Skip to main content

Minimization of Cost-Functions with Non-smooth Data-Fidelity Terms to Clean Impulsive Noise

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

We consider signal and image restoration using convex cost-functions composed of a non-smooth data-fidelity term and a smooth regularization term. First, we provide a convergent method to minimize such cost-functions. Then we propose an efficient method to remove impulsive noise by minimizing cost-functions composed of an ℓ1 data-fidelity term and an edge-preserving regularization term. Their minimizers have the property to fit exactly uncorrupted (regular) data samples and to smooth aberrant data entries (outliers). This method furnishes a new approach to the processing of data corrupted with impulsive noise. A crucial advantage over alternative filtering methods is that such cost-functions can convey adequate priors about the sought signals and images—such as the presence of edges. The numerical experiments show that images and signals are efficiently restored from highly corrupted data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and Minimization Algorithms, vol. I & II. Springer, Berlin (1996)

    Google Scholar 

  2. Besag, J.E.: Digital image processing: Towards Bayesian image analysis. Journal of Applied Statistics 16, 395–407 (1989)

    Article  Google Scholar 

  3. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving map estimation. IEEE Transactions on Image Processing 2, 296–310 (1993)

    Article  Google Scholar 

  4. Li, S.: Markov Random Field Modeling in Computer Vision, 1st edn. Springer, New York (1995)

    Google Scholar 

  5. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications to early vision. International Journal of omputer Vision 19, 57–91 (1996)

    Article  Google Scholar 

  6. Vogel, C.R., Oman, M.E.: Iterative method for total variation denoising. SIAM Journal of Scientific Computing 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Teboul, S., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Variational approach for edge-preserving regularization using coupled pde’s. IEEE Transactions on Image Processing 7, 387–397 (1998)

    Article  Google Scholar 

  8. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edgepreserving regularization in computed imaging. IEEE Transactions on Image Processing 6, 298–311 (1997)

    Article  Google Scholar 

  9. Alliney, S., Matej, S., Bajla, I.: On the possibility of direct Fourier reconstruction from divergent-beam projections. IEEE Transactions on Medical Imaging MI-12, 173–181 (1993)

    Article  Google Scholar 

  10. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of absolute norm. IEEE Transactions on Signal Processing 45, 913–917 (1997)

    Article  Google Scholar 

  11. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM Journal of Numerical Analysis 40, 965–994 (2001)

    Article  MathSciNet  Google Scholar 

  12. Nikolova, M.: Minimization of cost-functions with non-smooth data-fidelity terms. application to the processing of impulsive noise. Technical report (CMLA—ENS de Cachan, Report No. 2003-01)

    Google Scholar 

  13. Glowinski, R., Lions, J., Trémoliéres, R.: Analyse numérique des inéquations variationnelles, 1st edn., vol. 1, Dunod, Paris, (1976)

    Google Scholar 

  14. Geman, D.: Random fields and inverse problems in imaging. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1990)

    Google Scholar 

  15. Abreu, E., Lightstone, M., Mitra, S.K., Arakawa, K.: A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Transactions on Image Processing 5, 1012–1025 (1996)

    Article  Google Scholar 

  16. Bovik, A.C.: Handbook of image and video processing. Academic Press, New York (2000)

    MATH  Google Scholar 

  17. Rudin, L., Osher, S., Fatemi, C.: Nonlinear total variation based noise removal algorithm. Physica 60 D, 259–268 (1992)

    Google Scholar 

  18. Ko, S.J., Lee, Y.H.: Adaptive center weighted median filter. IEEE Transactions on Circuits and Systems 38, 984–993 (1998)

    Article  Google Scholar 

  19. Sun, T., Neuvo, Y.: Detail-preserving based filters in image processing. Pattern- Recognition Letters 15, 341–347 (1994)

    Article  Google Scholar 

  20. Arce, G.R., Hall, T.A., Barner, K.E.: Permutation weighted order statistic filters. IEEE Transactions on Image Processing 4, 1070–1083 (1995)

    Article  Google Scholar 

  21. Yin, L., Yang, R., Gabbouj, M., Neuvo, Y.: Weighted median filters: a tutorial. IEEE Transactions on Circuit Theory 41, 157–192 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolova, M. (2003). Minimization of Cost-Functions with Non-smooth Data-Fidelity Terms to Clean Impulsive Noise. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics