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Abstract. We present a method to address low-level segmentation of
monochrome images. The problem is formulated in the framework of en-
ergy minimizing paths, as the partition induced by an energy and a set of
sources. We study an energy of particular interest, called the path vari-
ation, whose application preserves the geometric structure of the image.
Then, choosing the image extrema as sources, we construct a piecewise
constant approximation of the image, designated as the extrema mosaic.
Finally, we apply the method as a presegmentation to the Mumford and
Shah variational model.

1 Introduction

Image segmentation is a fundamental issue in the field of computer vision. Its
complexity may be understood by the fact that partitioning an image domain
into ”important” regions amounts to make an interpretation of the scene de-
picted. As pointed out by a recent study [16], the definition and evaluation of
human segmentation represents by itself a difficult problem where recognition
and subjectivity seem to play an important role. Therefore, the introduction of
semantic information appears as a crucial step in the elaboration of any high
level computer vision system.

Nevertheless, a first task is the extraction of the information provided by the
image data without prior knowledge of its content. The present paper addresses
this low level segmentation issue, focusing on monochrome digital images. The
proposed approach relies on the formulation of the problem in the framework of
energy minimizing paths, where an energy is defined as the surface of minimal
action of a potential function. Then, a partition of the image domain can be
obtained by considering the influence zones of a set of source points. Therefore,
in this context, the problem is transferred to the definition of the energy and
the selection of the sources.

The concept of variation or total variation of a real valued one dimensional
function was introduced by Jordan [9] as early as in 1881. This functional has
found application in various branches of mathematics [15, 19], particularly, in
the definition of the Stieltjes integral. In the regular framework, the variation of
a function f : [0, L] → IR can be written as [8]:

v(f) =
∫ L

0

|f ′(s)| ds . (1)
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Several definitions of the variation exist for functions of multiple variables. If u :
Ω ⊂ IR2 → IR is a continuously differentiable function, the most straightforward
generalization consists in replacing the derivative in (1) by the gradient:

V (u) =
∫

Ω

‖∇u(x)‖ dx . (2)

In the context of image analysis, the general version of (2), allowing discontinu-
ities in the function, was first used by Osher and Rudin [20]. Since then, the space
of functions of bounded variation BV (Ω) has been used to model images and
total variation minimization has been successfully applied to image restoration
and denoising problems [23, 22, 2, 6].

In this paper, we study a notion of variation for two variable functions based
on energy minimizing paths. Precisely, we define the path variation as the min-
imal total variation of the function on all the paths that join two points of the
domain. Furthermore, we propose a discrete interpretation of the path variation
and discuss its application as a low-level image segmentation method.

The rest of the paper is organized as follows. The basic concepts of the
minimal paths approach are described in Sect. 2. The path variation is presented
in Sect. 3. In Sect. 4, we study the partitions of the image domain induced by
the path variation and use a scale-space representation of the image to select a
set of sources. Finally, in Sect. 5, we present an example of the application of
our approach as a preprocessing step to improve mid level variational methods
for segmentation.

2 Definitions

This introductory section presents the general framework for the rest of the
paper. Basic definitions are recalled and the notations settled.

2.1 Minimal Paths

Let Ω ⊂ IR2 be a compact connected domain in the plane and x, y ∈ Ω two
points. A path from x to y designates an injective C1 function γ : [0, L] → Ω
such that γ(0) = x and γ(L) = y. The image of γ is then a rectifiable simple
curve in the domain. The path is parameterized by the arclength parameter s,
i.e: ‖γ̇(s)‖ = 1, ∀s ∈ [0, L] and L represents the Euclidean length of the path.
The set of paths from x to y is noted by Γxy.

Definition 1. The surface of minimal action, or energy, of a potential
function P : Ω × S1 → IR+, with respect to a source point x0 ∈ Ω, evaluated at
x, is defined as

E0(x) = inf
γ∈Γx0x

∫ L

0

P (γ(s), γ̇(s)) ds .
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When P depends only on the position γ(·) and is strictly positive, the field of
geometrical optics provides the following physical interpretation of the energy:
the potential P : Ω → IR+ represents a refractive field of indices of an optical
medium and E0, called the eikonal in this context, supplies the optical length
of the light rays. Then, the relation between the energy and the potential can
be expressed by the Eikonal Equation:

‖∇E0(x)‖ = P (x) , (3)

with boundary condition E0(x0) = 0.
In this particular case, the computation of the energy can be performed using
Sethian’s Fast Marching method [24, 4]. Noticing that the information is prop-
agating outwards from the sources, the Fast Marching uses an up-wind scheme
to construct a correct approximation of the viscosity solution of (3).

