
Algorithmic Improvements in Regular

Model Checking �

Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso ��

Dept. of Information Technology, P.O. Box 337, S-751 05 Uppsala, Sweden
{parosh,bengt,marcusn,juldor}@it.uu.se

Abstract. Regular model checking is a form of symbolic model check-
ing for parameterized and infinite-state systems, whose states can be
represented as finite strings of arbitrary length over a finite alphabet, in
which regular sets of words are used to represent sets of states. In earlier
papers, we have developed methods for computing the transitive closure
(or the set of reachable states) of the transition relation, represented by
a regular length-preserving transducer. In this paper, we present sev-
eral improvements of these techniques, which reduce the size of inter-
mediate approximations of the transitive closure: One improvement is
to pre-process the transducer by bi-determinization, another is to use a
more powerful equivalence relation for identifying histories (columns) of
states in the transitive closure. We also present a simplified theoretical
framework for showing soundness of the optimization, which is based on
commuting simulations. The techniques have been implemented, and we
report the speedups obtained from the respective optimizations.

1 Introduction

Regular model checking has been proposed as a uniform paradigm for algorith-
mic verification of parameterized and infinite-state systems [KMM+01, WB98,
BJNT00]. In regular model checking, states are represented as finite strings over a
finite alphabet, while regular sets of words are used as a symbolic representation
of sets of states. Furthermore, regular length-preserving transducers represent
transition relations. A generic task in regular model checking is to compute a
representation for the set of reachable states, or of the transitive closure of the
transition relation. Since we are dealing with an infinite state space, standard
iteration-based methods for computing transitive closures (e.g., [BCMD92]) are
not guaranteed to terminate.

In previous work [JN00,BJNT00,AJNd02], we have developed methods for
computing the transitive closure (or the set of reachable states) of a transducer,

� This work was supported in part by the European Commission (FET project AD-
VANCE, contract No IST-1999-29082), and by the the Swedish Research Council
(http://www.vr.se/)

�� This author is supported in part by ARTES, the Swedish network for real-time
research (http://www.artes.uu.se/).

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 236–248, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Algorithmic Improvements in Regular Model Checking 237

which are complete for transition relations that satisfy a condition of bounded
local depth (this can be seen as a non-trivial generalization, to the case of trans-
ducers, of the condition of “bounded-reversal” for Turing machines [Iba78]).

These techniques (and those by Dams et al. [DLS01]) input a transducer T ,
and attempt to construct a finite representation of the union T ∗ = ∪∞

i=0 T i of the
finite compositions T i of T . The states of T i can be seen as “histories” (which
we will call columns) of length i of transducer states. There are infinitely many
such columns in T ∗, and the challenge is to find a finite-state automaton which
is equivalent to T ∗. In [BJNT00], we presented a technique which directly deter-
minizes T ∗ by the subset construction, where subsets are represented as regular
sets of columns. In addition, subsets are identified using a pre-defined equivalence
relation; this ensures termination if T has bounded local depth. In [AJNd02],
we presented a more light-weight technique, which successively computes the
approximations T≤n = ∪n

i=1 T i for n = 1, 2, . . ., while quotienting the set of
columns with a certain equivalence relation. For implementation, this technique
represented a substantial simplification over the heavy automata-theoretic con-
structions of [BJNT00], and gave significant performance improvements on most
of the examples that we have considered.

In this paper, we present several improvements to the techniques of [AJNd02].
Here, we describe the most important improvements (illustrated in an example
in the next section):

– Bi-determinization: A key element of our techniques [JN00,BJNT00,AJNd02]
is the equivalence relation used to identify columns of T ∗. Ideally, this equiva-
lence should be as large as possible while still respecting the constraint that
the quotient of T ∗ is equivalent to T ∗. Our equivalences are based on so-
called left- or right-copying states. Roughly, a path in the transducer from
an initial to a left-copying state, or from a right-copying to a final state, may
only copy symbols. Borrowing intuition from rewriting theory, the copying
states of a transducer define the “context” for the actual transformation of
the word. The equivalence relation in [AJNd02] is based on ignoring the
number of successive repetitions of the same left- or right-copying state in
columns, but does not cope with sequences of distinct left-copying (or right-
copying) states. To overcome this, we now pre-process the transducer by
bi-determinization before the actual computation of the transitive closure.
The effect of bi-determinization is that columns with successive distinct left-
copying (or right-copying) states can be safely ignored, since they will never
occur in any accepting run of T ∗.

– Coarser equivalence relations: In addition to adding the bi-determinization
phase, we have increased the power of the equivalence relations in [AJNd02]:
whereas before we identified columns with one or more repetitions of a left-
or right-copying state, we can now in certain contexts also identify columns
with zero or more such repetitions, and identify states with k alternations
between left- and right-copying states with states that have 3 alternations,
if k > 3.



238 Parosh Aziz Abdulla et al.

– Improved theoretical framework: The equivalences are proven sound by an
improved theoretical framework, based on simulations which are also rewrite
relations. This framework is a generalization and simplification of the work
by Dams et al. [DLS01], who use bisimulations. However, the bisimulation-
based framework can not prove that the reduction of alternation (to at most
3) is sound.

We have implemented these optimizations, and tested them on a number of
parameterized mutual exclusion protocols. The performance improvement is at
least an order of magnitude.

Related Work Regular model checking was advocated by Kesten et al.
[KMM+01], and implemented in the Mona [HJJ+96] package. Techniques for ac-
celerating regular model checking have been considered in our earlier work [JN00,
BJNT00,AJNd02].

Dams et al. [DLS01] present a related approach, introducing a generic frame-
work for quotienting of the transducer T ∗ to find a finite-state representation,
and which is not limited to length-preserving transductions. Dams et al. find such
an equivalence by a global analysis of the current approximation of the transitive
closure. It appears that this calculation is very expensive, and the paper does
not report successful experimental application of the techniques to examples of
similar complexity as in our work. In this paper, we present a generalization of
the equivalences defined by Dams et al.

Touili [Tou01] presents a technique for computing transitive closures of reg-
ular transducers based on widening, and shows that the method is sufficiently
powerful to simulate earlier constructions described in [ABJN99] and [BMT01].

The works in [AJMd02,BT02] extend regular model checking to the context
of tree transducers. When applied on words, these techniques correspond to the
acceleration and widening techniques described in [BJNT00] and therefore do
not cover the optimizations presented in this paper.

Outline In the next section, we illustrate the problem and the main ideas
through an example. In Section 3, we present a general framework to derive
equivalence relations which are language preserving under quotienting. We use
this framework in Section 4 to define a new equivalence relation. Finally, in
Section 5, we report experimental results of an implementation based on the
new techniques.

2 An Example

In this section, we will present and illustrate the problem and the techniques
through a token passing system with a ring topology.

Preliminaries Let Σ be a finite alphabet of symbols. Let R be a regular relation
on Σ, represented by a finite-state transducer T = 〈Q, q0,−→, F 〉 where Q is the
(finite) set of states, q0 is the initial state, −→⊆ Q×(Σ×Σ)×Q is the transition



Algorithmic Improvements in Regular Model Checking 239

relation, and F ⊆ Q is the set of accepting states. Note that T is not required to

be deterministic. We use q1
(a,b)−→ q2 to denote that (q1, (a, b), q2) ∈−→. We use a

similar infix notation also for the other types of transition relations introduced
later in the paper.

The set of left-copying states in Q is the largest subset QL of Q such that

whenever q
(a,a′)−→ q′ and q′ ∈ QL, then a = a′ and q ∈ QL. Analogously, the set

of right-copying states in Q is the largest subset QR of Q such that whenever

q
(a,a′)−→ q′ and q ∈ QR, then a = a′ and q′ ∈ QR. Intuitively, prefixes of left-

copying states only copy input symbols to output symbols, and similarly for
suffixes of right-copying states. We shall assume that QL ∩ QR = ∅ (if not, we
can simply decrease QL and QR to satisfy the assumption).

Example As an example, we use a token ring passing protocol. In the system,
there is an arbitrary number of processes in a ring, where a token is passed in
one direction. In our framework, a configuration of the system is represented by
a finite word a1a2 · · · an over the alphabet Σ = {N, T } where each ai represents:

– T - Process number i has a token.
– N - Process number i does not have a token.

The transition relation of this system is represented by the transducer below.

For example, there is an accepting run L5
(N,N)−→ L0

(T,N)−→ 1
(N,T )−→ R4

(N,N)−→ R4
accepting the word (N, N)(T, N)(N, T )(N, N). This run means that from the
configuration NTNN we can get to the configuration NNTN in one transition,
i.e. process 2 passes the token to process 3.

R3

R4

(N,N)
L0

(N,N)

1

(T,N)

(N,T)

2
(T,N)

(N,N)

L5

(N,N)

(T,N)

(N,T)

Note that we label left-copying states by Li for some i, and right-copying states
by Ri for some i.

Column transducer Our goal is to construct a transducer that recognizes the
relation R∗, where R∗ = ∪i≥0 Ri.



240 Parosh Aziz Abdulla et al.

Starting from T , we can in a straight-forward way construct (see also
[BJNT00]) a transducer for R∗ whose states, called columns, are sequences of
states in Q, where runs of transitions between columns of length i accept pairs
of words in Ri. More precisely, define the column transducer for T as the tuple
T ∗ = 〈Q∗, q∗0 , =⇒, F ∗〉 where

– Q∗ is the set of sequences of states of T ,
– q∗0 is the set of sequences of the initial state of T ,
– =⇒ ⊆ (Q∗× (Σ×Σ))×Q∗ is defined as follows: for any columns q1q2 · · · qm

and r1r2 · · · rm, and pair (a, a′), we have q1q2 · · · qm
(a,a′)
=⇒ r1r2 · · · rm iff there

are a0, a1, . . . , am with a = a0 and a′ = am such that qi
(ai−1,ai)−→ ri for

1 ≤ i ≤ m,
– F ∗ is the set of sequences of accepting states of T .

It is easy to see that T ∗ accepts exactly the relation R∗: runs of transitions from
qi
0 to columns in F i accept transductions in Ri. The problem is that T ∗ has in-

finitely many states. Our approach is to define an equivalence � between columns
of the column transducer and construct the column transducer with equivalent
states merged. Under some conditions, the set of equivalence classes we construct
is finite. More precisely, given an equivalence relation �, the quotient transducer
T� is defined as T� = 〈Q∗/ �, {q0}∗/ �, =⇒�, F�〉 where

– Q∗/ � is the set of equivalence classes of columns,
– q∗0/ � is the partitioning of q∗0 with respect to �, where we assume that q∗0

is a union of equivalence classes.
– =⇒� ⊆ (Q∗/ �) × (Σ × Σ) × (Q∗/ �) is defined in the natural way as

follows. For any columns x, x′ and symbols a, a′:

x
(a,a′)
=⇒ x′ ⇒ [x]�

(a,a′)
=⇒� [x′]�

– F� is the set of equivalence classes in Q∗/ � that have a non-empty inter-
section with F ∗.

Example (ctd.) The part of the column transducer for the token ring system,
consisting of states labeled by columns of length one or two, is shown in Fig-
ure 1(a). The equivalence � used in [AJNd02] ignores successive repetitions of
the same left-copying and right-copying state, e.g., the column R4 R3 belongs to
the equivalence class R4+ R3+, and the column 1 L0 belongs to the equivalence
class 1 L0+. The quotient of the transducer in Figure 1(a) under � is shown in
Figure 1(b).

In this paper, we improve on the previous results in the following ways.

Bi-determinization In our previous work, the equivalence relation handled the
case of repeating the same left-copying or right-copying state, but did not handle
sequences of distinct left-copying states or distinct right-copying states. For ex-
ample, in Figure 1(b), we note that the equivalence classes R4+ R3+ and R3+ R4+

are disjoint, although they are “equivalent”, and intuitively should be merged.



Algorithmic Improvements in Regular Model Checking 241

R3

R4

(N,N)

R4
R3

R3
R4

R4
R4

(N,N)

L0

(N,N)

1

(T,N)

(N,T)

2
(T,N)

(N,N)

L5

(N,N)

(T,N)

(N,T)

L0
L0

(N,N)

1
L0

(T,N)

L0
2

(N,N) 1
2(T,N)

R4
1

(N,N)

(N,N)

(N,T)

2
1

(T,T)

2
R4

(N,T)
(T,N)(N,N)

L5
L5

(N,N)

(N,T)

(T,N)

(T,T)

(N,N)

(a) T 1,2: Part of the column transducer

R3+

R4+

(N,N)

R4+
R3+

R3+
R4+

L0+

(N,N)

1(T,N)

1
L0+

(T,N)

(N,T)

2
(T,N)

(N,N)

L5+

(N,N)

(T,N)

(N,T)

L0+
2

(N,T)

(T,N)

1
2

(T,T)

2
1

(N,N)

(N,N)

(T,N)

R4+
1

(N,N)

(N,N)

(N,T)

(T,T)

2
R4+

(N,T)
(T,N)

(N,N)

(b) T 1,2 under the old equivalence

Fig. 1. Part of column transducer under old equivalence

Rather than working out an equivalence relation that identifies suitable
sequences of distinct copying states, we solve this problem by preprocessing
the transducer by bi-determinization. Bi-determinization produces a transducer
where the sub-automaton consisting only of the left-copying states is determinis-
tic, and the sub-automaton consisting only of the right-copying states is reverse
deterministic. Bi-determinization can be done by a reverse subset construction on
the right-copying states. For a bi-deterministic transducer, columns with succes-
sive distinct left-copying states are not reachable since two different left-copying
states will not have any common prefix. Analogously, columns with successive
distinct right-copying states are not productive since two different right-copying
states will not have any common suffix. In Figure 2(a), we show the result of
bi-determinization of the token ring passing example.

A new coarser equivalence In Section 4, we will derive a new equivalence,
with coarser equivalence classes. The part of the column transducer for the bi-
determinized token ring system, consisting of states labeled by columns of length
one or two, optimized with the new equivalence relation, is shown in Figure 2(b).
There are two new features in this equivalence:

1. In certain contexts, equivalence classes can now ignore zero or more rep-
etitions of the same copying state. For example, in Figure 2(b) we have
the equivalence class R5∗ 2. Using the old equivalence relation (the one
in [AJNd02]), we had to represent this equivalence class by the two classes
2 and R5+ 2.

2. For any left-copying state L and right-copying state R, the column R L R L R
will be equivalent to R L R. In Figure 2(b), there are no such columns
present. This becomes important, however, for higher-order approximations
of the column transducer.



242 Parosh Aziz Abdulla et al.

R4
L0

(N,N)

2
(T,N)

1

(T,N)(N,N)

(N,T)

R5(N,T)

L3
(N,N)
(N,T)

(T,N) (N,N)

(N,N)

(a) Bi-deterministic version of token
ring passing

R4+

L0+

(N,N) R5*
2

(T,N)

R5*
2

L0+

(T,N)

1
R5+

(T,N)

(N,N)

(N,T)

R5+

(N,T)

L3+
(N,N)

(N,T)

(T,N)

L0+
1

R5*

(N,T)

(T,N)

R5*
2
1

R5*(T,T)

1
2

(N,N)

(N,N)

(N,N)

(N,N)

(T,N)

(N,N)

(N,N)
(N,N)

(T,T)

(N,T)

(b) Bi-deterministic T 1,2 under new equiva-
lence

Fig. 2. Part of column transducer under the new equivalence

3 Soundness

In this section, we present a general framework to derive equivalence relations
which are language preserving under quotienting, and therefore, sufficient for
proving soundness of our construction method.

We introduce finitely generated rewrite relations and simulations to obtain
an equivalence relation which can be safely used to quotient the transducer under
construction.

Simulations A relation �F on the set Q∗ of columns is a forward simulation
if whenever x �F x′, then

– if x
(a,b)
=⇒ y for some column y and symbols a, b, there is a column y′ such

that x′ (a,b)
=⇒ y′ and y �F y′, and

– if x is accepting, then x′ is accepting.

Analogously, a relation �B on the set of columns is a backward simulation if
whenever y �B y′, then

– if x
(a,b)
=⇒ y for some column x, and symbols a, b, there is a column x′ such

that x′ (a,b)
=⇒ y′ and x �B x′, and

– if y is initial, then y′ is initial.

Rewritings We will work with simulation relations that are defined by rewrite
relations on subcolumns. A rewrite relation 
→ is a reflexive and transitive re-
lation on the set of columns, which is a congruence under composition. In
other words, x 
→ y implies v x w 
→ v y w for any v, w. A rewrite rule is



Algorithmic Improvements in Regular Model Checking 243

a pair (x, y) of columns. The rewrite relation 
→ is generated by a finite set
{(x1, y1), . . . , (xm, ym)} of rewrite rules if 
→ is the least rewrite relation such
that xi 
→ yi for i = 1, . . . , m. (This means that 
→ is the least reflexive and
transitive relation such that w xi w′ 
→ w yi w′ for any columns w, w′, and i).

We will use the fact that finite simulation relations can be extended to rewrite
relations by making them congruences.

Lemma 1. If ≤R is a finite forward simulation, then the rewrite relation gen-
erated by all pairs in ≤R is also a forward simulation. The analogous property
holds for backward simulations.

Using Lemma 1, we can assume that simulations are reflexive and transitive.
Two rewrite relations 
→L and 
→R satisfy the diamond property if whenever

x 
→L y and x 
→R z, then there is a w such that y 
→R w and z 
→L w.
For rewrite relations that are generated by sets of rewrite rules, the diamond
property can be checked efficiently by inspecting all possible critical pairs, i.e.,
the possible overlaps of left-hand sides of rewrite rules generating 
→L with left-
hand sides of rewrite rules generating 
→R (cf. [KB70]).

Lemma 2. A pair of rewrite relations (
→L, 
→R) satisfying the diamond prop-
erty induces the equivalence relation � defined by

x � y if and only if there are
– z such that x 
→L z and y 
→R z, and
– z′ such that y 
→L z′ and x 
→R z′.

Lemma 3. Let 
→L and 
→R be two rewrite relations that satisfy the diamond
property. Let � be the equivalence relation they induce.
Then, whenever x � y and x 
→R x′, there exists y′ such that y 
→R y′ and
x′ 
→L y′.

Proof. To see this, assume that x � y and x 
→R x′. This means that there is a
z such that x 
→L z and y 
→R z. By the diamond property there is a y′ such
that x′ 
→L y′ and z 
→R y′. By the transitivity of 
→R we infer (from y 
→R z
and z 
→R y′) that y 
→R y′. �

Theorem 1. Let 
→L and 
→R be two rewrite relations that satisfy the diamond
property. Let � be the equivalence relation they induce. If in addition

– 
→R is a forward simulation,
– 
→L is included in a backward simulation �,

then T� and T ∗ are equivalent.

Proof. Let

[x0]�
(a1,b1)−→ [x1]�

(a2,b2)−→ · · · (an,bn)−→ [xn]�

be a run of T�. This means that for each i with 1 ≤ i ≤ n there are xi−1 and yi

such that xi−1
(ai,bi)−→ yi and xi � yi. By induction for i = 0, 1, 2, . . . , n, we find

x′
i and y′

i such that x′
i

(ai+1,bi+1)−→ y′
i+1 with xi 
→R x′

i and y′
i � x′

i, as follows:



244 Parosh Aziz Abdulla et al.

– for i = 0 we take x′
0 = y′

0 = x0,
– for i = 1, . . . , n we infer from xi−1 
→R x′

i−1 that y′
i exists such that

x′
i−1

(ai,bi)−→ y′
i, and yi 
→R y′

i, from which we use Lemma 3 to infer that
x′

i exists with xi 
→R x′
i and y′

i 
→L x′
i; by inclusion, we get y′

i � x′
i.

We can now by induction for i = n, n− 1, . . . , 1 find zi such that zi−1
(ai,bi)−→ zi,

and y′
i � zi, as follows:

– for i = n we take zn = x′
n

– for i = n− 1, . . . , 0 we infer from y′
i+1 � zi+1 and x′

i

(ai+1,bi+1)−→ y′
i+1, that zi

exists such that zi
(ai+1,bi+1)−→ zi+1, and y′

i � x′
i � zi.

