
Digitizing Interval Duration Logic

Gaurav Chakravorty1� and Paritosh K. Pandya2

1 Indian Institute of Technology, Kanpur, India
gchak@cse.iitk.ac.in

2 Tata Institute of Fundamental Research
Colaba, Mumbai 400005, India

pandya@tcs.tifr.res.in

Abstract. In this paper, we study the verification of dense time proper-
ties by discrete time analysis. Interval Duration Logic, (IDL), is a highly
expressive dense time logic for specifying properties of real-time sys-
tems. Validity checking of IDL formulae is in general undecidable. A
corresponding discrete-time logic QDDC has decidable validity.

In this paper, we consider a reduction of IDL validity question to QDDC
validity using notions of digitization. A new notion of Strong Closure
under Inverse Digitization, SCID, is proposed. For all SCID formulae, the
dense and the discrete-time validity coincide. Moreover, SCID has good
algebraic properties which can be used to conveniently prove that many
IDL formulae are SCID. We also give some approximation techniques
to strengthen/weaken formulae to SCID form. For SCID formulae, the
validity of dense-time IDL formulae can be checked using the validity
checker for discrete-time logic QDDC.

1 Introduction

Duration Calculus (DC) is a highly expressive logic for specifying properties of
real-time systems [10]. Interval Duration Logic (IDL) [8] is a variant of Dura-
tion Calculus where formulae are interpreted over timed state sequences. Timed
state sequences [1] are a well studied model of real-time behaviour with a well-
developed automata theory and tools for the analysis of such automata. In prac-
tical applications, IDL inherits much of the expressive ability of the original
DC.

Model/validity checking of IDL is undecidable in general. Even for some
restricted class of formulae [8], their verification requires analysis of hybrid au-
tomata, which is computationally expensive. By contrast, the Discrete-time Du-
ration Calculus (QDDC) is decidable [7] using well developed automata theoretic
techniques. A tool DCVALID permits model/validity checking of QDDC formu-
lae for many significant examples [7].

In this paper, we investigate the reduction of IDL validity question to QDDC
validity question so that QDDC tools can be used to analyse IDL formulae.

� This work was partly carried out under the VSRP program of TIFR, Mumbai.

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 167–179, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

168 Gaurav Chakravorty and Paritosh K. Pandya

Thus, we investigate verification of dense-time properties by discrete-time anal-
ysis. There is experimental evidence that with existing techniques, automatic
verification of discrete-timed systems can be significantly easier than the verifi-
cation of similar dense-time systems [2]. Hence, we believe that our approach of
reduction from IDL to QDDC is practically useful.

IDL models are precisely timed state sequences where states are labelled with
real-valued time stamps. Denote the set of such behaviours by TSSR. We can
also interpret IDL over timed state sequences where all time stamps have only
integer values. Call the set of such behaviours as TSSZ, and IDL restricted to
such behaviours as ZIDL. An IDL behaviour can be digitized to a set of ZIDL
behaviours by approximating its time stamps to nearby integer values. We follow
the notion of digitization due to Henzinger et al and make use of their digitization
theorem which gives sufficient conditions for reducing dense-time model checking
to discrete-time model checking [4].

The reduction from IDL to QDDC is carried out in two stages. In the first
stage, we give a reduction from IDL to ZIDL validity which is sound only for
formulae which are “Closed under Inverse Digitization” (CID), a notion pro-
posed by Henzinger, Manna and Pnueli [4]. Unfortunately, it is quite hard to
establish whether IDL formulae have CID property. Towards this we propose a
new notion of “Strong Closure under Inverse Digitization” (SCID). Fortunately,
SCID is preserved by most IDL operators and we are able to give a structural
characterization of a large class of IDL formulae which are SCID. For formulae
which are not SCID, we give approximations to stronger and weaker formulae
which are SCID. Finally, SCID implies CID and hence for such formulae reduc-
tion from IDL to ZIDL is sound. Our logic IDL includes a powerful � (chop)
operator and a notion of

∫
P , the accumulated amout of time for which propo-

sition P holds in a time interval. Digitization of such properties is one of the
contributions of this paper.

ZIDL is the logic of weakly monotonic integer-timed state sequences, where as
QDDC is a logic of untimed state sequences. In our next reduction, we translate
an arbitrary ZIDL formula D to an “equivalent” QDDC formula β(D). Here,
“equivalence” means preserving models under a suitable isomorphism.

The rest of the paper is organised as follows. Logic IDL is introduced in Sec-
tion 2. Basic notions of digitization and closure under digitization are presented
in Section 3. Digitization of IDL formulae to ZIDL formulae is presented in Sec-
tion 4. Section 5 presents the reduction from ZIDL to QDDC. We illustrate our
approach by a small example in Section 6, where the validity of a (dense-time)
IDL formula is established using the QDDC validity checker DCVALID. The
paper ends with a discussion of related work.

2 Interval Duration Logic

Let Pvar be the set of propositional variables (called state variables in DC).
The set of states is Σ = 2Pvar consisting of the set of subsets of Pvar. Let �0

be the set of non-negative real numbers.

Digitizing Interval Duration Logic 169

Definition 1. A timed state sequence over Pvar is a pair θ = (σ, τ) where
σ = s0s1sn−1 with si ∈ 2Pvar is a finite non-empty sequence of states,
and τ = t0 t1 . . . tn−1 is a finite sequence of time stamps such that ti ∈ �0

with t0 = 0 and τ is non-decreasing. Let dom(θ) = {0, . . . , n − 1} be the set of
positions within the sequence θ. Also, let the length of θ be #θ = n.

Timed state sequence gives a sampled view of timed behaviour. Note that the
time is weakly monotonic with several state changes occurring at same time [6].

The set of timed state sequences is denoted by TSSR. We shall use TSSZ

to denote the subset of TSSR where all time stamps have non-negative integer
values.

Let Prop be the set of propositions (boolean formulae) over Pvar with 0
denoting false and 1 denoting true. The truth of proposition P can be evaluated
at any position i in dom(θ). This is denoted by θ, i |= P . We omit this obvious
definition.

Logic IDL is a form of interval temporal logic. The set of intervals within a
timed state sequence θ can be defined as follows, where [b, e] denotes a pair of
positions. Each interval uniquely identifies a subsequence of θ.

Intv(θ) = {[b, e] ∈ dom(θ)2 | b ≤ e}

Syntax of Interval Duration Logic Let p, q range over propositional variables from
Pvar, let P, Q range over propositions and D1, D2 range over IDL formulae. Let
c range over non-negative integer constants.

�P �0 | �P � | D1
�D2 | D1∧D2 | ¬D | η op c | ΣP op c | � op c |

∫
P op c

where op ∈ < | > | = | ≤ | ≥. Let IDLl denote the subset of
IDL formulae in which duration formulae of the form (

∫
P op c) do not occur.

Semantics of IDL Let θ, [b, e] |= D denote that formula D evaluates to true
within a timed state sequence θ and interval [b, e], as defined inductively below.

θ, [b, e] |= �P �0 iff b = e and θ, b |= P
θ, [b, e] |= �P � iff b < e and for all m : b < m < e. θ, m |= P
θ, [b, e] |= D1

�D2 iff for some m : b ≤ m ≤ e.
θ, [b, m] |= D1 and θ, [m, e] |= D2

θ, [b, e] |= D1 ∧ D2 iff θ, [b, e] |= D1 and θ, [b, e] |= D2

θ, [b, e] |= ¬D iff θ, [b, e] �|= D

Now we consider the semantics of measurement formulae. Logic IDL has four
different types of measurement terms: η | ΣP | � |

∫
P .

These represent some specific quantitative measurements over the behaviour in
a given interval. We shall denote the value of a measurement term t in a timed
state sequence θ and an interval [b, e] by eval(t)(θ, [b, e]), as defined below. Step
length η gives the number of steps within a given interval, whereas time length �
gives the amount of real-time spanned by a given interval. Step count ΣP counts
the number of states for which P holds in the (left-closed-right-open) interval.
Duration

∫
P gives amount of real-time for which proposition P holds in the

170 Gaurav Chakravorty and Paritosh K. Pandya

given interval. Terms η and ΣP are called discrete measurements, whereas terms
� and

∫
P are called dense measurements. A measurement formula compares a

measurement term with an integer constant.

eval(η)(θ, [b, e]) = e − b, eval(�)(θ, [b, e]) = te − tb

eval(ΣP)(θ, [b, e]) =
∑e−1

i=b

(
1 if θ, i |= P
0 otherwise

)

eval(
∫
P)(θ, [b, e]) =

∑e−1
i=b

(
ti+1 − ti if θ, i |= P
0 otherwise

)

θ, [b, e] |= t op c iff eval(t)(θ, [b, e]) op c

Finally, a formula D holds for a timed state sequence θ if it holds for the full
interval spanning the whole sequence.

θ |= D iff θ, [0, #θ − 1] |= D
|= D iff θ |= D for all θ

Derived Operators

– ��P � def= (�P �0 ��P �) and ��P �� def= (��P ���P �0). Formula ��P �� states that
proposition P holds invariantly over the interval including its end points.

– �D
def= true �D �true holds provided D holds for some subinterval.

– �D
def= ¬�¬D holds provided D holds for all subintervals.

Example 1. Formula �(��P � ⇒ � ≤ 10) states that in any interval, if P is invari-
antly true then the time length of the interval is at most 10. That is, P cannot
last for more than 10 time units at a stretch.

Follows(P, Q, d) def= ¬�((��P � ∧ � ≥ d) ��¬Q�0).
Formula Follows(P, Q, d) states that if P has held continuously d or more time
units in past, then Q must hold. Formula FollowsWk requires Q to hold only
after P has held for strictly more than d time units.

FollowsWk(P, Q, d) def= ¬�((��P � ∧ � > d) ��¬Q�0).
�

Quantified Discrete-time Duration Calculus (QDDC) is the the subset of IDL
where dense-time measurement constructs of the form � op c or

∫
P op c are not

used. Note that discrete time measurement constructs η op c or ΣP op c can
still be used. For QDDC formulae, the time stamps τ in behaviour θ = (σ, τ)
do not play any role. Hence, we can also define the semantics of QDDC purely
using state sequences, i.e. σ |= D (see [7]).

Decidability and Model Checking Although, validity of full IDL is undecidable
[8], the validity of QDDC formulae is decidable. A tool, called DCVALID, based
on an automata-theoretic decision procedure for QDDC has been implemented,
and found to be effective on many significant examples [7]. In the rest of the pa-
per, we consider a reduction of IDL model/validity checking problem to QDDC
model/validity checking problem. This provides a novel and, in our opinion, a
practically useful technique for reasoning about IDL properties.

Digitizing Interval Duration Logic 171

3 Digitization

In this section we provide a brief overview of the pioneering work of Henzinger,
Manna and Pnueli [4] characterizing the set of systems and properties for which
the real-time verification problem is equivalent to integer-time verification.

Notation For real numbers a, b with a ≤ b, let [a : b) denote the left closed right
open interval. Similarly (a : b), (a : b] and [a : b]. Let frac(a) def= a − �a
 denote
the fractional part of a real number a.

Definition 2 (Digitization). Let x ∈ �0 and θ = (σ, τ) ∈ TSSR. Let ε ∈ [0 :
1). Then, ε-digitization of θ, denoted by [θ]ε, is defined as follow.

– x ↓ ε
def=

{
�x
 if frac(x) ≤ ε

else �x�

}

– [θ]ε
def= (σ, τ ′) s.t. τ ′(i) = τ(i) ↓ ε

Example 2. Let θ = (σ0, 0.0) −→ (σ1, 1.5) −→ (σ2, 4.35) −→ (σ3, 5.0).
Then, [θ]0.0 = (σ0, 0) −→ (σ1, 2) −→ (σ2, 5) −→ (σ3, 5)
and [θ]0.4 = (σ0, 0) −→ (σ1, 2) −→ (σ2, 4) −→ (σ3, 5).

Definition 3. Let θ ∈ TSSR and Π ⊆ TSSR. Then,
[θ] def= {[θ]ε | ε ∈ [0, 1)}
[Π] def= {[θ]ε | ε ∈ [0 : 1), θ ∈ Π}. Note that [Π] ⊆ TSSZ.
Z(Π) def= Π ∩ TSSZ, the set of integer valued traces of Π.

Set [Π] gives the set of digitized approximations of the behaviours in Π where
as Z(Π) gives the integer time fragment of Π . Closures under digitization and
inverse digitization, defined below, are used to give a d

¯
igitization theorem which

reduces dense-time model checking to discrete time model checking.

Definition 4 (Closure under digitization (CD)).

CD(Π) def= ∀θ ∈ TSSR. (θ ∈ Π ⇒ (∀ε ∈ [0, 1). [θ]ε ∈ Π)).

Proposition 1. CD(Π) iff [Π] ⊆ Π iff Z(Π) = [Π].

Definition 5 (Closure under inverse digitization (CID)).

CID(Π) def= ∀θ ∈ TSSR. ((∀ε ∈ [0, 1). [θ]ε ∈ Π) ⇒ θ ∈ Π)

Theorem 1 (Digitization). Let Ψ, Π ⊆ TSSR.
– If CD(Ψ) and CID(Π), then Ψ ⊆ Π iff Z(Ψ) ⊆ Z(Π)
– If CID(Π) then Π = TSSR iff Z(Π) = TSSZ

Typically, the set Ψ in the above theorem denotes the set of behaviours of a sys-
tem where as Π denotes the set of behaviours satisfying some desired property.
Hence, the theorem gives sufficient conditions under which the real time verifi-
cation problem Ψ ⊆ Π can be reduced to the integer time verification problem
Z(Ψ) ⊆ Z(Π). The key requirement for reducing dense-time validity to discrete-
time validitiy is that properties should be closed under inverse digitization CID.

172 Gaurav Chakravorty and Paritosh K. Pandya

4 Digitization of Interval Duration Logic Formulae

We consider the real-time properties specified in logic IDL. We must determine
the subset of IDL properties that are closed under inverse digitization (CID).

4.1 Closure Properties in IDL

Notation Let [[D]]R
def= {θ | θ |= D} denote the set of timed state sequences

satisfying the IDL formula D, and let [[D]]Z
def= [[D]]R ∩ TSSZ denote the set

of integer timed sequences satisfying D. Define |=R D
def= [[D]]R = TSSR and

|=Z D
def= [[D]]Z = TSSZ. Then, CID([[D]]R) states that the set of timed state

sequences satisfying D is closed under inverse digitization. We shall abbreviate
CID([[D]]R) by CID(D). Similarly, also CD(D) and SCID(D) (defined below).

Proposition 2. Algebraic properties of CD:
(a) CD(D1)∧CD(D2) ⇒ CD(D1∧D2), (b) CD(D1)∧CD(D2) ⇒ CD(D1∨D2),
(c) CD(D1) ∧ CD(D2) ⇒ CD(D1

�D2), (d) CD(D) ⇒ CD(�D), and
(e) CD(D) ⇒ CD(�D).

Proposition 3. Algebraic properties of CID:
(a) CID(D1) ∧ CID(D2) ⇒ CID(D1 ∧ D2), and (b) CID(D) ⇒ CID(�D).

Unfortunately, operators ∨, �,¬ do not preserve the crucial CID property mak-
ing it difficult to establish that a formula is CID. Below we introduce a stronger
notion of closure, SCID, which has vastly superior preservation properties. Also,
SCID(D) implies CID(D).

Definition 6 (Strong Closure under Inverse Digitization(SCID)). For
Π ⊆ TSSR, let SCID(Π) def= ∀θ ∈ TSSR ((∃ε ∈ [0, 1). [θ]ε ∈ Π) ⇒ θ ∈ Π).

Proposition 4. (a) SCID(D) ⇔ CD(¬D), and (b) SCID(D) ⇒ CID(D).

Proposition 5. Algebraic properties of SCID:
(a) SCID(D1) ∧ SCID(D2) ⇒ SCID(D1 ∧ D2),
(b) SCID(D1) ∧ SCID(D2) ⇒ SCID(D1 ∨ D2),
(c) SCID(D1) ∧ SCID(D2) ⇒ SCID(D1

�D2),
(d) SCID(D) ⇒ SCID(�D) and (e) SCID(D) ⇒ SCID(�D).
�

Proposition 6. SCID(D1) ∧ CID(D2) ⇒ CID(D1 ∨ D2)
�

Lemma 1. Formulae of IDL which are free of dense measurements (i.e. QDDC
formulae) are CD as well as SCID; hence CID.

Proof. Let θ = (σ, τ) and let D ∈ QDDC. Then, [θ]ε = (σ, τ ′). Note that the
interpretation of D does not depend upon the time stamp sequence τ . Hence,
(σ, τ), [b, e] |= D iff (σ, τ ′), [b, e] |= D.
�

Digitizing Interval Duration Logic 173

4.2 Digitization of Dense Measurements

We consider the effect of digitization on dense measurements � and
∫
P . We first

study some number theoretic properties of digitization.

Lemma 2. Let c1 ≥ c2. Let f1 = frac(c1) and f2 = frac(c2) be the fractional
parts of c1 and c2. Let δ = f1−f2. Let x = c1− c2 and x(ε) = c1 ↓ ε− c2 ↓ ε. We
characterize the difference x(ε) − x for 0 ≤ ε < 1 below, and plot it alongside.

Let f1 ≤ f2. Hence δ ∈ (−1 : 0]. Then,

∀ε ∈ [0 : f1)
{

c1 ↓ ε = �c1� , c2 ↓ ε = �c2�
x(ε) − x = −δ

}

∀ε ∈ [f1 : f2)
{

c1 ↓ ε = �c1
 , c2 ↓ ε = �c2�
x(ε) − x = − (δ + 1)

}

∀ε ∈ [f2 : 1)
{

c1 ↓ ε = �c1
 , c2 ↓ ε = �c2

x(ε) − x = − δ

}

x(ε)

x(ε)

x(ε)

x

x

0 1
ε

f1 f2

xδ

Let f1 > f2. Hence δ ∈ (0 : 1). Then,

∀ε ∈ [0 : f2)
{

c1 ↓ ε = �c1� , c2 ↓ ε = �c2�
x(ε) − x = −δ

}

∀ε ∈ [f2 : f1)
{

c1 ↓ ε = �c1� , c2 ↓ ε = �c2

x(ε) − x = − (δ − 1)

}

∀ε ∈ [f1 : 1)
{

c1 ↓ ε = �c1
 , c2 ↓ ε = �c2

x(ε) − x = − δ

} x

x

x(ε)

x(ε)

x(ε)

0 1
ε

f1

x

f2

δ

From this it also follows that,∫ 1

0

(x(ε) − x).dε = 0.0 (1)

As a consequence of above case analysis, we have the following three results.

Proposition 7. Let c1 ≥ c2 be non-negative reals, and c be non-negative integer.
Then,
(A) (c1 − c2) > c ⇒ ∃ε. (c1 ↓ ε − c2 ↓ ε) > c
(B) (c1 − c2) ≥ c ⇒ ∀ε. (c1 ↓ ε − c2 ↓ ε) ≥ c
(C) (c1 − c2) ≤ c ⇒ ∀ε. (c1 ↓ ε − c2 ↓ ε) ≤ c
(D) (c1 − c2) < c ⇒ ∃ε. (c1 ↓ ε − c2 ↓ ε) < c

Proof. The result can be easily seen by examination of Figures in Lemma 2. We
omit a detailed algebraic proof.
�

Theorem 2. CD(� ≥ c) and CD(� ≤ c). Also SCID(� > c) and SCID(� < c).

Proof. We prove that CD(� ≥ c). Proofs of the other parts are omitted. Let
θ, [b, e] |= � ≥ c. This implies te − tb ≥ c.
By Proposition 7(B), ∀ε ∈ [0 : 1), (te ↓ ε − tb ↓ ε) ≥ c.
Hence, ∀ε ∈ [0 : 1), [θ]ε, [b, e] |= � ≥ c.
�

174 Gaurav Chakravorty and Paritosh K. Pandya

Theorem 3. CID(
∫
P op c) where op ∈ {<,≤,≥, >}.

Proof. By the semantics of
∫
P , we have

eval(
∫
P)([θ]ε, [b, e]) =

∑e−1
i=b

(
ti+1 ↓ ε − ti ↓ ε if σ, i |= P
0 otherwise

)

By Equation 1, we have,∫ 1

0
((ti+1 ↓ ε − ti ↓ ε) − (ti+1 − ti)).dε = 0.0.

Hence,
(∫ 1

0
(eval(

∫
P)([θ]ε, [b, e])) − eval(

∫
P)(θ, [b, e])).dε

)
= 0.0

Therefore, one of the following must hold

– {∀ε. eval(
∫

P)([θ]ε, [b, e]) = eval(
∫

P)(θ, [b, e])}, or

– { (∃ε. eval(
∫

P)([θ]ε, [b, e]) > eval(
∫

P)(θ, [b, e])) ∧
(∃ε. eval(

∫
P)([θ]ε, [b, e]) < eval(

∫
P)(θ, [b, e])) }

Hence, for op ∈ {<,≤,≥, >} we have,
{(θ, [b, e]) �|=

∫
P op c ⇒ ∃ε. [θ]ε, [b, e] �|=

∫
P op c}.

The result follows immediately from this.
�

4.3 Proving IDL Formulae CID

The algebraic properties of the previous section can be used to infer that an IDL
formula is SCID or CID purely from its syntactic structure. Recall that IDL�

is the IDL subset without
∫
P terms. Formulae of form (� op c) will be called

length constraints.

Example 3. CID(�(� ≤ 60 ⇒
∫
Leak ≤ 5)).

Proof. By Theorem 2, CD(� ≤ 60). Hence, by Proposition 4(a) , SCID(¬(� ≤
60)). Also, by Theorem 3, CID(

∫
Leak ≤ 5). Hence using Propositions 6 and

3(b), we have CID(�(¬(� ≤ 60) ∨
∫
Leak ≤ 5)) which gives the result.
�

Theorem 4. For D ∈ IDLl, if the following conditions hold then SCID(D).

– every length constraint occurring within the scope of even number negation
has the form � > c or � < c, and

– every length constraint occurring within the scope of odd number of negations
has the form � ≤ c or � ≥ c.
�

Using the Digitization Theorem 1, we get the following Theorem.

Theorem 5. If CID(D) then |=R D iff |=Z D.

Digitization Approximation of IDLl formulae Not all IDLl formulae are SCID.
We now define strengthening and weakening transformations ST and WT of
IDLl formulae which result in SCID formulae.

Digitizing Interval Duration Logic 175

Definition 7. ST(D) def= Substituting in D every atomic ‘�’ constraint
(� ≥ c), under an even number of negations, to (� > c)
(� ≤ c), under an even number of negations, to (� < c)
(� > c), under an odd number of negations, to (� ≥ c)
(� < c), under an odd number of negations, to (� ≤ c)

Definition 8. WT(D) def= Substituting in D every atomic ‘�’ constraint
(� ≥ c) under an even number of negations to (� > c − 1)
(� ≤ c) under an even number of negations to (� < c + 1)
(� > c) under an odd number of negations to (� ≥ c + 1)
(� < c) under an odd number of negations to (� ≤ c − 1)

Example 4. Refer to the formulae of Example 1. Using Theorem 4, we can con-
clude that SCID(Follows(P, Q, d)) and CD(FollowsWk(P, Q, d)). Using the
definitions of WT and ST we get that

ST (FollowsWk(P, Q, d)) = Follows(P, Q, d), and
WT (FollowsWk(P, Q, d)) = Follows(P, Q, d + 1).
�

Theorem 6. For every D ∈ IDLl, we have
1. |=R ST (D) ⇒ D and |=R D ⇒ WT (D).
2. SCID(ST (D)) and SCID(WT (D)).
�

By combining the above with Theorem 5 we obtain a method of reducing IDL
validity to ZIDL validity. This is outlined in the following theorem, which also
suggests how to promote counter examples from discrete-time to dense-time.
Validity of ZIDL is decidable as shown in the next section.

Theorem 7. For any formula D ∈ IDLl,
1. |=Z ST (D) ⇒ |=R D
2. θ �|=Z WT (D) ⇒ θ �|=R D.
3. |=Z WT (D) ⇒ |=R WT (D).

5 ZIDL to QDDC

We now consider a reduction from ZIDL to QDDC with the aim that we can
utilize tools for QDDC to reason about ZIDL. Note that ZIDL is a logic of weakly
monotonic integer-timed state sequences where as QDDC is a logic of untimed
state sequences.

We first define an encoding α of a TSSZ behaviour by means of a untimed
sequence of states. This is depicted in Figure 5. The line with dark circles rep-
resents TSSZ behaviour θ = (s0, 0) → (s1, 3) → (s2, 3) → (s3, 3) → (s4, 5).
The bottom line denotes QDDC behaviour α(θ). A function place maps posi-
tions in θ to corresponding positions in α(θ) and is denoted by dashed lines.
A new boolean variable E marks exactly the positions of α(θ) which are im-
age of place. Note that θ is weakly monotonic having “micro steps” which do
not change the time stamp. A new boolean variable M marks exactly the posi-
tions in α(θ) where the next step is a micro step. If Pvar is the set of original

176 Gaurav Chakravorty and Paritosh K. Pandya

��
��
��
��

��
��
��
��

������

��
��
��
��

s3,3 s4,5

s0,0 s2,3

s1,3

s0 s0 s1 s2 s3 s3 s4s0
E E E E E

M M

Fig. 1. Encoding of ZIDL Behaviours

propositional variables, then STE,M = 2(Pvar∪{E,M}) denotes the states assign-
ing truth values to Pvar ∪ {E, M}. We omit the formal definition of encoding
α : TSSZ → (STE,M)+ which can be found in the full paper.

Not all elements of ST +
E,M correspond to TSSZ behaviours. We give a formula

CONSIST specifying consistent behaviours. Every consistent QDDC behaviour
uniquely denotes a ZIDL behaviour and vice versa.

CONSIST (Pvar) def=
{(�E�0 �true ��E ∧ ¬M�0)

∧
(���M ⇒ E��)

∧
(¬�(�M�0 �(η = 1) ��¬E�0))

∧
∀p ∈ Pvar. (�(�E�0 �(η = 1) ���¬E�� ⇒ (��p�� ∨ ��¬p��)))}

Proposition 8. (1) ∀θ ∈ TSSZ. α(θ) |= CONSIST .
(2) Map α : TSSZ → {σ ∈ ST +

E,M | σ |= CONSIST } is an isomorphism.
�

We now give the translation (β) of ZIDL formulae into QDDC formulae over
ST +

E,M , where β is overloaded to map ZIDL measurement terms to QDDC ex-
pressions also.

Definition 9.

β(η) =
∑

E β(
∑

P) =
∑

(E ∧ P)
β(�) =

∑
(¬M) β(

∫
P) =

∑
(¬M ∧ P)

Proposition 9. eval(t)(θ, [b, e]) = eval(β(t))(α(θ), [place(b), place(e)])
�

Since α(θ) has positions (intervals) which do not correspond to positions (inter-
vals) of θ, we translate the formulae ensuring that all chopping points correspond
to pre-existing positions in θ, i.e. points where E is true.