Energy minimizing paths have been used to address several problems in the
field of computer vision, where the potential is generally defined as a function of
the image. Examples include the global minimum for active contour models [4],
shape from shading [10], continuous scale morphology [11], virtual endoscopy [5]
and perceptual grouping [3].

2.2 Energy Partitions

The energy with respect to a set of sources S = {xi}i∈J is defined as the minimal
individual energy:

ES(x) = inf
i∈J

Ei(x) .

In the presence of multiple sources, a valuable information is provided by the
interaction in the domain of a source xi with the other elements of S, which is
expressed through its influence zone:

Zi = {x ∈ Ω|Ei(x) < Ej(x), ∀j ∈ J, j 6= i} .

Thus, the influence zone, or briefly the zone, is a connected subset of the domain,
completely determined by the energy and the rest of the sources. Their union is
noted by:

Z(E,S) =
⋃

i∈J

Zi .

The medial set is defined as the complementary set of Z(E,S):

M(E,S) = {x ∈ Ω | ∃ i, j ∈ J, i 6= j : ES(x) = Ei(x) = Ej(x)} .

Definition 2. The energy partition of a domain Ω with respect to an energy
E and a set of sources S, is defined as:

Π(E, S) = Z(E, S)
⋃

M(E,S) .
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As a first example, if the potential is constant, e.g. P ≡ 1, then the energy
at x,

G0(x) = inf
γ∈Γx0x

∫ L

0

ds ,

becomes the geodesic distance to the source, or the Euclidean length of the
shortest path between x0 and x. Moreover, if the domain is convex, then G0

coincides with the Euclidean distance to x0. If a set of sources S = {xi}i∈J is
considered, then the medial set M(G,S) corresponds to the Voronoi diagram
and the zones Z(G,S) to the Voronoi cells.

2.3 Mosaic Images

Therefore, in this context, the image segmentation problem is transferred to the
definition of an energy from the image data and the selection of a set of sources.
Nevertheless, in practice, digital images are subsampled on the discrete grid.
Consequently, important parts of the medial set often fall in the intergrid space.
For region based segmentation purposes, an alternative to surround this problem
is to consider an energy partition composed only by zones. Thus, the elements
of the medial set that would fall exactly in the grid are assigned to one of their
neighboring influence zones.

Then, an approximation of the image can be constructed by the assignation
of a model to represent each influence zone. The model is determined by the dis-
tribution of the image values on the zone; simple models are the mean or median
value on the influence zone and source’s level. When the model is constant, the
valuation of each zone by its model produces a piecewise constant approximation
of the image, referred in the sequel as a mosaic image.

3 The Path Variation

In the usual approach for the application of minimal paths to image analysis,
a large part of the problem consists in the design of a relevant potential for a
specific situation and type of images. However, we adopt a different perspective
and use the notions of the previous section for the study of a particular energy,
whose definition depends only on geometric properties of the image.

3.1 Continuous Domain

For functions of one real variable, the variation is a functional with known prop-
erties [8, 19]. It was introduced by Jordan [9] as follows:
Let f : [0, L] → IR be a function, σ = {s0, ..., sn} a finite partition of [0, L] such
that 0 = s0 < s1 < ... < sn = L and Φ the set of such partitions.
The total variation of f is defined as

v(f) = sup
σ∈Φ

n∑

i=1

|f(si)− f(si−1)| .
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Thus, we propose to generalize this notion for two variable functions, by
considering the minimal total variation on all the paths that join two points:

Definition 3. The path variation of a function u : Ω ⊂ IR2 → IR with respect
to a source point x0 ∈ Ω, evaluated at x, is defined as

V0(u)(x) = inf
γ∈Γx0x

v(u ◦ γ) .

Definition 4. The space of functions of bounded path variation of Ω, noted
by BLV (Ω) is defined by

BLV (Ω) = {u : Ω → IR | ∀x0, x ∈ Ω, ∃ γ̂ ∈ Γx0x : V0(u)(x) = v(u ◦ γ̂) < ∞} .

In the sequel, we suppose that u has bounded path variation. Note that, if
u ∈ BLV (Ω), then the path variation of u between any couple of points is
not only required to be finite but also to be realized by a path. Hence, Def. 4
supposes the existence of geodesics for V . This assumption seems reasonable for
digital images; however, it should be noted that geodesics of V are generally not
unique:

A path γ ∈ Γxy is said to be monotone for u if u ◦ γ is a monotone function.
By definition, if γ is monotone for u, then it is a geodesic for V (u). Conversely,
every geodesic for V (u) is a concatenation of monotone paths.