Since x0 by definition is initial and also x0 = y′
0 � z0, we conclude that z0

is an initial state. Similarly, because xn can be chosen to be accepting (there is
one such representative in [xn]�) and xn 
→R x′

n = zn, we conclude that zn is
accepting.

Therefore, there is a run in T ∗ of form

z0
(a1,b1)−→ z1

(a2,b2)−→ · · · (an,bn)−→ zn

�

4 A Coarse Equivalence

In this section, we derive an equivalence relation using the framework of the
previous section.

Let the input transducer T be the tuple 〈Q, q0,−→, F 〉, where QL ⊆ Q is
the set of left-copying states, QR ⊆ Q is the set of right-copying states, and
QN = Q \ (QL ∪QR) is the set of non-copying states. We shall assume that
QR ∩ QL = ∅. For a set Q0, let Qε

0 denote {ε}∪Q0.
Without loss of generality, we can assume that T ∗ does not contain any

columns with alternations of distinct left- or right-copying states:

Lemma 4. Columns with two consecutive and distinct left- or right-copying
states can be removed without changing the language of T ∗.

Proof. A column with two distinct left-copying states is never reachable in T ∗

since the left-copying part of T is deterministic. Similarly, a column with two
distinct right-copying states is never productive since the right-copying part is
reverse-deterministic. �

We proceed by defining rewrite relations 
→R and 
→L.

1. Let 
→R be the rewrite relation generated by the set of rules of the form
(qR, ε) and (qR, qR qR), where qR is a right-copying state.



Algorithmic Improvements in Regular Model Checking 245

2. (a) Let � be the maximal backward simulation on the states of T ∗. This
simulation will contain at least the following:
– qL � ε for any left-copying state qL;
– qL � qL qL, for any left-copying state qL.

(b) For columns x, y ∈ Qε
L, and z1, z2, let x ∼z1,z2 y denote that z1 x z2 �

z1 y z2 and z1 y z2 � z1 x z2, in other words, x and y simulate each other
w.r.t. � in the context of z1 and z2. Note that ∼z1,z2 is an equivalence
relation on Qε

L for any z1, z2.
(c) We define 
→L to be the rewrite relation generated by the rules

– (qL, ε) and (qL, qL qL) for any left-copying state qL,
– (z1 x z2, z1 y z2) for any x, y ∈ Qε

L and z1, z2 ∈ Qε
N such that

x ∼z1,z2 y.

The following Theorem shows that the rewrite relations induce an equivalence
relation with the properties of Theorem 1.

Theorem 2. 1. 
→R is a forward simulation.
2. 
→L is included in the backward simulation �.
3. 
→L and 
→R have the diamond property.

Proof. 1. Follows from the fact that qR is right-copying.
2. Follows from the fact that rules of 
→L are taken from �.
3. Let x 
→L y and x 
→R z. Then x = x1qRx2 and z = x1z

′x2 for z′ ∈
{ε, qR qR}. Since the left hand side of each rule of 
→L does not contain any
state from QR, we conclude that y = y1qRy2 where x1 
→L y1 and x2 = y2, or
x2 
→L y2 and x1 = y1. In either case, z = x1z

′x2 
→L y1z
′y2. Furthermore,

y = y1qRy2 
→R y1z
′y2, completing the diamond.

�

Corollary 1. From Theorem 1 and Theorem 2 it follows that the relation �
induced by 
→L and 
→R is an equivalence relation such that T� and T ∗ are
equivalent.

Implementation of the equivalence relation In the implementation, we
have used an approximation of � which is a finer equivalence relation than �.
Each equivalence class in this approximation is of the form:

z0 e0 z1 e1 z2 · · · en−1 zn

where each zi ∈ Qε
N and each ei is of the form

f f1 · · · fm f ′

where

– f is of the form q∗L, q+
L , ε for some qL ∈ QL such that f is an equivalence

class of ∼zi,ε.
– f ′ is of the form q∗L, q+

L , ε for some qL ∈ QL such that f ′ is an equivalence
class of ∼ε,zi+1.

– If m = 0, then f f ′ is also in an equivalence class of ∼zi,zi+1 .



