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Abstract. We present a new approach to unbounded, fully symbolic
model checking of timed automata that is based on an efficient trans-
lation of quantified separation logic to quantified Boolean logic. Our
technique preserves the interpretation of clocks over the reals and can
check any property in timed computation tree logic. The core operations
of eliminating quantifiers over real variables and deciding the validity of
separation logic formulas are respectively translated to eliminating quan-
tifiers on Boolean variables and checking Boolean satisfiability (SAT).
We can thus leverage well-known techniques for Boolean formulas, in-
cluding Binary Decision Diagrams (BDDs) and recent advances in SAT
and SAT-based quantifier elimination. We present preliminary empirical
results for a BDD-based implementation of our method.

1 Introduction

Timed automata [2] have proved to be a useful formalism for modeling real-time
systems. A timed automaton is a generalization of a finite automaton with a set
of real-valued clock variables. The state space of a timed automaton thus has a
finite component (over Boolean state variables) and an infinite component (over
clock variables). Several model checking techniques for timed automata have
been proposed over the past decade. These can be classified, on the one hand,
as being either symbolic or fully symbolic, and on the other, as being bounded
or unbounded. Symbolic techniques use a symbolic representation for the infinite
component of the state space, and either symbolic or explicit representations
for the finite component. In contrast, fully symbolic methods employ a single
symbolic representation for both finite and infinite components of the state space.
Bounded model checking techniques work by unfolding the transition relation
d times, finding counterexamples of length up to d, if they exist. As in the
untimed case, these methods suffer from the limitation that, unless a bound
on the length of counterexamples is known, they cannot verify the property of
interest. Unbounded methods, on the other hand, can produce a guarantee of
correctness.

The theoretical foundation for unbounded, fully symbolic model checking of
timed automata was laid by Henzinger et al. [9]. The characteristic function of
a set of states is a formula in Separation Logic, a quantifier-free fragment of
first-order logic. Formulas in Separation Logic (SL) are Boolean combinations of
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Boolean variables and predicates of the form xi �� xj + c where ��∈ {>,≥}, xi

and xj are real-valued variables, and c is a constant. Quantified Separation Logic
(QSL) is an extension of SL with quantifiers over real and Boolean variables. The
most important model checking operations involve deciding the validity of SL
formulas and eliminating quantifiers on real variables from QSL formulas.

In this paper, we present the first approach to unbounded, fully symbolic
model checking of timed automata that is based on a Boolean encoding of SL
formulas and that preserves the interpretation of clocks over the reals. Unlike
many other fully symbolic techniques, our method can be used to model check
any property in Timed Computation Tree Logic (TCTL), a generalization of
CTL. The main theoretical contribution of this paper is a new technique for
transforming the problem of eliminating quantifiers on real variables to one of
eliminating quantifiers on Boolean variables. In some cases, we can avoid intro-
ducing Boolean quantification altogether. These techniques, in conjunction with
previous work on deciding SL formulas via a translation to Boolean satisfiability
(SAT) [16], allow us to leverage well-known techniques for manipulating quanti-
fied Boolean formulas, including Binary Decision Diagrams (BDDs) and recent
work on SAT and SAT-based quantifier elimination [11].

Related Work. The work that is most closely related to ours is the ap-
proach based on representing SL formulas using Difference Decision Diagrams
(DDDs) [12]. A DDD is a BDD-like data structure, where the node labels are
generalized to be separation predicates rather than just Boolean variables, with
the ordering of predicates induced by an ordering of clock variables. This predi-
cate ordering permits the use of local reduction operations, such as eliminating
inconsistent combinations of two predicates that involve the same pair of clock
variables. Deciding a SL formula represented as a DDD is done by eliminat-
ing all inconsistent paths in the DDD. This is done by enumerating all paths
in the DDD and checking the satisfiability of the conjunction of predicates on
each path using a constraint solver based on the Bellman-Ford shortest path
algorithm. Note that each path can be viewed as a disjunct in the Disjunctive
Normal Form (DNF) representation of the DDD, and in the worst case there
can be exponentially many calls to the constraint solver. Quantifier elimination
is performed by the Fourier-Motzkin technique [8], which also requires enumer-
ating all possible paths. In contrast, our Boolean encoding method is general
in that any representation of Boolean functions may be used. Our decision pro-
cedure and quantifier elimination scheme use a direct translation to SAT and
Boolean quantification respectively, avoiding the need to explicitly enumerate
each DNF term. In theory, the use of DDDs permits unbounded, fully sym-
bolic model checking of TCTL; however, the DDD-based model checker [12] can
only check reachability properties (these can express safety and bounded-liveness
properties [1]).

Uppaal2k and Kronos are unbounded, symbolic model checkers that ex-
plicitly enumerate the discrete component of the state space. Kronos uses Dif-
ference Bound Matrices (DBMs) as the symbolic representation [18] of the infi-
nite component. Uppaal2k uses, in addition, Clock Difference Diagrams (CDDs)
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to symbolically represent unions of convex clock regions [4]. In a CDD, a node is
labeled by the difference of a pair of clock variables, and each outgoing edge from
a node is labeled with an interval bounding that difference. While Kronos can
check arbitrary TCTL formulas, Uppaal2k is limited to checking reachability
properties and very restricted liveness properties such as the CTL formula AFp.

Red is an unbounded, fully symbolic model checker based on a data structure
called the Clock Restriction Diagram (CRD) [17]. The CRD is similar to a CDD,
labeling each node with the difference between two clock variables. However, each
outgoing edge from a node is labeled with an upper bound, instead of an interval.
Red represents separation formulas by a combined BDD-CRD structure, and can
model check TCTL formulas.

A fully symbolic version of Kronos using BDDs has been developed by
interpreting clock variables over integers [6]; however, this approach is restricted
to checking reachability for the subclass of closed timed automata1, and the
encoding blows up with the size of the integer constants. Rabbit [5] is a tool
based on this approach that additionally exploits compositional methods to find
good BDD variable orderings. In comparison, our technique applies to all timed
automata and its efficiency is far less sensitive to the size of constants. Also,
the variable ordering methods used in Rabbit could be used in a BDD-based
implementation of our technique.

Many fully symbolic, but bounded model checking methods based on SAT
have been developed recently (e.g., [3,13]). These algorithms cannot be directly
extended to perform unbounded model checking.

The rest of the paper is organized as follows. We define notation and present
background material in Section 2. We describe our new contributions in Sec-
tions 3 and 4. We conclude in Section 5 with experimental results and ongoing
work. Details including proofs of theorems stated in the paper can be found in
our technical report [14].

2 Background

We begin with a brief presentation of background material, based on papers by
Alur [2] and Henzinger et al. [9]. We refer the reader to these papers for details.

2.1 Separation Logic

Separation logic (SL), also known as difference logic, is a quantifier-free fragment
of first-order logic. A formula φ in separation logic is a Boolean combination
of Boolean variables and separation predicates (also known as difference bound
constraints) involving real-valued variables, as given by the following grammar:

φ ::= true | false | b | ¬φ | φ ∧ φ | xi ≥ xj + c | xi > xj + c

We use a special variable x0 to denote the constant 0; this allows us to express
bounds of the form x ≥ c. We will however use both x �� c and x �� x0 +c, where
1 Clock constraints in a closed timed automaton do not contain strict inequalities.



Model Checking of Timed Automata Using Boolean Methods 157

��∈ {>,≥}, as suits the context. We will denote Boolean variables by b, b1, b2, . . .,
real variables by x, x1, x2, . . ., and SL formulas by φ, φ1, φ2, . . .. Note that the
relations > and ≥ suffice to represent equalities and other inequalities.

Characteristic functions of sets of states of timed automata are SL formulas.
Deciding the satisfiability of a SL formula is NP-complete [9].

Quantified Separation Logic. Separation logic can be generalized by the
addition of quantifiers over both Boolean and real variables. This yields quan-
tified separation logic (QSL). The satisfiability problem for QSL is PSPACE-
complete [10]. We will denote QSL formulas by ω, ω1, ω2, . . ..

2.2 Timed Automata

A timed automaton T is a tuple 〈L,L0, Σ,X , I, E〉, where L is a finite set of
locations, L0 ⊆ L is a finite set of initial locations, Σ is a finite set of labels
used for product construction, X is a finite set of non-negative real-valued clock
variables, I is a function mapping a location to a SL formula (called a location
invariant), and E is the transition relation, a subset of L×Ψ ×R×Σ×L, where
Ψ is a set of SL formulas that form enabling guard conditions for each transition,
and R is a set of clock reset assignments. A location invariant is the condition
under which the system can stay in that location. A clock reset assignment is
of the form xi := x0 + c or xi := xj , where xi, xj ∈ X and c is a non-negative
rational constant,2 and indicates that the clock variable on the left-hand side
of the assignment is reset to the value of the expression on the right-hand side.
We will denote guards by ψ, ψ1, . . .. The invariant IT for the timed automaton
T is defined as IT =

∧
l∈L[enc(l) =⇒ I(l)], where enc(l) denotes the Boolean

encoding of location l. We will also denote a transition t ∈ E as ψ =⇒ A,
where ψ is a guard condition over both Boolean state variables (used to encode
locations) and clock variables of the system, and A is a set of assignments to
clock and Boolean state variables.

Two timed automata are composed by synchronizing over common labels. We
refer the reader to Alur’s paper [2] for a formal definition of product construction.
Note that in contrast to the definition of timed automata given by Alur [2], we
allow location invariants and guards to be arbitrary SL formulas, rather than
simply conjunctions over separation predicates involving clock variables.

2.3 Fully Symbolic Model Checking

Properties of timed automata can be expressed in a generalization of the µ
calculus called the timed µ (Tµ) calculus. Henzinger et al. [9] showed that the Tµ
calculus can express TCTL, the dense-real-time version of CTL. They have given
a fully symbolic model checking algorithm that verifies if a timed automaton T
satisfies a specification given as a Tµ formula ϕ. The algorithm terminates,
generating a SL formula |ϕ|, such that, if T is non-zeno (i.e., time can diverge

2 The assignment xi := c is represented as xi := x0 + c. Wherever we use xi to denote
a clock variable, i > 0.



158 Sanjit A. Seshia and Randal E. Bryant

from any state), then |ϕ| is equivalent to IT iff T satisfies ϕ. For lack of space,
we omit details of the Tµ calculus, TCTL, and the model checking algorithm;
these can be found in our technical report [14] and in the original paper [9].

Our work is based on Henzinger et al.’s model checking algorithm. It per-
forms backward exploration of the state space and relies on three fundamental
operations:

1. Time Elapse: φ1 � φ2 denotes the set of all states that can reach the state
set φ2 by allowing time to elapse, while staying in state set φ1 at all times
in between. Formally,

φ1 � φ2
.= ∃δ{δ ≥ x0 ∧ φ2 + δ ∧ ∀ε[x0 ≤ ε ≤ δ =⇒ φ1 + ε]} (1)

where φ + δ denotes the formula obtained by adding δ to all clock variables
occurring in φ, computed as φ[xi + δ/xi, 1 ≤ i ≤ n], where x1, x2, . . . , xn are
the clock variables in φi (i.e., not including the zero variable x0).
Consider the formula on the right hand side of Equation 1. This formula
is not in QSL, since it includes expressions that are the sum of two real
variables (e.g., x + δ). However, it can be transformed to a QSL formula, by
using instead of δ and ε, variables δ and ε that represent their negations:

∃δ{δ ≤ x0 ∧ φ2 + (−δ) ∧ ∀ε[δ ≤ ε ≤ x0 =⇒ φ1 + (−ε)]} (2)

Formula 2 is expressible in QSL, since the substitution φ[xi + (−δ)/xi, 1 ≤
i ≤ n] can be computed as φ[δ/x0].3 This yields,

∃δ{δ ≤ x0 ∧ φ2[δ/x0] ∧ ∀ε(δ ≤ ε ≤ x0 =⇒ φ1[ε/x0])} (3)

Finally, we can rewrite Formula 3 purely in terms of existential quantifiers:

∃δ{δ ≤ x0 ∧ φ2[δ/x0] ∧ ¬∃ε(ε ≤ x0 ∧ δ ≤ ε ∧ ¬φ1[ε/x0])} (4)

A procedure for performing the time elapse operation therefore requires one
for eliminating (existential) quantifiers over real variables from a SL formula.

2. Assignment: φ[A], where A is a set of assignments, denotes the formula ob-
tained by simultaneously substituting in φ the right hand side of each assign-
ment in A for the left hand side. Formally, if A is the list b1 := φ1, . . . , bk :=
φk, x1 := xj1 + c1, . . . , xn := xjn + cn, where each bi is a Boolean variable,
each xj is a clock variable, and for each xjl

, jl = 0 or cl = 0, then

φ[A] = φ[φ1/b1, . . . , φk/bk, xj1 + c1/x1, . . . , xjn + cn/xn]

Assignments are thus performed via substitutions of variables.
3. Checking Termination: The termination condition of the fixpoint itera-

tion in the model checking algorithm checks if one set of states, φnew , is
contained in another, φold. This check is performed by deciding the validity
of the SL formula φ

.= φnew =⇒ φold (or equivalently, the satisfiability of
¬φ).

3 Note that substituting x0 by δ or ε can be viewed as shifting the zero reference point
to a more negative value, thus increasing the value of any clock variable relative to
zero (as observed, e.g., in [3,12]).



Model Checking of Timed Automata Using Boolean Methods 159

3 Model Checking Operations Using Boolean Encoding

We now show how to implement the fundamental model checking operations
using a Boolean encoding of separation predicates. We first describe how our
encoding allows us to replace quantification of real variables by quantification
of Boolean variables. This builds on previous work on deciding a SL formula
by transformation to a Boolean formula [16]. We then show how we represent
SL formulas as Boolean formulas, allowing the model checking operations to be
implemented as operations in Quantified Boolean Logic (QBL), and enabling
the use of QBL packages, e.g., a BDD package.

In the remainder of this section, we will use φ to denote a SL formula over
real variables x1, x2, . . . , xn, and Boolean variables b1, b2, . . . , bk. Also, let ��, ��1,
��2∈ {>,≥}.

3.1 From Real Quantification to Boolean Quantification

Consider the QSL formula ωa
.= ∃xa.φ, where a ∈ [1..n].

We transform ωa to an equivalent QSL formula ωbool with quantifiers over
only Boolean variables in the following three steps:

1. Encode separation predicates:
Consider each separation predicate in φ of the form xi �� xj + c where
either i = a or j = a. For each such predicate, we generate a corresponding
Boolean variable e��,c

i,j . Separation predicates that are negations of each other
are represented by Boolean literals (true or complemented variables) that are
negations of each other; however, for ease of presentation, we will extend the
naming convention for Boolean variables to Boolean literals, writing e>,−c

j,i

for the negation of e≥,c
i,j .

Let the added Boolean variables be e
��i1 ,ci1
i1,a , e

��i2 ,ci2
i2,a , . . . , e

��im ,cim

im,a for the up-

per bounds on xa, and e
��j1 ,cj1
a,j1

, e
��j2 ,cj2
a,j2

, . . . , e
��j

m′ ,cj
m′

a,jm′ for the lower bounds
on it.
We replace each predicate xa �� xj +c (or xi �� xa+c) in φ by the correspond-
ing Boolean variable e��,c

a,j (or e��,c
i,a ). Let the resulting SL formula be φa

bool.
2. Add transitivity constraints:

Notice that there can be assignments to the e��,c
i,a and e��,c

a,j variables that have
no corresponding assignment to the real valued variables. To disallow such
assignments, we place constraints on these added Boolean variables. Each
constraint is generated from two Boolean literals that encode predicates
containing xa. We will refer to these constraints as transitivity constraints
for xa.
A transitivity constraint for xa has one of the following types:
(a) e��1,c1

i,a ∧ e��2,c2
a,j =⇒ (xi �� xj + c1 + c2),

where if ��1=��2, then ��=��1, otherwise, we must duplicate this con-
straint for both ��=��1 and for ��=��2.

(b) e��1,c1
i,j =⇒ e��2,c2

i,j , where c1 > c2 and either i = a or j = a.
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(c) e>,c
i,j =⇒ e≥,c

i,j , where either i = a or j = a.
Note that a constraint of type (a) involves a separation predicate (xi ��
xj + c1 + c2). This predicate might not be present in the original formula φ.4

After generating all transitivity constraints for xa, we conjoin them to get
the SL formula φa

cons.
3. Finally, generate the QSL formula ωbool given below:

∃e
��i1,ci1
i1,a , e

��i2,ci2
i2,a , . . . , e

��im,cim

im,a .∃e
��j1,cj1
a,j1

, e
��j2,cj2
a,j2

, . . . , e
��j

m′ ,cj
m′

a,jm′ .[φa
cons∧φa

bool]

We formalize the correctness of this transformation in the following theorem.

Theorem 1. ωa and ωbool are equivalent.

Example 1. Let ωa = ∃xa.φ where φ = xa ≤ x0 ∧ x1 ≥ xa ∧ x2 ≤ xa. Then,
φa

bool = e≥,0
0,a ∧ e≥,0

1,a ∧ e≥,0
a,2 . φa

cons is the conjunction of the following constraints:

1. e≥,0
0,a ∧ e≥,0

a,2 =⇒ x0 ≥ x2

2. e≥,0
1,a ∧ e≥,0

a,2 =⇒ x1 ≥ x2

Then, ωbool = ∃e≥,0
0,a , e≥,0

1,a , e≥,0
a,2 .[φa

cons ∧φa
bool] evaluates to x0 ≥ x2 ∧x1 ≥ x2. ��

The quantifier transformation procedure described here works even when φ
is replaced by a QSL formula with quantifiers only over Boolean variables.

3.2 Deciding SL Formulas

Suppose we want to decide the satisfiability of φ. Note that φ is satisfiable iff
the QSL formula ω1..n = ∃x1, x2, . . . , xn.φ is.

Using Theorem 1, we can transform ω1..n to an equivalent QSL formula ωbool

with existential quantifiers only over Boolean variables encoding all separation
predicates. As ωbool is a QBL formula with only existential quantifiers, we can
simply discard the quantifiers and use a Boolean satisfiability checker to decide
the resulting Boolean formula.

Note that the transformation described above can be viewed as one way to
implement the procedure of Strichman et al. [16].

3.3 Representing SL Formulas as Boolean Formulas

In our presentation up to this point, we have not used any specific representa-
tion of SL formulas. In practice, we encode a SL formula φ as a Boolean formula
β. The encoding is performed as follows. Consider each separation predicate
xi �� xj + c in φ. As in Section 3.1 earlier, we introduce a Boolean variable e��,c

i,j

for xi �� xj +c, only this time we do it for every single separation predicate. Also
as before, separation predicates that are negations of each other are represented
4 This addition is analogous to the “tightening” step performed in difference-bound

matrix based algorithms
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by Boolean literals that are negations of each other. We then replace each sepa-
ration predicate in φ by its corresponding Boolean literal. The resulting Boolean
formula is β.

Clearly, β, by itself, stores insufficient information for generating transitivity
constraints. Therefore, we also store the 1-1 mapping of separation predicates
to the Boolean literals that encode them. However, this mapping is used only
lazily, i.e., when generating transitivity constraints during quantification and in
deciding SL formulas.

Substitution. Given the representation described above, we can implement
substitution of a clock variable as follows. For a clock variable xi, we perform
the substitution [xi ← xk + d] (where k = 0 or d = 0), by replacing all Boolean
variables of the form e��,c

i,j and e��′,c′

j,i , for all j, by variables e��,c−d
k,j and e��′,c′+d

j,k

respectively, creating fresh replacement variables if necessary. Substitution of a
Boolean state variable by the Boolean encoding of a separation formula is done
by Boolean function composition.

4 Optimizations

The methods presented in Section 3 can be optimized in a few ways. First, we
can be more selective in deciding when to add transitivity constraints. Second,
we can compute the time elapse operator more efficiently by a method that does
not explicitly introduce the bound real variable ε, and hence does not introduce
new quantifiers over Boolean variables. The final optimization concerns elimi-
nating paths in a BDD representation that violate transitivity constraints. As is
well-known, the size of a BDD is very sensitive to the number and ordering of
BDD variables. In the case of model checking timed automata, new Boolean vari-
ables are created as the model checking proceeds, while generating transitivity
constraints, and while performing substitutions of clock variables. This has the
potential to add several BDD variables on each iteration. While all three tech-
niques presented in this section help in reducing the number of BDD variables,
only the last technique is specialized for BDDs.

4.1 Determining if Bounds Are Conjoined

Suppose φ is a SL formula with Boolean encoding β, and we wish to eliminate
the quantifier in ∃xa.φ. As described in Section 3.1, a transitivity constraint for
xa involves two Boolean literals that encode separation predicates involving xa.
For a syntactic representation of β, as the number of constraints grows, so does
the size of [βa

cons ∧ βa
bool], the Boolean encoding of [φa

cons ∧ φa
bool]. Further, new

separation predicates can be added when a transitivity constraint is generated
from an upper bound and a lower bound on xa. For a BDD-based implementa-
tion, this corresponds to the addition of a new BDD variable. We would therefore
like to avoid adding transitivity constraints wherever possible.
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In fact, we only need to add a constraint involving an upper bound literal and
a lower bound literal if they are conjoined in a minimized DNF representation
of β.5 From a geometric viewpoint, this means that we check that the predicates
corresponding to the two literals are bounds for the same convex clock region.
This check can be posed as a Boolean satisfiability problem, which is easily solved
using a BDD representation of β. Let the literals be e1 and e2. Then, we use
cofactoring and Boolean operations to compute the following Boolean formula:

e1 ∧ e2 ∧ [β|e1=true ∧ ¬(β|e1=false)] ∧ [β|e2=true ∧ ¬(β|e2=false)] (5)

Formula 5 expresses the Boolean function corresponding to the disjunction of
all terms in the minimized DNF representation of β that contain both e1 and e2

in true form. Therefore, if Formula 5 is satisfiable, it means that e1 and e2 are
conjoined, and we must add a transitivity constraint involving them both.

Note however, that since β does not, by itself, represent the original SL
formula φ, finding that e1 and e2 are conjoined in β does not imply that they
are bounds in the same convex region of φ. However, the converse is true, so our
method is sound.

4.2 Quantifier Elimination by Eliminating Upper Bounds on x0

The definition of the time elapse operation introduces two quantified non-clock
real variables: δ and ε. We can exploit the special structure of the QSL formula
for the time elapse operation so as to avoid introducing ε altogether. Thus, we can
avoid adding new quantified Boolean variables encoding predicates involving ε.

Consider the inner existentially quantified SL formula in Formula 4 in Sec-
tion 2.3, reproduced here:

∃ε(ε ≤ x0 ∧ δ ≤ ε ∧ ¬φ1[ε/x0])

Grouping the inequality δ ≤ ε with the formula ¬φ1[ε/x0], we get:

∃ε{ε ≤ x0 ∧ (δ ≤ x0 ∧ ¬φ1)[ε/x0]} (6)

Finally, treating δ as a clock variable, we can revert back to ε from ε, trans-
forming Formula 6 to the following form:

∃ε[ε ≥ x0 ∧ (δ ≤ x0 ∧ ¬φ1) + ε] (7)

Formula 7 is a special case of the formula ωε given by

ωε = ∃ε.ε ≥ x0 ∧ φ + ε

for some SL formula φ. From a geometric viewpoint, φ is a region in R
n and ωε is

the shadow of φ for a light source at ∞n. Examples of φ and the corresponding
ωε are shown in Figures 1(a) and 1(c) respectively.

We can transform ωε to an equivalent SL formula φub by eliminating upper
bounds on x0, i.e., Boolean variables of the form e��,c

i,0 . The transformation is
performed iteratively in the following steps:
5 A conservative, syntactic variant of this idea was earlier proposed by Strichman [15].
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1. Let φ0 = φ. Let e��1,c1
i1,0 , e��2,c2

i2,0 , . . . , e��m,cm

im,0 be Boolean literals encoding all
upper bounds on x0 that occur in φ.

2. For j = 1, 2, . . . , m, we construct φj as follows:
(a) Replace all occurrences of xij ��j x0 + cj in φj−1 with e

��j,cj

ij ,0 to get
φ0,j−1

bool .
(b) Construct φ0,j−1

cons , the conjunction of all transitivity constraints6 for x0

involving e
��j ,cj

ij ,0 and clock variables in φ0,j−1
bool .

(c) Construct the formula φj , a disjunction of two terms:

φj = {(φ0,j−1
bool ∧ φ0,j−1

cons )|
e

��j,cj
ij ,0 =true

} ∨

{[¬(xij ��j x0 + cj)] ∧ [φ0,j−1
bool |

e
��j,cj
ij ,0 =false

]}

The first disjunct is the region obtained by dropping the bound xij ��j

x0 +cj from convex sub-regions of φj−1 where it is a lower bound on xij ,
while letting time elapse backward. The second disjunct corresponds to
sub-regions where ¬(xij ��j x0 + cj) is an upper bound; these regions
are left unchanged.

The output of the above transformation, φub, is given by φub = φm. The cor-
rectness of this procedure is formalized in the following theorem.

Theorem 2. ωε and φub are equivalent.

Example 2. Let the subformula φ of ωε be

φ = (x1 ≥ x0 + 3 ∧ x2 ≤ x0 + 2) ∨ (x1 < x0 + 3 ∧ x2 ≥ x0 + 3)

3 x1

x2

2-

3

(a) φ0 = φ

3 x1

x2

2-

3

x1 = x2 + 1

(b) φ1

3 x1

x2

2-

3

x1 = x2

(c) φ2 = ωε

Fig. 1. Eliminating upper bounds on x0. Only the positive quadrant is shown.

φ is depicted geometrically as the shaded region in Figure 1(a). It comprises two
sub-regions, one for each disjunct. The lower bounds on these regions, x1 ≥ x0+3
and x2 ≥ x0 + 3, are upper bounds on x0. We encode these by e≥,3

1,0 and e≥,3
2,0 .

6 We can use the optimization technique of Section 4.1 in this step.
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Figure 1(b) shows φ1, the result of eliminating e≥,3
1,0 . Formally, we calculate

φ0,0
bool = (e≥,3

1,0 ∧ x2 ≤ x0 + 2) ∨ (¬e≥,3
1,0 ∧ x2 ≥ x0 + 3)

φ0,0
cons = (e≥,3

1,0 ∧ x2 ≤ x0 + 2) =⇒ (x1 ≥ x2 + 1)

Then, applying step 2(c) of the transformation, we get

φ1 = (x2 ≤ x0 + 2 ∧ x1 ≥ x2 + 1) ∨ (x1 < x0 + 3 ∧ x2 ≥ x0 + 3)

Similarly, in the next iteration, we introduce and eliminate e≥,3
2,0 to get φ2, shown

in Figure 1(c), which is equivalent to ωε. ��

Note that the QSL formula obtained after eliminating the inner quantifier
in Formula 4 is not of the form ωε, and so we cannot avoid introducing the δ
variable.

4.3 Eliminating Infeasible Paths in BDDs

Suppose β is the Boolean encoding of SL formula φ. Let φcons denote the con-
junction of transitivity constraints for all real-valued variables in φ, and let βcons

denote its Boolean encoding. Finally, denote the BDD representations of β and
βcons by Bdd(β) and Bdd(βcons) respectively.

We would like to eliminate paths in Bdd(β) that violate transitivity con-
straints, i.e., those corresponding to assignments to variables in β for which
βcons = false. We can do this by using the BDD Restrict operator, replac-
ing Bdd(β) by Restrict(Bdd(β), Bdd(βcons)). Informally, Restrict(Bdd(β),
Bdd(βcons)) traverses Bdd(β), eliminating a path on which βcons is false as long
as it doesn’t involve adding new nodes to the resulting BDD. Details about the
Restrict operator may be found in the paper by Coudert and Madre [7].

Since eliminating infeasible paths in a large BDD can be quite time consum-
ing, we only apply this optimization to the BDD for the set of reachable states,
once on each fixpoint iteration.

5 Experimental Results

We implemented a BDD-based model checker called TMV, that is written in
OCaml and uses the CUDD package7. We have performed preliminary exper-
iments comparing the performance of our model checker for both reachability
and non-reachability TCTL properties. For reachability properties, we compare
against the other unbounded, fully symbolic model checkers, viz., a DDD-based
checker (DDD) [12] and Red version 4.1 [17], which have been shown to out-
perform Uppaal2k and Kronos for reachability analysis. For non-reachability
properties, such as checking that a system is non-zeno, we compare against
Kronos and Red, the only other unbounded model checkers that check such
properties.
7 http://vlsi.colorado.edu/~fabio/CUDD
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We ran two experiments using Fischer’s time-based mutual exclusion proto-
col. The first experiment compared our model checker against DDD and Red,
checking that the system preserves mutual exclusion (a reachability property).
In the second, we compared against Kronos and Red for checking that the
product automaton is non-zeno (a non-reachability property). All experiments
were run on a notebook computer with a 1 GHz Pentium-III processor and 128
MB RAM, running Linux. We ran DDD, Kronos, and Red with their default
options. TMV used a static BDD variable ordering that is the same as the one
used for the corresponding Boolean variables and separation predicates in DDD

and is described in detail in our technical report [14].
Table 1(a) shows the results of the comparison against DDD and Red for

checking mutual exclusion for increasing numbers of processes. For DDD and
TMV, the table lists both the run-times and the peak number of nodes in the
decision diagram for the reachable state set. We find that DDD outperforms
TMV due to the blow-up of BDDs. In spite of the optimizations of Section 4,
the peak node count in the case of DDD is less than that for TMV, since the lo-
cal reduction operations performed by DDD during node creation can eliminate
unnecessary DDD nodes without adding any time overhead. For example, DDD

can reduce a function of the form e1 ∧ e2 ∧ e3 under the transitivity constraint
[e1∧e2] =⇒ e3 to simply the conjunction e1∧e2. The BDD Restrict operator
cannot always achieve this as it is sensitive to the BDD variable ordering. Fur-
thermore, TMV contains many other BDDs, such as those for the transitivity
constraints, to which we do not apply the Restrict optimization due to its run-
time overhead. Finally, in comparison to Red, we see that while TMV is faster
on the smaller benchmarks, Red’s superior memory performance enables it to
complete for 7 processes while TMV runs out of memory.

Table 1. Checking properties of Fischer’s protocol for increasing numbers
of processes. A “*” indicates that the model checker ran out of memory.

Num. Red DDD TMV

Proc. Time Time Reach Set Time Reach Set
(sec.) (sec.) (peak (sec.) (peak

nodes) nodes)
3 0.21 0.06 130 0.11 101
4 1.13 0.14 352 0.38 316
5 4.53 0.33 854 1.85 1127
6 15.11 0.90 2375 17.41 4685
7 46.31 2.65 6346 * *

(a) Mutual Exclusion

Num. Kronos Red TMV

Proc. Time Time Time Reach Set
(sec.) (sec.) (sec.) (peak

nodes)
3 0.03 0.28 0.24 28
4 0.23 1.30 0.44 39
5 1.98 5.05 0.80 54
6 * 17.80 2.15 69
7 * 57.95 6.61 88

(b) Non-Zenoness

Table 1(b) shows the comparison with Kronos and Red for checking non-
zenoness. The time for Kronos is the sum of the times for product construction
and backward model checking. We notice that while Kronos does better for
smaller numbers of processes, the product automaton it constructs grows very
quickly, becoming too large to construct at 6 processes. The run times for TMV,
on the other hand, grow much more gradually, demonstrating the advantages of a
fully symbolic approach. For this property, the BDDs remain small even for larger
numbers of processes. Thus, TMV outperforms Red, especially as the number of
processes increases. These results indicate that when the representation (BDDs)
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remains small, Boolean methods for quantifier elimination and deciding SL can
outperform non-Boolean methods by a significant factor.

Although they are preliminary, our results indicate that our model checker
based on a general purpose BDD package can outperform methods based on
specialized representations of SL formulas. We are working on improving our
current methods of eliminating unnecessary BDD nodes, and are also starting
to work on a SAT-based implementation.
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