Abstract
We introduce a family of preferential logics that are useful for handling information with different levels of uncertainty. The corresponding consequence relations are non-monotonic, paraconsistent, adaptive, and rational. It is also shown that any formalism in this family that is based on a well-founded ordering of the different types of uncertainty, can be embedded in a corresponding four-valued logic with at most three uncertainty levels.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arieli, O.: Reasoning with modularly pointwise preferential relations. In: van den Bosch, A., Weigand, H. (eds.) Proc. BNAIC 2000, pp. 61–68. BNVKI (2000)
Arieli, O.: Useful adaptive logics for rational and paraconsistent reasoning. Technical Report CW286, Depatrment of Computer Science, University of Leuven (2001)
Arieli, O.: Paraconsistent declarative semantics for extended logic programs. Annals of Mathematics and Artificial Intelligence 36(4), 381–417 (2002)
Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and Information 5(1), 25–63 (1996)
Arieli, O., Avron, A.: The logical role of the four-valued bilattice. In: Proc. LICS 1998, pp. 218–226. IEEE Press, Los Alamitos (1998)
Arieli, O., Avron, A.: Nonmonotonic and paraconsistent reasoning: From basic entailments to plausible relations. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 11–22. Springer, Heidelberg (1999)
Arieli, O., Denecker, M.: Modeling paraconsistent reasoning by classical logic. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 1–14. Springer, Heidelberg (2002)
Avron, A.: Simple consequence relations. Journal of Information and Computation 92, 105–139 (1991)
Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: Fitting, M., Orlowska, E. (eds.) Theory and Applications in Multiple-Valued Logics, pp. 113–151. Springer, Heidelberg (2002)
Batens, D.: Inconsistency-adaptive logics. In: Orlowska, E. (ed.) Logic at Work, pp. 445–472. Physica Verlag, Heidelberg (1998)
Batens, D.: On a partial decision method for dynamic proofs. In: Decker, H., Villadsen, J., Waragai, T. (eds.) Proc. PCL 2002, ICLP 2002 Workshop on Paraconsistent Computational Logic, pp. 91–108 (2002)
Batens, D., Mortensen, C., Priest, G., Van Bendegem, J.: Frontiers of Paraconsistent Logic. In: Studies in Logic and Computation Vol. 8. Research Studies Press, Hertfordshire (2000)
Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 7–37. Reidel Publishing Company, Dordrechtz (1977)
Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press (1977)
Benferhat, S., Besnard, P. (eds.): ECSQARU 2001. LNCS (LNAI), vol. 2143. Springer, Heidelberg (2001)
Bialynicki-Birula, A.: Remarks on quasi-boolean algebras. Bull. Acad. Polonaise des Sciences Cl. III V(6), 615–619 (1957)
Bialynicki-Birula, A., Rasiowa, H.: On the representation of quasi-boolean algebras. Bull. Acad. Polonaise des Sciences Cl. III V(3), 259–261 (1957)
Carnielli, W., Coniglio, M.E., D’Ottaviano, I.M.L.: Paraconsistency: The logical way to the inconsistent. Lecture Notes in Pure and Applied Mathematics, vol. 228. Marcel Dekker (2002)
da-Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dam Journal of Formal Logic 15, 497–510 (1974)
Damasio, C.M., Pereira, L.M.: A survey on paraconsistent semantics for extended logic programs. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2, pp. 241–320. Kluwer, Dordrecht (1998)
Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, pp. 439–513. Oxford Science Publications (1994)
Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)
Hunter, A., Parsons, S. (eds.): ECSQARU 1999. LNCS (LNAI), vol. 1638. Springer, Heidelberg (1999)
Gabbay, D.M.: Theoretical foundation for non-monotonic reasoning in expert systems. In: Apt, K.P. (ed.) Proc. of the NATO Advanced Study Inst. on Logic and Models of Concurrent Systems, pp. 439–457. Springer, Heidelberg (1985)
Kalman, J.A.: Lattices with involution. Trans. of the American Mathematical Society 87, 485–491 (1958)
Kifer, M., Lozinskii, E.L.: A logic for reasoning with inconsistency. Automated Reasoning 9(2), 179–215 (1992)
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (1990)
Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)
Lukasiewicz, T.: Fixpoint characterizations for many-valued disjunctive logic programs with probabilistic semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 336–350. Springer, Heidelberg (2001)
Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS (LNAI), vol. 346, pp. 1–18. Springer, Heidelberg (1988)
Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming 3, pp. 35–110. Oxford Science Publications (1994)
McCarthy, J.: Circumscription – A form of non monotonic reasoning. Artificial Intelligence 13(1–2), 27–39 (1980)
Pearl, J.: Reasoning under uncertainty. Annual Review of Computer Science 4, 37–72 (1989)
Priest, G.: Minimally inconsistent LP. Studia Logica 50, 321–331 (1991)
Schlechta, K.: Unrestricted preferential structures. Journal of Logic and Computation 10(4), 573–581 (2000)
Shoham, Y.: Reasoning about change. MIT Press, Cambridge (1988)
Subrahmanian, V.S.: Mechanical proof procedures for many-valued lattice-based logic programming. Journal of Non-Classical Logic 7, 7–41 (1990)
Tarski, A.: Introduction to logic. Oxford University Press, Oxford (1941)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arieli, O. (2003). Preferential Logics for Reasoning with Graded Uncertainty. In: Nielsen, T.D., Zhang, N.L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2003. Lecture Notes in Computer Science(), vol 2711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45062-7_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-45062-7_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40494-1
Online ISBN: 978-3-540-45062-7
eBook Packages: Springer Book Archive