In the regular framework, the path variation can be characterized as an
energy, in the sense of Def. 1 :

Proposition 1. If u ∈ C1(Ω)
⋂

BLV (Ω), then the path variation V0(u) is the
surface of minimal action of the potential P = |Dγ̇u|, the absolute value of the
directional derivative of u in the tangent direction of the path.

Proof. If f ∈ C1([0, L]), then the total variation can be expressed in terms of its
derivative [8] by the formula:

v(f) =
∫ L

0

|f ′(s)| ds .

Thus, if u is a continuously differentiable function, then Def 3. can be reformu-
lated as:

V0(u)(x) = inf
γ∈Γx0x

∫ L

0

|∂(u ◦ γ)
∂s

(s)| ds .

Hence, we obtain the following expression for the path variation:

V0(u)(x) = inf
γ∈Γx0x

∫ L

0

|D ·
γ
u(γ(s))| ds .

ut
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Fig. 1. Simple example: graphs of u and V0(u).

The intuitive interpretation of the path variation is illustrated in Fig. 1:
consider a particle moving along the graph of the function depicted on the left
and starting at the source x0. Then, as shown on the right, the value of V0(u)
evaluated at x represents the minimal sum of ascents and descents to be travelled
to reach the point x.

The path variation expresses the same notion as the concept of linear vari-
ation, introduced in [13], though in a formulation without paths, as a part of a
geometric theory for functions of two variables .

The component of u containing x, noted by Kx, designates the maximal con-
nected subset of Ω such that u(y) = u(x), ∀y ∈ Kx. The level of a component
K is noted by u(K) and the set of components of u is noted by Tu. The compo-
nents of a continuous function are closed and pairwise disjoint subsets of Ω. For
continuously differentiable functions, the components of the nonsingular levels
(i.e., levels t such that 0 /∈ ∇u(u−1(t))) coincide with the level lines of u and can
be described as Jordan curves.

The importance of the components for the path variation is expressed by the
following proposition, whose proof is an immediate consequence of Def. 3.

Proposition 2. The path variation acts on the component space Tu:

∀x, y ∈ Ω, Kx = Ky ⇒ ∀x0, V0(u)(x) = V0(u)(y) .

Therefore, each component of V0(u) is a union of components of u. Furthermore,
for a set of sources S, each element of Π(V (u), S) is a union of components of
the function. Thus, since the energy partitions induced by the path variation
preserve this geometric structure of the function, V (u) presents a particular
interest for image analysis. Moreover, the energy partitions induced by the path
variation are invariant under linear contrast changes.

Figure 2 illustrates the application of the path variation on a test function.
The set of sources in this case is S = {x0, x1}, where x0 is the upper left and
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Fig. 2. Top: u its graph and its components in RLUT. Bottom: VS(u), its graph and
energy partition.

x1 the lower right corners of the domain and the function is given by the simple
formula u(x) = c‖x − x0‖. The top row shows u, its graph and its components
in random lookup table (RLUT). The bottom row displays the intensity image
of VS(u), its graph and the energy partition Π(V (u), S). Notice how the path
variation preserves the component structure of u and modifies only their level.
The medial set M(V (u), S), shown in black, corresponds in this case to the
component whose level is the average of the sources’ levels.

3.2 Discrete Domain

In this paragraph, we propose a discrete interpretation for the path variation.
Thus, we consider that the image u has been sampled on a uniform grid. A first
remark is that, since the potential of the path variation in Prop. 1 depends not
only on the position but also on the path direction, the Fast Marching method
cannot be used for its construction.

Nevertheless, in a discrete domain, the component structure of a function
can be represented by an adjacency graph G, where the nodes correspond to
discrete components and the links join neighboring components. Thus, G is the
equivalent of Tu in the discrete space. Since V acts on the components of the
function, we propose to construct the discrete path variation directly on G.

A path on G joining the components of two points p and q is a set γ =
{K0, ...,Kn} such that Kp = K0, Kn = Kq, Ki and Ki−1 are neighbors, ∀ i =
1, ..., n . The set of such paths is noted by ΓG

pq. Each element of ΓG
pq corresponds

then to a class of discrete paths between p and q.



8

Fig. 3. Manual sources and corresponding mosaic image.

Thus, the expression of the discrete path variation of u at a point q with
respect to the source p becomes

Vp(u)(q) = min
γ∈Γ G

pq

n∑

i=1

|u(Ki)− u(Ki−1)| .

Hence, the calculation of Vp(u) is reduced to finding the path of minimal
cost on a graph. This classical problem can be solved using a greedy algorithm
[7, 14]. The complexity of this implementation for the path variation is then
O(Nlog(N)), where N is the total number of discrete components of the image.
Furthermore, if u takes integer values, the sorting step in the update of the
narrow band can be suppressed and the complexity is reduced to O(N).

4 Sources Selection

In this section, we intend to apply the energy partitions induced by the path
variation to image analysis. For this purpose, once the energy has been defined,
the second step is the selection of a set of sources.

In order to use a surface of minimal action to address image segmentation
problems, the choice of the sources is a critical issue. Indeed, since Def. 1 is
based on an integration along the paths, the partitions defined by this type of
energies are very sensitive to the location of the sources. Furthermore, replacing
a source xi ∈ S by another point x′i ∈ Zi usually modifies the corresponding
energy partition.

Therefore, the set of sources should be physically representative of the image
content. Ideally, for region based segmentation purposes, each zone should corre-
spond to a significant feature in the image and their boundaries should describe
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Fig. 4. From left to right: original image, mosaic image with sources and graph of the
energy.

the contours of the objects. Figure 3 shows the mosaic corresponding to the
energy partition Π(V (u), S), where a set S composed by 25 sources was placed
by hand. The intended goal was to provide a general description of the scene
represented in the image, but also to include perceptually important details as
the eye or the building on the background.

4.1 The Extrema Partition

Figure 4 exemplifies the problem of sources selection on the smooth image of
the left. An acceptable segmentation of this ”scene” should be composed by
four approximately circular regions on a gray background. A natural solution
would be to take the extrema of the four peaks as sources for the ”features”
and the border of the domain as the source representing the background. The
image on the middle shows this choice of sources and the mosaic corresponding
to the energy partition Π(V (u), S), where the source intensity was taken as zone
model. On the right, we can observe the graph of the energy VS(u).

Therefore, in the regular framework, the image extrema appear as natural
candidates for the sources. The energy partition induced by the path variation
and the set of extremal components, Π(V (u), ext(u)), will be called the extrema
partition of the image u and the corresponding mosaic image the extrema mosaic.

In real images, the choice of the path variation as the energy and the spa-
tial distribution of the intensity extrema provide a compromise between content
conservation and simplification in the extrema mosaic. Perceptually, the effects
of this piecewise constant approximation of the image can be better appreciated
when the ratio between the number of components in the original image and
the number of zones is high. Figure 5 shows an example where this ratio is 68.
On the left, we can observe the original image and, on the right, its extrema
mosaic. This image illustrates three properties of the extrema partition. First, a
contrast enhancement in the butterfly’s wings. Second, a reduction of the blur
in the background, caused by the absorption of blurred contours and transi-
tion components by neighboring zones. Finally, note how the boundaries of the
zones model accurately the contour information and, particularly, semantically
important characteristics of edges such as corners and junctions.
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Fig. 5. Row 1: original image and extrema mosaic.

4.2 Anisotropic Diffusion

The extrema mosaic can be seen as a decomposition of the image in elemental
zones or as a first abstraction to the image data. Nevertheless, the presence of
textures and noise in natural images produces a large number of extrema in
the image intensity. Consequently, the extrema partition is often composed by a
large number of small zones. The question is then how to reduce the number of
extrema while preserving the image structure. In this paragraph, we propose to
address the issue using a scale-space representation of the image.

Therefore, we consider the regularized version [1, 25] of the classical approach
proposed by Perona and Malik [21]. In this method, a filtered image ut = u(x, t)
is constructed as a solution of the nonlinear diffusion equation:

∂u

∂t
= div(g(|∇(Gσ ∗ u)|2)∇u) , (4)

where Gσ denotes a Gaussian kernel of variance σ and g(·) is a positive
diffusivity function. Reflecting boundary conditions are considered and the initial
state u0 = u(x, 0) coincides with the original image.

For the results presented in this paper, we used the diffusivity :

g(s) =

{
1, if s ≤ 0
1− exp

(
−3.315
(s/κ)4

)
, if s > 0

where κ is the contrast parameter that regulates the selective smoothing
process. This diffusivity was reported in [27] to lead to better results than the
original functions in [21].

