TLQSolver: A Temporal Logic Query Checker

Marsha Chechik and Arie Gurfinkel

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.
{chechik,arie}ecs.toronto.edu

1 Introduction

Query checking was proposed by Chan [2] to speed up design understanding by discov-
ering properties not known a priori. A temporal logic query is an expression containing
asymbol 7, referred to as the placeholder, which may be replaced by any propositional
formulall to yield a CTL formula, e.g. AG?,, AG(?, A p). A propositional formula v
is a solution to a query in state s if substituting 1) for the placeholder in ¢ is a formula
that holds in state s. A query ¢ is positive [2]] if when 1)1 is a solution to o and 1)1 = 1),
then 5 is also a solution. For example, if p A ¢ is a solution to ¢, then so is p. For positive
queries, we seek to compute a set of strongest propositional formulas that make them
true. For example, consider evaluating the query AG?,, i.e., “what are the invariants
of the system”, on a model in Figure [[{a), ignoring the variable m. (p V ¢) A r is the
strongest invariant: all others, e.g., p V q or r, are implied by it. Thus, it is the solution to
this query. In turn, if we are interested in finding the strongest property that holds in all
states following those in which —¢ holds, we form the query AG(—g = AX?,) which,
for the model in Figure [[{a), evaluates to ¢ A . Chan also showed [2] that a query is
positive iff the placeholder appears under an even number of negations.

Alternatively, a query is negative if a placeholder appears under an odd number
of negations. For negative queries, we seek to compute a set of weakest propositional
formulas that make them true.

In solving queries, we usually want to restrict the atomic propositions that are present
in the answer. For example, we may not care about the value of r and m in the invariant
computed for the model in Figure [[[a). We phrase our question as AG(?,{p, ¢}), thus
explicitly restricting the propositions of interest to p and g. The answer we getis p V q.
Given a fixed set of n atomic propositions of interest, the query checking problem defined
above can be solved by taking all 22" propositional formulas over this set, substituting
them for the placeholder, verifying the resulting temporal logic formulas, tabulating the
results and then returning the strongest solution(s) [1]. The number n of propositions of
interest provides a way to control the complexity of query checking in practice, both in
terms of computation, and in terms of understanding the resulting answer.

In his paper [2]], Chan proposed a number of applications for query checking, mostly
aimed at giving more feedback to the user during model checking, by providing a par-
tial explanation when the property holds and diagnostic information when it does not.
For example, instead of checking the invariant AG(a V b), we can evaluate the query

! A propositional formula is a formula built only from atomic propositions and boolean operators.

W.A. Hunt, Jr. and E. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 210-214] 2003.
(© Springer-Verlag Berlin Heidelberg 2003

TLQSolver: A Temporal Logic Query Checker 211

daVinci Presenter Professional 3.0.4 - cav0toalex eI |
Hle 1 ¥View HNavigation Abstraction Layout Options Help

e e Rl l# 12 (D& |8

Fig.1. (a) A simple state machine; (b) A witness to query EF7,{m}.

AG?,{a,b}. Suppose the answer is a A b, thatis, AG(a A b) holds in the model. We
can therefore inform the user of a stronger property and explain that @ V b is invariant
because a A bis. We can also use query checking to gather diagnostic information when
a CTL formula does not hold. For example, if AG(req = AF ack) is false, that is, a
request is not always followed by an acknowledgment, we can ask what can guarantee
an acknowledgment: AG(?, = AF ack).

In his work, Chan concentrated on valid queries, that is, queries that always have a
single strongest solution. All of the queries we mentioned so far are valid. Chan showed
that in general it is expensive to determine whether a CTL query is valid. Instead, he
identified a syntactic class of CTL queries such that every formula in the class is valid.
He also implemented a query-checker for this class of queries on top of the symbolic
CTL model-checker SM'V.

Queries may also have multiple strongest solutions. Suppose we are interested in
exploring successors of the initial state of the model in Figure [la), again ignoring
variable m. Forming a query EX7,, i.e., “what holds in any of the next states, starting
from the initial state sy ?”, we get two incomparable solutions:p A g A rand =p A g A r.
Thus, we know that state sy has at least two successors, with different values of p in
them. Furthermore, in all of the successors, ¢ A r holds. Clearly, such queries might
be useful for model exploration. Checking queries with multiple solutions can be done
using the theoretical framework of Bruns and Godefroid [[I]]. They extend Chan’s work
by showing that the query checking problem with a single placeholder can be solved
using an extension of alternating automata.

This paper introduces TLQSolver — a query checker that can decide positive and
negative queries with a single or multiple strongest solutions. In addition, it can decide
queries with multiple placeholders. TLQSolver is built on top of our existing multi-
valued symbolic model-checker XChek [3]]. Our implementation not only allows one
to compute solutions to the placeholders, but also gives witnesses — paths through the
model that explain why solutions are as computed. We also give a few examples of use of
TLQSolver, both in domains not requiring witness computation and in those that depend
on it. Further uses are described in [6].

212 Marsha Chechik and Arie Gurfinkel

query
TLQ — XCTL
SMV mpdel
(with fairness) | XCTL
XChek engine
solution +
witness/

counter-example

witness — query witness

)
% KEGVis
P

Fig.2. Architecture of TLQSolver.

2 Implementation and Running Time

The architecture of TLQSolver is given in Figure 21 TLQSolver is implemented on top
of our symbolic multi-valued model-checker XChek [3]]. XChek is written in Java, and
provides support for both model-checking with fairness and the generation of counter-
examples (or witnesses). It uses the daVinci Presenter for layout and exploration of
counter-examples. TLQSolver takes a query and translates it into XCTL — a temporal
logic used by XChek. XCTL is a multi-valued extension of CTL that includes multi-
valued constants and operations on them. Details of this encoding are given in [5]]. Output
of XChek is translated into a form expected for query-checking and passed to KEG Vis [4]
— an interactive counter-example visualization and exploration tool. In addition to visu-
alization, the user can also define a number of strategies for exploration: forward and
backward, setting step granularity, choosing witnesses based on size, branching factor,
etc.

The running time of solving a query ¢ on a Kripke structure K with the state space .S is
in O(]S| x || x dd), where dd is the complexity of computing existential quantification
using decision diagrams [5]. The dominating term in dd is |SS(p)| — the number of
strongest solutions in the computation of . For queries about states, e.g., AG(—q =
AX7?,), |SS(p)| is in O(]S]), so query checking is in the same time complexity class
as model-checking. All queries we used in our applications (see Section[3and [6]) are
in this category. For queries about paths, e.g., EG?,, |SS ()] is in O(2/5]) [71], so the
overall running time is in O(|S| x || x 2!51), which is infeasible even for small problems.

To obtain a copy of TLQSolver, please send e-mail to xchek@cs . toronto. edu.

TLQSolver: A Temporal Logic Query Checker 213

3 Applications

TLQSolver can be effectively used for a variety of model exploration activities. In
particular, it can replace several questions to a CTL model-checker to help express
reachability properties and discover system invariants and transition guards [6]. For
example, it can determine that the query AG(—~¢ = AX?,{q,r}) on the model in
Figure[I(a) evaluates to ¢ A r. We now consider a novel application of query-checking
— to guided simulation.

The easiest way to explore a model is to simulate its behavior by providing inputs
and observing the system behavior through outputs. The user is presented with a list of
available next states to choose from. In addition, some model-checkers, such as NuSMYV,
allow the user to set additional constraints, e.g., to see only those states where p holds.
However, it is almost impossible to use simulation to guide the exploration towards
a given objective. Any wrong choice in the inputs in the beginning of the simulation
can result in the system evolving into an “uninteresting” behavior. For example, let
our objective be the exploration of how the system shown in Figure [[{a) evolves into
its different modes (i.e., different values of variable m). We have to guess which set
of inputs results in the system evolving into mode red and then which set of inputs
yields transition into mode green, etc. Thus, the process of exploring the system using
a simulation is usually slow and error prone.

In guided simulation [6]), the user provides a set of higher-level objectives, e.g.
EF(m=green), and then only needs to choose between the different paths through the
system in cases where the objective cannot be met by a single path. Moreover, each choice
is given together with the set of objectives it satisfies. Note that this process corresponds
closely to that of planning, and its version has been realized on top of NuSMV.

Query-checking is a natural framework for implementing guided simulations. The
objective is given by a query, and the witness serves as the basis for the simulation.
Suppose that the goal is to illustrate how the system given in Figure[[la) evolves into all
of its modes. The following would be the interaction of the user with TLQSolver. The
user then expresses the query as EF'?,.{m} and uses KEGVis [4] to set his/her preference
of the witness with the largest common prefix. The output produced by TLQSolver is
shown in Figure [T(b). In this figure, the witness is presented in a proof-like [4] style
where state nodes (double lines) are labeled with proof steps that depend on them.
The “scissors” symbol on a proof node means that more information is available, e.g.
expanding EF ?x{m} tells the user that two more states, indicated by EF_2 ?x{m}, are
required to witness the solution to the query. Since our objective was achieved by a single
trace, no further user interaction is required.

References

1. G. Bruns and P. Godefroid. “Temporal Logic Query-Checking”. In Proceedings of LICS 01,
pages 409—417, Boston, MA, USA, June 2001.

2. William Chan. “Temporal-Logic Queries”. In Proceedings of CAV’00, volume 1855 of LNCS,
pages 450—463, Chicago, IL, USA, July 2000. Springer.

3. M. Chechik, B. Devereux, and A. Gurfinkel. “XChek: A Multi-Valued Model-Checker”. In
Proceedings of CAV’02, volume 2404 of LNCS, July 2002.

214 Marsha Chechik and Arie Gurfinkel

4. A. Gurfinkel and M. Chechik. “Proof-like Counter-Examples”. In Proceedings of TACAS 03,

5.

April 2003. To appear.
A. Gurfinkel and M. Chechik. “Temporal Logic Query Checking through Multi-Valued Model
Checking”. CSRG Technical Report 457, University of Toronto, Department of Computer
Science, January 2003.

. A. Gurfinkel, B. Devereux, and M. Chechik. “Model Exploration with Temporal Logic Query

Checking”. In Proceedings of FSE’02, November 2002.

. S. Hornus and Ph. Schnoebelen. On solving temporal logic queries. In Proceedings of

AMAST 2002, volume 2422 of LNCS, pages 163—177. Springer, 2002.

	Introduction
	Implementation and Running Time
	Applications

