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Abstract. This paper presents a novel method for surface recovery from
discrete 3D point data sets. In order to produce improved reconstruction
results, the algorithm presented in this paper combines the advantages
of a parametric approach to model local surface structure, with the
generality and the topological adaptability of a geometric flow
approach. This hybrid method is specifically designed to preserve
discontinuities in 3D, to be robust to noise, and to reconstruct objects
with arbitrary topologies. The key ideas are to tailor a curvature
consistency algorithm to the case of a set of points in 3D and to then
incorporate a flux maximizing geometric flow for surface
reconstruction. The approach is illustrated with experimental results on
a variety of data sets.

1 Introduction

Surface reconstruction from incomplete data sets is a classical problem in computer
vision. The problem consists of finding a surface S that approximates a physical
surface P by using a set of point coordinates sampled from the surface P. These point
coordinates may be corrupted with noise, due to imperfections in the acquisition of
the data. Like many other problems in computer vision, the problem of surface
reconstruction is ill-posed. Prior knowledge about the world and the data acquisition
process must therefore be used in order to make it solvable. A good algorithm for
surface reconstruction should be robust to noise and result in smooth surfaces, while
recovering important structural information from the data, such as edges, ridges and
holes. The presence of such structural information in the reconstructed 3D model is
very important for further, higher-level processing tasks, such as shape segmentation
into parts, object recognition, etc. It should impose as little restrictions on the
topology of the reconstructed object as possible. These issues are taken into
consideration in the research presented in this paper.

The approach to surface reconstruction presented in this article combines two
different philosophies, namely that of a parametric reconstruction approach, and that
of a geometric flow reconstruction approach. Many algorithms for surface recovery
are based on either one of the two types of approaches, but few have attempted to
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bring the two together in order to combine their advantages. Recently, Vemuri et al.
[29, 30] have developed an interesting hybrid model which has been applied to the
problem of surface recovery. However, it is not clear how their method can be
tailored to preserve and model structural features such as discontinuities.

In this paper, we introduce a novel algorithm for surface reconstruction. This
method is a combination between a curvature consistency algorithm, which is a
parametric surface modeling approach [9, 17, 21], and a variation of the flux
maximizing flow algorithm [28], which is a geometric flow algorithm implemented
through the level-set method [22]. Our approach is novel for several reasons. It uses
the degrees of freedom and the ease of manipulation of parameter-free geometric flow
approaches, while incorporating knowledge from the local structure of the data
obtained by fitting and refining local parametric patches [22]. Contrary to other flow
based algorithms for surface recovery, our method is specifically designed to preserve
discontinuities in 3D data, which are a very important source of information for
higher-level vision processes such as shape segmentation and object recognition. We
show that the inclusion of local structural information can improve the behavior of
flow based algorithms for surface reconstruction. Furthermore, our approach is an
improvement over the curvature consistency algorithm in that it results in a
continuous surface rather than in a patchwork of overlapping surfaces. We extend the
edge preserving formulation of curvature consistency [17] to 3D, which makes our
technique robust to noise, while preserving discontinuities in 3D. Finally, our
approach presents a novel application of the flux maximizing geometric flow.

1.1 Previous Work

Over the years, various approaches have been put forward in order to deal with
surface recovery. Traditionally, parametric surface reconstruction approaches restrict
the class of possible solutions to surfaces of a certain topology by fitting a model with
a known (fixed) topology to the data so that it minimizes a particular error metric.
This is usually done using energy-minimizing methods. Algorithms in this category
can be classified by the type of model that is fit to the data. Popular choices include
global models such as generalized splines [3, 25], volumetric primitives such as
generalized cylinders or superquadrics, e.g. [24]. Alternatively, [9, 10, 17, 21] make
use of local parameterizations by fitting a set of local parametric patches to the data.
Several parametric surface recovery algorithms were developed from the concept of
active deformable models (also known as active contours), introduced in [14], e.g.
[18, 26].

An important inconvenience of parametric approaches is that they impose severe
topological restrictions on the reconstructed surface, e.g. they require it to be
homomorphic to a sphere. In this framework, it is very hard to model surfaces with a
complicated topology.

