Skip to main content

Computational-Workload Based Binarization and Partition of Qualitative Markov Trees for Belief Combination

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2711))

Abstract

Binary join trees have been a popular structure to compute the impact of multiple belief functions initially assigned to nodes of trees or networks. Shenoy has proposed two alternative methods to transform a qualitative Markov tree into a binary tree. In this paper, we present an alternative algorithm of transforming a qualitative Markov tree into a binary tree based on the computational workload in nodes for an exact implementation of evidence combination. A binary tree is then partitioned into clusters with each cluster being assigned to a processor in a parallel environment. These three types of binary trees are examined to reveal the structural and computational differences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, J.A.: Computational methods for a mathematical theory of evidence. In: Proc. of IJCAI 1981, Vancouver, BC, pp. 868–875 (1981)

    Google Scholar 

  2. Cano, A., Moral, S., Salmeron, A.: Penniless propagation in join trees. International Journal of Intelligent Systems 15, 1027–1059 (2000)

    Article  MATH  Google Scholar 

  3. Dubois, D., Prade, H.: Inference in possibilistic hypergraphs. In: Bouchon-Meunier, B., Zadeh, L.A., Yager, R.R. (eds.) IPMU 1990. LNCS, vol. 521, pp. 228–230. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  4. Gordon, J., Shortliffe, E.H.: A method for managing evidential reasoning in a hierarchical hypothesis space. Artificial Intelligence 26, 323–357 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Liu, W., Hong, X., Adamson, K.: Parallel implementation of evidence combination in qualitative Markov tress. Technical Report, University of Ulster

    Google Scholar 

  6. Madsen, A., Jensen, F.: LAZY propagation: A junction tree inference algorithm based on lazy propagation. Artificial Intelligence 113, 203–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Maheshwari, P., Shen, H.: An efficient clustering algorithm for partitioning parallel programs. Parallel Computing 24, 893–909 (1998)

    Article  MATH  Google Scholar 

  8. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  9. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Shafer, G., Logan, R.: Implementing Dempster’s rule for hierarchical evidence. Artificial Intelligence 33, 271–298 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shafer, G., Shenoy, P., Mellouli, K.: Propagating belief functions in qualitative Markov trees. Int. J. of Approx. Reasoning. 1, 349–400 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shenoy, P.: Binary join trees. In: Proc. of UAI 1996, pp. 492–499 (1996)

    Google Scholar 

  13. Shenoy, P.: Binary join trees for computing marginals in the Shenoy-Shafer architecture. Int. J. of Approx. Reasoning 17, 239–263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shenoy, P., Shafer, G.: Propagating belief functions with local computations. IEEE Expert 1, 43–52 (1986)

    Article  Google Scholar 

  15. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artificial Intelligence 61, 315–329 (1993)

    Article  MathSciNet  Google Scholar 

  16. Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. International Journal of Man-Machine Studies 30, 525–536 (1989)

    Article  MATH  Google Scholar 

  17. Wilson, N.: A Monte-Carlo algorithm for Dempster-Shafer belief. In: Proc. of UAI 1991, p. 414 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Hong, X., Adamson, K. (2003). Computational-Workload Based Binarization and Partition of Qualitative Markov Trees for Belief Combination. In: Nielsen, T.D., Zhang, N.L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2003. Lecture Notes in Computer Science(), vol 2711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45062-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45062-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40494-1

  • Online ISBN: 978-3-540-45062-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics