
site often, but not always, has the highest escape time in nature.

For each binding site, our software took about 7 minutes in total to construct the
roadmap and solve the linear system to obtain an estimate of the escape time.

Using a similar approach, we also studied the effect of mutating individual
amino acids in the catalytic site of enzymatic proteins. These additional experi-
mental results and others are available in [4,32].

7 Conclusion and future work

Stochastic Roadmap Simulation is a new framework for computing ensemble prop-
erties of molecular motion. It is closely related to MC simulation. A path in a
stochastic conformational roadmap can be interpreted as a MC simulation run. Fur-
thermore SRS converges to the same sampling distribution as MC simulation. A
salient feature of SRS is that it compactly encodes many motion pathways and pro-
cesses them together by solving linear equations, rather than considering them one at
a time as the classic Monte Carlo and molecular dynamic methods would do. It also
avoids the local-minima problem that plagues the existing methods. As a result, SRS
gains tremendous computational efficiency, as demonstrated by our experiments.

We applied SRS to two biological problems. In the first problem, we computed
the probability of folding, which measures the “kinetic distance” between a pro-
tein conformation and the native fold. Our experiments show that SRS reduced the
running times by several orders of magnitude and obtained arguably more accurate
results, compared with MC simulation. In the second problem, we computed esti-
mates of the expected time for a ligand to escape from a binding site and used it to
compare the active site of a protein to other potential binding sites.

SRS can be extended in several ways. An important algorithmic question is to
develop sampling strategies that allow us to study larger molecules with more com-
plex energy models. Currently we sample the conformation space � or a subset of it
uniformly at random. As the dimension of � increases, it becomes more difficult to



Stochastic Conformational Roadmaps 15

obtain biologically interesting conformations with uniform sampling, and the qual-
ity of results obtained from uniformly sampled roadmaps is likely to degrade. This
is similar to the development of PRM planners for motion planning. To solve com-
plex motion planning problems in high-dimensional configuration spaces, efficient
sampling strategies are needed (see [24] for a review).

To address the problem, one approach is to construct a sampling distribution
that favors low-energy conformations over high-energy ones, because molecules are
more likely to stay in low-energy states. We achieve this by first sampling conforma-
tions uniformly at random and then retaining them with probability that decreases
as the the energy of the conformations increases. We may also resample near known
low-energy conformations to boost the density of roadmap nodes in these poten-
tially interesting regions. Equally important is to identify energy barriers between
neighboring nodes in a roadmap, when computing transition probabilities. To this
end, we may sample the straight-line path between two neighboring nodes and com-
pute the energy of intermediate conformations along the path. Finally, biologically
interesting conformations are known to be often located in regions where the energy
function undergoes significant variations, e.g., protein conformations in the transi-
tion state. To increase the sampling density in these regions, techniques such as the
Gaussian sampling [9] can be used to sample a pair of conformations and retain a
sample with higher probability when the pair exhibits very different energies.

Assume that a good sampling distribution � can be constructed. We must then
adjust the transition probabilities to account for the non-uniformity of the roadmap
nodes so that SRS still converges to the Boltzmann distribution in the limit. One
possibility is to define the new transition probability

� � �
���� � � ������ � ����� ��	�� � � ��������� 
  "! � � � � � � �� � � �
��� � &
(

�

� � *�+�, ��.-/  10 � �
where � � and � � are the probabilities of sampling nodes � � and ��� . Work is underway
to investigate the validity of this transition probability assignment.

Another interesting extension is to add nodes incrementally to the roadmap and
refine the solution of SRS, thus avoiding the need to choose the number of roadmap
nodes in advance.

We are also interested in applying SRS to other important problems related to
molecular motion. For instance, our transition probabilities are closely related to
the master equation [19], which has been used to study the rate of protein folding.
Earlier work on this problem exhaustively enumerates all conformations and is thus
limited to very small proteins on a lattice (in the plane). Our experience indicates
that SRS will likely remove the need for such costly enumeration.
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A Proof of Lemma 1

Proof. We would like to show that the distribution � given in (5) is the station-
ary distribution for the Markov chain induced by the roadmap � . First, note that it
suffices to show that � satisfies the detailed balance [31]:

� � � � � � � � � � � � (12)

because if (12) holds, then � � � � � � � � � � � � � � � � � � � � � � �
� � � , as required

by the condition for a stationary distribution, given in (2). Now consider two nodes

� � and � � from the roadmap. Without loss of generality, assume �	� � ���� � � � � &
( . We have

� � � � (
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� �
	

Substituting these expressions into (12), we can easily verify that (12) is satisfied,
after simplification.
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