Approaches in the computational geometry domain have been proposed, e.g. [1, 8],
however they are very sensitive to noise in the data, regions of high curvature and
outliers. Such methods reconstruct polygonal meshes. More recently, a different class
of approaches that use implicit surfaces has received much interest, e.g. [2, 6, 13].
Working within the framework of variational implicit surfaces [27], Dinh et al. [7]
use anisotropy in order to model sharp features in reconstructions. The process for
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locating edges and for classifying surface points as belonging to edges, corners, or flat
regions is very sensitive to noise and outliers, hence tensor filtering is required in
order to smooth the reconstruction. Medioni et al. [12, 19] have developed a separate
methodology to infer structure from sparse data, known as tensor voting. It is a non-
iterative process based on tensor calculus and non-linear voting. Gomes and
Mojsilovic [11] propose a related variational solution to the problem implemented
through an iterative algorithm.

The concept of active contours has been extended to the implicit surface
representation independently by [4] and [16]. In the context of shape segmentation,
they introduce geometric active contours, which are active contours represented
implicitly as a level set of a higher-dimensional scalar function. An initial contour is
made to evolve under forces depending on the contour�s own geometric
characteristics and on image-based external forces. More recently, Vemuri et al. [29,
30] have developed a hybrid shape modeling scheme which is based on the notion of
a pedal curve. In their work, a global prior is introduced using a parameterized model,
and local properties are fine-tuned using a geometric flow.

Geometric active contours have been applied to the problem of surface
reconstruction from point data in [31, 33]. Zhao et al. [33] propose a variational
method for implicit surface reconstruction that is based on a weighted minimal
surface model that behaves like an elastic membrane wrapped over the data. Their
flow formulation is actually a specific instance of the conformal flow originally
introduced independently in [15] and [5] (see also [23] for more recent variants).
Zhao et al. [33] use distance to the data as the weight in the conformal flow
formulation of [15] and [5]. A drawback of the method in [33] is that it cannot model
accurately pronounced concavities and convexities in the data, which results in the
over-smoothing of corner discontinuities and in the loss of thin structures or surface
borders. This is due to the use of a curvature-based regularization term which pushes
the evolving curve away from high-curvature regions in the data. The algorithm in
[33] is highly dependent on a good initial approximation to the real surface.

Implicit surface representations are independent of the underlying surface
parameterization. This fact allows for topological flexibility in surface reconstruction
algorithms, unfortunately it also makes it very difficult to exploit structural
information in the data. It is not possible to model spring forces for example, or
physical objects whose rigidity and tension vary along the surface, without additional
surface point tracking. Structural information is lost, to the benefit of ease of
manipulation. A comparison between geometric and parametric active contour models
appears in [32].

2 Method Overview

The fundamental idea behind our algorithm is to reconstruct a surface by using a field
of vectors normal to the surface. We assume that the input to our algorithm consists of
a set of points in 3D (with x,y,z coordinates) located in a regularly spaced 3D voxel
grid, in which voxels that correspond to point locations have been labeled
accordingly. We assume that within a small neighbourhood, there is a local coordinate
frame such that the data points in that neighbourhood have been sampled from a
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surface that can be described in the form w = f(u,v), where (u,v,w) are the axes of the
local coordinate frame. At each data point, we compute an initial estimate of the
surface normal. We regularize this initial set of normal vectors by using a new
extension of the curvature consistency algorithm which preserves discontinuities in
3D. Once we have obtained a smooth field of normal vectors, we use it to reconstruct
the underlying surface by applying a variant of the flux maximizing flow algorithm of
[28]. The flux maximizing flow is used to align an evolving surface in 3D to be
normal to a given vector field.

3 Curvature Consistency with Edge Preservation
The curvature consistency algorithm achieves a stable surface representation by
iteratively minimizing a functional related to the satisfaction of local constraints on
the curvature of the surface. It was introduced in [21] for reconstruction in 3D voxel-
based medical images. It was reformulated in [9, 17] in the context of surface
reconstruction from 2½D range images, and in [10] for surface reconstruction from
stereo depth data. It provides a patchwork of overlapping, interpolating functions each
of which describes the surface locally.
The method makes use of a local surface model, which describes the local
neighbourhood around point P on the surface with a quadric patch of the form

2 2w au buv cv= + + , (1)

with origin at P and the w axis aligned with the surface normal at P, Np, as shown in
Fig. 1. The information (parameters) associated with each patch are the location of the
given point, the two principal directions of the paraboloid, the minimum and
maximum curvatures (along the principal directions), and a coordinate frame (u,v,w)
with the w axis aligned with the normal of the patch at point P, the u and v axis being
aligned with the two principal directions. The u and v axis span the tangent plane at
point P, Tp. All this information is stored in an �augmented Darboux frame� ( )D P .

An initial set of such Darboux frames is computed at every data point from local
estimates of surface normals, which can be obtained through various standard
methods. We use least-squares fitting of local planes. Once the initial estimates are
obtained from noisy data, the patchwork of surface descriptors are refined through
iterative minimization of an energy functional that limits the variation of curvature
with respect to the model of the surface. At convergence, each provides a consistent
representation of its local surface region with respect to its neighbours.
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Fig. 1. Local surface representation � the augmented Darboux frame
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The energy minimization is performed using variational relaxation. It is an
iterative process which, at each iteration, operates by minimizing the difference
between the description of the surface centered at point P given by D(P), and that
predicted by its neighbours Qi (i=1�n) believed to lie on the same continuous surface
as P and which are within a threshold distance from P. This set of neighbours is
known as the �contextual neighborhood� [21] and is discussed further below.

Thus, at each iteration, a neighbour Qi provides a prediction Di(P) of the
augmented Darboux frame at P. The traditional energy-minimization approach
presented in [9, 21] gives update equations of the form

1

1� ( ) ( )
n

i
in

D P D P
=

= ∑ . (2)

In this update mechanism, each neighbour�s prediction is given an equal weight in
the update of the local surface descriptor. In this form of the equation, an implicit
assumption of a continuous underlying surface is being made. While the effect of
noise is minimized, discontinuities are smoothed over with each progressive iteration.

The authors in [17] derive a new form of Eq. (2) by casting the neighbourhood
prediction update problem in estimation theoretic terms. Eq. (2) is modified such that
each neighbour�s contribution is weighted according to the prediction error variance,
as determined by using a Kalman filter. The net effect is an anisotropic smoothing
which preserves surface discontinuities. Thus, discontinuities are �learned� as the
iterations proceed and do not need to be known in advance, as in [25], for example.

The edge preservation formulation of curvature consistency in [17] was designed
specifically for 2½D range images. The extension to 3D of the edge-preserving
formulation is straightforward, provided some technical adjustments are made to the
concept of a �contextual neighborhood�. In [17], the contextual neighborhood is
determined simply by choosing the n closest neighbours of P in the embedding 2D
grid. In 3D data, it is possible to have two or more surfaces that lie in close proximity
to one another, without intersecting each other (e.g. the two sides of a thin object).
Since refinement cannot proceed across surfaces, we cannot simply take the n closest
3D neighbors. Instead, we take those neighbors that are "sufficiently" close to the
parabolic surface patch at P. In other words, the contextual neighborhood of P,
consists of those neighboring points Qi that are within radius r of P and whose local
surface parameterization contains P, i.e. P is within an arbitrarily small distance from
the local quadric surface patch Γ = (u, v, ½( κMiu2  + κmiv2)) fit at Qi. This is the same
definition of contextual neighborhood as in [21].

4 The Flux Maximizing Geometric Flow

With the motivation to address the problem of segmenting thin elongated structures in
intensity images, Vasilevskiy and Siddiqi [28] derive the geometric flow which
maximizes the rate of increase of flux of an auxiliary vector field through a curve or a
surface.

Let C(p,t) be a smooth family of closed curves evolving in the plane. Here t
parameterizes the family and p parameterizes the given curve. Without loss of



330      Peter Savadjiev et al.

generality, assume that 0 ≤ p ≤ 1, i.e. that C(0,t) = C(1,t). Consider also a vector field
V = (V1(x,y), V2(x,y)) defined for each point (x,y) in R2. The total inward flux of the
vector field through the curve is given by the contour integral

∫ ∫==
1

0

)(

0
,,)(

tL
p dsdptFlux NVCNV

,
(3)

where L(t) is the Euclidean length of the curve.
Intuitively, the inward flux through a planar closed curve provides a measure of

how well the curve is aligned with the direction perpendicular to the vector field. The
main theoretical result of [28] is that the direction in which the inward flux of the
vector field V through the curve C is increasing most rapidly is given by

NVC )(div
t

=
∂
∂

,
(4)

where N is the normal vector field of C. In other words, the flow which maximizes
the rate of increase of the total inward flux is obtained by moving each point of the
curve in the direction of the inward normal by an amount proportional to the
divergence of the vector field. In the resting flux maximizing configuration, the
inward normals to the curve are everywhere aligned with the direction of the vector
field.

It turns out that the volumetric extension of Eq. (4) has the same form as Eq. (4).
Let S : [0,1] × [0,1] → R3 denote a compact embedded surface with (local)
coordinates (u,v). The authors of [28] show that the direction in which the inward flux
of the vector field V through the surface S is increasing most rapidly is given by

NVS )(div
t

=
∂
∂

,
(5)

where N is the normal vector field of S.
The authors of [28] apply the flux maximizing flow to blood vessel segmentation.

We tailor the flux maximizing flow to our problem by considering the field of normal
vectors defined on the data points to be the vector field V whose inward flux through
the evolving surface is maximized. Once the normals information has been extracted
from the Darboux frame at every point, we compute an approximation to the
divergence of this vector field by using a consequence of the divergence theorem,
which states that the divergence at a point is defined as the net outward flux per unit
area, as the area about the point shrinks to zero. Via the divergence theorem,

∫∫ ≡
∆ Ra

drdadiv NVV ,)(
,

(6)

where ∆a is the area, R is the bounding surface and N is the outward normal at each
point on the contour surface.

For our numerical implementation we use this flux formulation along the
boundaries of small spheres of varying radii. The chosen flux value at a particular
location is the maximum (magnitude) flux over the range of radii. Normalization
across scales is trivial, one simply has to divide by the number of entries in the
discrete sum that approximates Eq. (6). We thus obtain a scalar field defined over our
3D grid.
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                                              (a)                                  (b)

Fig. 2. Data points and their associated normal vectors, together with the flux sign distribution
around them. (a) Positive and negative values form thin sheets on either side of the data points,
the flux values are zero elsewhere. (b) The lack of a global notion of inside vs. outside may
cause an interleaving of positive and negative sheets

Fig. 2 shows a schematic representation of a 2D planar cross-section through our
3D computational grid, for different data point configurations. As illustrated in Fig.
2(a), locations where the total outward flux (which is proportional to divergence) is
positive form a thin sheet �under� the data points, and those where the total outward
flux is negative form a thin sheet �above� the data points, assuming that �above�
denotes the direction of the normal vectors and �under� denotes the direction opposite
to it. Except for these two sheets �wrapping� the data points, the flux value is zero
elsewhere. Because only local information is available, there is no reasonable notion
of up vs. down on a surface, or exterior vs. interior on an object. Thus, there is always
a 180° ambiguity of direction, and it is possible that the directions of the normal
vectors flip from pointing �outward� to pointing �inward� from one region to another,
as illustrated in Fig. 2(b). Thus, the sheets of positive and negative flux values are not
necessarily continuous and can be interleaved.

According to the formulation in Eq. (5), evolving seeds initialized within a region
with flux of a given sign will not leak into regions of the opposite sign, or into regions
with a zero flux value. To avoid discontinuities in the reconstructed surface due to the
ambiguity in normal directions, we remove the dependency on the sign of the flux
value by taking its square. Thus, we use a numerical approximation of the following
flow equation:

NVS )(2div
t

=
∂
∂

.
(7)

The presence of the square term in Eq. (7) implies that the flow formulation used in
the hybrid method is not exactly a flux maximizing flow anymore, but rather a variant
which is better adapted to deal with abrupt changes in the flux sign distribution. With
this new flow formulation, we initialize a set of small seed spheres at locations where
the flux magnitude is higher than a threshold, and we let them evolve according to Eq.
(7). Starting the evolution at locations of high magnitude flux provides additional
robustness to outliers, as outliers would be represented as isolated low magnitude flux
values surrounded by zero magnitude flux values. Thus, the evolution would not
spread to include them in the final reconstruction.
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The flow described by Eq. (7) is implemented through the level-set representation
for surfaces flowing according to functions of curvature [20]. Level-set methods
represent an n-dimensional moving curve C as a level set of an (n+1)-dimensional
scalar function ψ. Let C be moving with a speed F in the direction of its normal
vector N, i.e. Ct = FN. One can show that

0=∇⋅+ ψψ tt C . (8)

Since the normal vector N is given by ψψ ∇∇=N , by substitution one obtains the
partial differential equation,

0=∇+ ψψ Ft . (9)

Eq. (9) is solved using a combination of straightforward discretization and
numerical techniques derived from hyperbolic conservation laws [20].

The use of Eq. (7) to direct the flow of the seeds allows one to overcome the
artifact depicted in Fig. 2(b), however it results in a surface that may be �thicker� than
necessary, as the surface includes regions on both sides of the data points, as shown in
Fig. 2. If the algorithm makes use of a global notion of outside vs. inside, it would be
possible to remove the ambiguity in normal orientations, caused by using strictly local
information to form initial estimates of the normal vectors. Then one may revert to
using Eq. (5), which would potentially yield a thinner surface. However, the use of
such a global notion implies imposing a global parametric model on the data, which
goes against the philosophy of this work, which is to use only local parameterizations
in order to allow the reconstruction of objects of arbitrary topology. Furthermore, it is
not obvious how such a notion can be reliably computed, especially if there is more
than one object in the scene. Alternative methods for thinning the surface are subject
to future research, e.g. the computation of a medial surface of the �thick�
reconstruction.

In the implementation presented in this paper, flux values at a point are calculated
over the surface of small spheres centered at the points of interest. Since the recovery
of the surface is entirely dependent on the accurate computation of flux values, future
research may investigate the effect of calculating the flux through other types of
surfaces, e.g. small ellipsoids or hyperboloids having the same curvature
characteristics as the local surface patch at the data point.

5 Experiments and Results

In this section we present the results of an experiment that uses synthetic data to test
the robustness to noise of our algorithm. We show that the application of our
algorithm results in smooth reconstructions, which are qualitatively better than those
obtained with the algorithm in [33].

Fig. 3(a) shows points on the surface of a hemisphere whose coordinates have been
corrupted with Gaussian noise of mean 0.0, standard deviation of 1.0. The data is
embedded in a 70×70×70 grid. We attempt to reconstruct the hemispherical surface
using this data. As the first stage of our hybrid algorithm, we ran 15 iterations of
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curvature consistency. As the second and final stage of our hybrid algorithm, we
applied the flux maximizing flow algorithm, using the normal vectors returned by
curvature consistency. One can see the resulting surface in Fig. 3(c). The result
obtained through our method, using only the flux maximizing flow and no iterations
of curvature consistency to smooth the initial field of normal vectors, is shown in Fig.
3(b). It is a lot less smooth. For comparison, Fig. 3(d) shows the reconstruction from
the same data obtained by using the algorithm of Zhao et al. [33]. The algorithm in
[33] is very sensitive to noise. It does not converge to a smooth hemisphere, at some
locations the surface collapses through the data points and vanishes, while at others it
models the outliers in the data. These results show that the use of the local parametric
information provided by the curvature consistency algorithm yields better
reconstructions than the ones given either by the flux maximizing flow algorithm
alone, or by the method in [33].

Our next experiment aims at showing how our method fares at recovering structure
in 3D data, and at comparing it with that of Zhao et al. [33]. We use the Stanford
bunny 3D model, which was obtained from [34]. The model is a triangle mesh with
35947 vertices and 69451 triangles that represent the surface of a bunny. We
extracted the coordinates of the vertices of that mesh and we used them as a cloud of
3D points to test our algorithm. We embedded the vertices in a 160×160×160 grid. At
such a grid resolution, the 35947 mesh vertices map to 30838 distinct voxels in the
grid. The size of the grid was chosen as a trade-off between good data resolution and
low space requirements. Fig. 4(a) shows a rendering of the voxelized data acquired
from the model. Because the data is essentially noise-free, we ran our algorithm
without making use of curvature consistency, we simply used the initial normal vector
estimates and we ran the flux maximizing flow on them. The result of our
reconstruction is shown in Fig 4(b). Fig. 4(c) shows the reconstruction obtained
through the method in [33]. Note how our method captures better the discontinuities,
the concavities/convexities in the data, in particular at the locations denoted by the
arrows.

                  (a)                                  (b)                                  (c)                                 (d)

Fig. 3. (a) Data � the coordinates of the points on the hemisphere have been corrupted with zero
mean Gaussian noise, standard deviation of 1.0. Reconstruction using (b) 0 iterations and (c) 15
iterations of curvature consistency in our method. (d) Reconstruction using the method of Zhao
et al. [33]
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                     (a)                                         (b)                                          (c)

Fig. 4. The Stanford bunny. (a) Data extracted from the mesh model used in our experiments,
embedded in a 160×160×160 grid. (b) Reconstruction of the Stanford bunny using our method
(c) Reconstruction using the method of Zhao et al. [33]. Note how the structure in the data is
better recovered through our method, in particular at the locations denoted by the arrows

    
                     (a)                                   (b)                                     (c)

Fig. 5. (a) Owl dataset. (b) Reconstruction using our method. (c) Reconstruction using the
method of Zhao et al. [33]. The reconstruction is smoother but does not recover discontinuities

We conducted another experiment using data acquired from a stone owl statuette
through a laser range sensor. The data consists of 7648 data points distributed in a
250×162×83 voxel grid, and is shown in Fig. 5(a).

Fig. 5(b) shows the reconstruction from this data obtained with our method (using
100 iterations of curvature consistency). For comparison, we also include in Fig. 5(c)
the results obtained by applying the method of Zhao et al. [33] on the same data. The
result is smooth, but not satisfactory in terms of reconstructing the discontinuities in
the data. Note how our algorithm recovers the pupil, the crease of the eye, the beak,
the separation between head and body, as well as the wing, whereas the algorithm in
[33] smooths them over.
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Fig. 6. Distribution of the difference in angles between the normal direction returned by
curvature consistency at every data point and the normal direction on the corresponding point
on the reconstructed surface of the bunny shown in Fig 7.  Each bin gives the percentage of
points that yield a difference falling within the bin. Median difference: 22.5°. Mean difference:
31.6°. Standard deviation: 24.2°

                               (a)                                           (b)

Fig. 7. (a) Reconstruction of the bunny. The box above the tail indicates the region from which
the normal vectors returned by curvature consistency are shown in Fig. 8. (b) Spatial
distribution of the normal vector differences in degrees. Note: figure should be viewed in color

We next present a quantitative comparison between the curvature consistency
algorithm as such, and our hybrid algorithm. The purpose of this comparison is to
show that our variant of the flux maximizing flow is able to overcome to some extent
the drawbacks of the curvature consistency algorithm. For each data point, we
compute the smallest angle formed between the normal vector returned by curvature
consistency, and the corresponding normal computed on the reconstructed surface
(obtained after running the flow given by Eq. (7)). Since the reconstructed surface
does not necessarily pass through each data point, we compute the normal vector on
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the point on the reconstructed surface which is closest to the data point. Because we
compute differences between orientations, not directions, the range of possible
differences is constricted to [0° - 90°].

A reconstruction of the Stanford bunny using our hybrid method (with one iteration
of curvature consistency) is shown in Fig. 7(a). A histogram of the normal vector
differences is shown in Fig. 6, and a spatial plot of the difference is shown in Fig. 7(b)
(this figure should be viewed in color). It is possible to see that the agreement is good
mostly everywhere except along the body midline. At these locations, one can
observe the artifact described in Section 4 in Fig. 2(b), where the initial estimates of
the normal vectors suddenly change their orientation from pointing outwards to
pointing inwards. Due to the regularizing properties of the curvature consistency
algorithm, a normal vector which is between two vectors that point in opposite
directions (one inwards, the other outwards) will be set to point parallel to the surface.
Hence, there is a difference of nearly 90° between the normal on the reconstructed
surface, which is �correctly oriented�, as seen in Fig. 7(a), and the normals returned
by curvature consistency after one iteration, shown in Fig. 8. Fig. 8 shows a close-up
on the normals of the bunny surface, from the region just above the tail indicated by
the black box in Fig. 7(a). One can see that the normals change smoothly their
orientation from pointing inwards to pointing outwards (going from left to right in the
image). Due to the smooth transition in orientation, some normals are actually
oriented parallel to the surface to be reconstructed. Our flux maximizing algorithm is
able to overcome this drawback of the curvature consistency algorithm. Our algorithm
can produce a surface that is oriented in the correct direction at locations where the
normals returned by curvature consistency are not oriented correctly.

As discussed in Section 4, a drawback of our algorithm is that the resulting surface
is �thick�. By thinning the reconstructed surface and smoothing it further, one may
obtain better structural properties on the surface. For example, one can expect an even
better agreement between the orientation of the normals on the reconstructed surface
and those returned by curvature consistency.

Our last experiment is designed to provide a quantitative measure of the
localization of the reconstructed surface, by comparing it to a ground truth surface
using a distance metric.