Definition 10.
β(�P �0) = �P �0 β(�P �) = �P �
β(t op c) = β(t) op c β(¬D) = ¬β(D)
β(D1

�D2) = β(D1) ��E�0 �β(D2) β(D1 ∧ D2) = β(D1) ∧ β(D2)

Digitizing Interval Duration Logic 177

Theorem 8. Let θ ∈ TSSZ. Then,
θ, [b, e] |=Z D iff α(θ), [place(b), place(e)] |=QDDC β(D)
�

Theorem 9. (1) |=Z D iff |=QDDC (CONSIST (Pvar) ⇒ β(D))
(2) σ �|=QDDC (CONSIST ⇒ β(D)) then α−1(σ) �|=Z D.
�

Since, validity of QDDC is decidable [7], we have the following corollary.

Corollary 1. Validity of ZIDL formulae is decidable.
�

6 Verification by Digitization: An Example

It is our belief that techniques developed in this paper are of practical impor-
tance. These techniques allow dense-time properties to be checked by reducing
them to discrete-time properties which can be efficiently analysed. We illustrate
this approach by proving validity of a small IDL formula.

Recall the formulae Follows(P, Q, d) and FollowsWk(P, Q, d) given in Ex-
amples 1 and 4. Let, Within(P, Q, d) def= �((��P � ∧ (� ≥ d)) ⇒ ��Q�0). It states
that in any interval with P invariantly true and having time length of d or more,
there must be some position with Q true. Our aim is to check the validity of the
following GOAL formula for various integer values of d1, d2.

GOAL
def= Follows(P, Q, d1) ⇒ Within(P, Q, d2)

Unfortunately, SCID(GOAL) does not hold and we cannot reduce the problem
to equivalent QDDC validity checking. However, we can use the digitization
approximation technique. We compute QDDC approximations β(ST (GOAL))
and β(WT (GOAL)) of the IDL formula GOAL using Definitions 7, 8, 9, 10.

β(ST (GOAL)) = β(FollowsWk(P, Q, d1)) ⇒ β(Within(P, Q, d2))

β(WT (GOAL)) = β(FollowsWk(P, Q, d1 − 1)) ⇒ β(Within(P, Q, d2))

β(FollowsWk(P, Q, d)) = ¬(true ��E�0 �

((��P � ∧ (Σ¬M > d)) ��E�0 ��¬Q�0) ��E�0 �true)

β(Within(P, Q, d)) = ¬(true ��E�0 �

((��P � ∧ (Σ¬M ≥ d)) ∧ ¬(true ��Q ∧ E�0 �true)) ��E�0 �true)

The resulting formulae can be analysed using the QDDC validity checker DC-
VALID [7] for various constants d1, d2.

Experimental Verification with DCVALID The verification was carried out using
DCVALID1.4 tool running on Pentium4 1.4GHz PC system running Linux 2.4.18
kernel.

Case 1 For d1 = 10, d2 = 12, the validity checker returned the result that
|=QDDC CONSIST (P, Q) ⇒ β(ST (GOAL)).
Its verification took 1.57 seconds of CPU time. From this, by using Theorems
9(1) and 7(1), we concluded that |=R GOAL.

178 Gaurav Chakravorty and Paritosh K. Pandya

Case 2 For d1 = 10, d2 = 7, the validity checker returned the result that
�|=QDDC CONSIST (P, Q) ⇒ β(ST (GOAL)). The tool gave a counter ex-
ample, but as this is not guaranteed to be a counter example for the original
formula GOAL, we disregarded it. Instead, we invoked the tool with the weak
approximation β(WT (GOAL)). The validity checker returned the result that
�|=QDDC CONSIST ⇒ β(WT (GOAL)) and gave the following counter exam-
ple in 0.17 seconds of CPU time.

MT 00000000
ES 10000001
P 11111110
Q 00000000

This corresponds to the IDL behaviour θ = (P ∧ ¬Q, 0) → (¬P ∧ ¬Q, 7).
By using Theorems 9(2) and 7(3) we concluded that θ �|=R GOAL. Thus, we
generated a counter-example for GOAL.

One limitation of our method is that it would fail to conclude anything about
|=R GOAL in case we get �|=Z β(ST (GOAL)) and |=Z β(WT (GOAL)), as this
would only establish that �|=R ST (D) and |=R WT (D).

7 Related Work

The technique of digitization is aimed at reducing a dense-time verification prob-
lem to a discrete-time verification problem. There is some experimental evidence
that, with existing techniques, automatic verification of discrete-time systems
may be significantly easier than the verification of similar dense-time systems
[2]. This makes digitization a practically important approach for the verification
of dense-time properties.

In their poineering work Henzinger, Manna and Pnueli [4] proposed the dig-
itization technique for the verification of dense-time properties, and formulated
the digitization theorem which gives sufficient conditions for reducing the model
checking of dense-time properties to the model checking of discrete-time proper-
ties. In particular, they showed that for CID properties, dense-time validity and
discrete-time validity are equivalent. They also studied some properties of logic
MTL which are CID.

In this paper, we have considered digitization of IDL properties. It is quite
hard to establish which IDL formulae are CID. To obviate this, we have given a
new notion of Strong Closure Under Inverse Digitization (SCID) which implies
CID. Almost all operators of IDL preserve SCID, giving us powerful structural
characterisations of formulae which are SCID (see Theorem 4). Moreover, for
formulae which are not SCID, we have given approximations to stronger and
weaker formulae which are SCID (Theorem 7). IDL is a highly expressive dense-
time logic with a powerful � (chop) operator and a notion of

∫
P giving the

accumulated amount of time for which proposition P holds in a time interval.
Digitization (CID) of such properties is one of the main contributions of this
paper. For example, we have shown that the “critical duration” formulae [9]

Digitizing Interval Duration Logic 179

like �(� ≤ c ⇒
∫
P ≤ d) are CID. Such formulae are quite hard to verify in

dense-time.
Digitization reduces verification of IDL properties to verificaiton of ZIDL

properties. ZIDL formulae are interpreted over weakly monotonic integer-timed
state sequences. In our next reduction, we have translated ZIDL formulae to
“equivalent” QDDC formulae (Theorem 9). The translation preserves models
under a suitable isomorphism. This also establishes the decidability of logic
ZIDL. The use of the “count” construct ΣP of QDDC in this translation is
significant.

Putting all these together, we are able to mechanically reduce the validity
of IDL to the validity of QDDC for a large class formulae, and to approximate
this reduction in other cases. We have illustrated the use of this technique by
a small example in Section 6. A more extensive example of the verification of a
Minepump Specification [8] can be found in the full version of this paper.

Digitization of Duration calculus has been studied before. Under bounded-
variability assumption Franzle [3] has shown the decidability of Duration Cal-
culus. Hung and co-authors have modelled digitized behaviours directly within
DC and used axioms of DC to reason about digitized behaviours [5].

References

1. R. Alur and D. L. Dill: Automata for modeling Real-time systems. In: 17th ICALP,
Lecture Notes in Computer Science, Vol 443. Springer-Verlag (1990)

2. D. Beyer: Rabiit: Verification of Real-Time Systems. In: Workshop on Real-time
Tools (RT-TOOLS’2001). Aalborg, Denmark (2001)

3. M. Franzle: Decidability of Duration Calculi on Restricted Model Classes. ProCoS
Technical Report Kiel MF/1. Christian-Albrechts Universitat Kiel, Germany (1996)

4. T. A. Henzinger, Z. Manna and A. Pnueli: What good are digital clocks?. In:
ICALP’92, Lecture Notes in Computer Science, Vol 623. Springer-Verlag (1992)
545-558

5. D. V. Hung and P. H. Giang: Sampling Semantics of Duration Calculus. In:
FTRTFT’96, Lecture Notes in Computer Science, Vol 1135. Springer-Verlag (1996)
188-207

6. P.K. Pandya and D.V. Hung: A Duration Calculus of Weakly Monotonic Time, In:
A.P.Ravn and H. Rischel (eds.): FTRTFT’98. Lecture Notes in Computer Science,
Vol 1486. Springer-Verlag (1998)

7. P.K. Pandya: Specifying and Deciding Quantified Discrete-time Duration Calculus
Formulae using DCVALID: An Automata Theoretic Approach. In: Workshop on
Real-time Tools (RTTOOLS’2001). Aalborg, Denmark (2001)

8. P.K. Pandya: Interval Duration Logic: Expressiveness and Decidability. In: Work-
shop on Theory and Practice of Timed Systems (TPTS’2002), Electronic Notes in
Theoretical Computer Science, ENTCS 65.6. Elsevier Science B.V. (2002)

9. A.P. Ravn: Design of Real-time Embedded Computing Systems. Department of
Computer Science, Technical University of Denmark (1994)

10. Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A Calculus of Durations, Infor-
mation Processing Letters, 40(5). (1991) 269-276

	1 Introduction
	2 Interval Duration Logic
	3 Digitization
	4 Digitization of Interval Duration Logic Formulae
	4.1 Closure Properties in IDL
	4.2 Digitization of Dense Measurements
	4.3 Proving IDL Formulae CID

	5 ZIDL to QDDC
	6 Verification by Digitization: An Example
	7 Related Work
	References