The main characteristic of anisotropic diffusion is the fact that intraregional
smoothing is preferred to interregional smoothing. Thus, homogeneous regions
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are smoothed in the filtered image ut, while the edge information is enhanced.
Therefore, the number of extrema in the filtered image, noted by ext(ut), de-
creases rapidly when the scale is augmented. These properties make of ext(ut) an
interesting candidate for the set of sources of the energy partition. Two choices
are then possible, either consider the extrema partition of the filtered image,
Π(V (ut), ext(ut)), or go back to the initial image u0 and construct the partition
Π(V (u0), ext(ut)).

Figure 6 illustrates this method for the selection of sources. The initial image
u0 was the extrema mosaic of the cameraman, shown on top-left. The param-
eters of the anisotropic diffusion filtering were σ = 1 and κ = 30. The filtered
image ut is shown on top-right, for the scale t = 180. The number of extremal
components was 8412 in the original image and 261 in the smoothed image.
Middle-left shows the extrema mosaic of ut and middle-right displays the mo-
saic of Π(V (u0), ext(ut)). It can be observed how both energy partitions preserve
the image structure, in spite of the reduction in the number of sources. The main
difference lies in the regularization of the zones in the filtered image with respect
to the zones obtained with the initial image, as can be seen in the bottom row,
where the two partitions are shown.

Hence, the use of anisotropic diffusion is helpful for the selection of sources,
however, an excessive filtering would destroy the contour information and this
method requires a post processing step.

Conversely, our approach allows to construct an partition with a small num-
ber of regions, starting from an image filtered by anisotropic diffusion. This idea
was used in [26] to reduce the oversegmentation produced by the watershed
transform.

5 Path Variation and Variational Models

The presented approach uses only low level information for the construction of a
partition. However, the introduction of higher level cues is often required for the
segmentation process. In this section, we combine our method with the Mumford
and Shah model.

Variational methods have been widely used to address image segmentation
problems. In these approaches, the expectations about the objects in the image
are expressed through a functional. A popular example is the model proposed
by Mumford and Shah [18]. In its general version, a segmentation of the image
u corresponds to a piecewise smooth function f that minimizes the functional:

J(f,B) =
∫

Ω

(f − u)2dx + µ

∫

Ω\B
‖∇f‖2dx +H1(B) , (5)

where B is the set of boundaries and H1 is the one dimensional Hausdorff mea-
sure. The usual interpretation of this functional is the following: the first is a
data fidelity term, the second controls the regularity of the approximation out-
side the boundaries and the third penalizes their length. Finally, the scale µ
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weights the balance between the terms. Hence, in this approach, the objects of
the scene are modelled as homogeneous regions with short boundaries.

The virtues of the Mumford and Shah functional are widely recognized [17].
Figure 7 presents an experiment to illustrate the relevance in the use of the
extrema mosaic as a preliminary step for a variational approach to segmenta-
tion. We considered the piecewise constant version of the Mumford and Shah
functional [12], with the final scale determined by the number of regions N . The
method was applied to the cameraman test image and its extrema mosaic. The
graph of Fig. 7 depicts the PSNR between the two cartoon like segmentations
and the original image, when N ranges from 1 to 1000. The dash line corresponds
to the original image and the solid line to its EM. It can be observed how, when
the required final number of regions is small (N < 450), the application of the
EM increases the quality of the segmentation. Figure 7 shows, on the first row,
the segmentations for N = 25, where the PSNR is increased by 3,61 dB. Notice
how, in spite of the low number of regions, the EM permits the detection of per-
ceptually important details such as the face of the cameraman or his silhouette.
When, N ≥ 450 the result with both initial images is very similar, as shown in
the second row of Fig. 7, where N = 800.

6 Conclusion and Perspectives

It should be noted that the use of the path variation for image segmentation as-
sumes a certain homogeneity in the definition of feature. The method presented
for the selection of the sources can be improved, considering the results obtained
with hand placed sources. We presented a method for low level segmentation,
using only geometric information of the image. The approach provides a piece-
wise constant approximation of the image that models accurately the contour
information. The extrema mosaic can be used as a preprocessing step for mid
and high level segmentation methods.

Finally, this paper focused on monochrome images in order to emphasize
the mathematical formulation and properties of the path variation. However,
the results presented can be applied to color images directly by considering the
brightness component. The generalization of our approach to color images will
be the subject of our next report.
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Fig. 6. Sources selection by anisotropic diffusion (see text).
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Fig. 7. Extrema Mosaic and Mumford and Shah model (see text).