Fig. 8. A close-up on the normals on the surface of the bunny. The normals shown are taken
from the back of the bunny, from the region indicated by the black box in Fig. 7(a)
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                                    (a)                                               (b)

Fig. 9. (a) Ground truth surface. (b) Data sampled from the ground truth surface

                                      (a)                                             (b)

Fig. 10. (a) Reconstruction obtained through our hybrid method. uL = 0.9, VarL  = 0.13, and
maxL = 1.4. (b) Reconstruction achieved by the algorithm of Zhao et al.[33]. uL = 0.2,
VarL  = 0.7, and maxL = 4.7. See text for details

In the last experiment, synthetic data is used as ground truth in order to measure how
well the reconstructed surface is localized with respect to the ground truth. The
experiments make use of a simple distance metric L. Given a point on the ground
truth surface, the metric L consists in measuring the Euclidean distance to the closest
point on the reconstructed surface:

L = dist[Gi, Ri], (10)

where Gi [i = 1 .. n] are the points on the ground truth surface and n is the total
number of points on the ground truth. For a given i, Ri is the point on the
reconstructed surface closest to point Gi. Finally, dist[] is the Euclidean distance
function. It is assumed that the ground truth surface is discretized and embedded in
the same 3D grid as the reconstructed surface. It is thus possible to define a point on
that surface as an individual voxel that belongs to it.

The distance metric L was applied to the reconstructions of the hemisphere shown
in Fig. 3, using as ground truth the (noise free) hemispherical surface from which the
data points shown in Fig. 3(a) were generated. The metric L was computed over the
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entire ground truth surface for the reconstructions shown in Figs. 3(c) and 3(d). For
the reconstruction in Fig. 3(c), the mean of L, uL, is 0.6, with a variance VarL of 0.3,
and a maximum value maxL of 3.7. All units are given in grid voxels, except for the
units of variance. For the reconstruction in Fig. 3(d), uL = 1.5, VarL  = 0.7, and
maxL = 4.7. The difference between the values obtained for each reconstruction is due
to the fact that, contrary to our algorithm, the algorithm in [33] is not designed to
reconstruct surfaces from noisy data. Thus, our algorithm achieves a better
reconstruction in the presence of noise.

The distance metric L was also applied in another experiment, presented next. The
experiment makes use of the synthetic data shown in Fig. 9(b). The data consists of
points sampled from the surface of a thick step with a rectangular hole in it (the
original surface is shown in Fig. 9(a)), embedded in a 70×70×70 grid. Fig. 10(a)
shows the reconstruction obtained from this dataset using our method, and Fig. 10(b)
shows the reconstruction obtained with the algorithm of Zhao et al. [33]. One can see
that our reconstruction models well the original ground truth (in particular the
corners), except that it is thicker. The algorithm in [33], on the other hand, fails to
recover some of the features of the surface. The evolving surface, �shrinking� over
the data, wraps over the outward-oriented corners of the surface, but fails to enter the
inward-oriented corners and smooths them over. If the surface is let to evolve further,
it would collapse through the data points and create holes in the reconstruction, still
without penetrating the inward-oriented corners. For the reconstruction shown in Fig.
10(a), uL = 0.9,  VarL  = 0.13, and maxL = 1.4. For the reconstruction shown in Fig.
10(b), uL = 0.2, VarL  = 0.7, and maxL = 4.7. Thus, even though on average the method
of Zhao et al. [33] provides a better surface localization around the (noise-free) data
points, it nevertheless gives a worst-case performance which is a lot worse than the
worst-case performance of our algorithm. This effect is apparent with a simple visual
inspection of Figs. 9 and 10.

6 Summary and Conclusions
This paper was concerned with the problem of surface reconstruction from 3D sets of
points. The paper showed that it is possible to combine the advantages of both
parametric and geometric flow approaches into a single hybrid method. The hybrid
method presented here is a combination of the curvature consistency algorithm and of
the flux maximizing flow. It is designed to produce reconstructions of object surfaces
of arbitrary topology.  It is designed to preserve structure in the data (edges, ridges,
and discontinuities in general), while being robust to noise. These properties are not
found in standard geometric flow approaches, such as the method of Zhao et al. [33].
Our hybrid algorithm is able to overcome some of the drawbacks of curvature
consistency. It also presents a new application of the flux maximizing flow.

Experimental results were presented to demonstrate these properties of the hybrid
algorithm. Our algorithm has drawbacks and weaknesses that can be improved with
future work. However, it does clearly demonstrate that the inclusion of local
parametric information can improve the behavior of geometric flow algorithms, and
that it is possible to use the topological modeling power of flow based algorithms
together with the structural modeling power of parametric approaches to provide
improved reconstruction results.
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