246 Parosh Aziz Abdulla et al.

– For 0 < j ≤ m, the equivalence class fj is one of:
• q+

R q+
L (q+

R q+
L )∗q+

R for some qL ∈ QL, or
• q+

L for some qL ∈ QL, or
• q+

R for some qR ∈ QR.

For example, a typical equivalence class is q0 q∗L q+
R q1, where z0 = q0, z1 = q1

and e0 = q∗L q+
R . In this case qL ∼q0,ε ε which means that q0 qL simulates q0

backward. In [AJNd02], we used an equivalence relation with equivalence classes
q+
L for left-copying states qL, and q+

R for right-copying states qR.
A justification of these equivalence classes can be found in [AJNd03].

5 Implementation

We have implemented the equivalence defined in Section 4. We have run several
examples to measure the effectiveness of the method, comparing the number
of states built. At the end of this section, we mention some more technical
improvements.

In our previous work [AJNd02] we have for each algorithm computed the
transitive closures for individual actions representing one class of statements in
the program. Here, we compute the transitive closure of the transducer repre-
senting the entire program.

We have compared the number of states generated under the following con-
ditions:

– Old equivalence This is the old equivalence used in [AJNd02].
– Bi-determinization Using the old equivalence but on a bi-deterministic

transducer.
– New equivalence Using the new equivalence on a bi-deterministic trans-

ducer.

The results can be found in Table 1. The computation time for Bakery is
about two minutes with the new techniques, implying a tenfold performance
improvement. To reduce the states of the transducer for Szymanski, it was in-
tersected with an invariant while Bakery was not, hence the huge difference in
the number of states. The invariant was computed using standard reachability
analysis augmented with transitive closures of individual statements. Note that
this can not be done in general. For example, computing the invariant this way
does not work for Bakery.

Dead by label In the algorithm, we might generate some states that can be
declared dead by only looking at the label of the state. For a bi-deterministic
transducer, any label of the form L1 L2 and R1 R2 can be declared dead, see
Lemma 4.

Caching Many transitions are merged, and many transitions have the same
edge. Thus, caching the result of composing edges provides a substantial runtime
improvement.



Algorithmic Improvements in Regular Model Checking 247

Table 1. Number of live (and total) number of states generated

Transducer / Method Old equivalence Bi-determinization New equivalence

Token passing 6 (15) 6 (15) 4 (10)
Token ring passing 68 (246) 58 (230) 25 (86)
Bakery 1793 (5719) 605(1332) 335(813)
Szymanski 20 (47) 16(30) 11(22)

References

[ABJN99] Parosh Aziz Abdulla, Ahmed Bouajjani, Bengt Jonsson, and Marcus Nils-
son. Handling global conditions in parameterized system verification. In
Proc. 11th Int. Conf. on Computer Aided Verification, volume 1633 of Lec-
ture Notes in Computer Science, pages 134–145, 1999.

[AJMd02] Parosh Aziz Abdulla, Bengt Jonsson, Pritha Mahata, and Julien d’Orso.
Regular tree model checking. In Proc. 14th Int. Conf. on Computer Aided
Verification, volume 2404 of Lecture Notes in Computer Science, 2002.

[AJNd02] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso.
Regular model checking made simple and efficient. In Proc. CONCUR 2002,
13th Int. Conf. on Concurrency Theory, volume 2421 of Lecture Notes in
Computer Science, pages 116–130, 2002.

[AJNd03] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso.
Algorithmic improvements in regular model checking. Technical Re-
port 2003-024, Department of Information Technology, Uppsala University,
April 2003.

[BCMD92] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98:142–
170, 1992.

[BJNT00] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model check-
ing. In Emerson and Sistla, editors, Proc. 12th Int. Conf. on Computer
Aided Verification, volume 1855 of Lecture Notes in Computer Science,
pages 403–418. Springer Verlag, 2000.

[BMT01] A. Bouajjani, A. Muscholl, and T. Touili. Permutation rewriting and algo-
rithmic verification. In Proc. LICS’ 01 17th IEEE Int. Symp. on Logic in
Computer Science. IEEE, 2001.

[BT02] Ahmed Bouajjani and Tayssir Touili. Extrapolating Tree Transformations.
In Proc. 14th Int. Conf. on Computer Aided Verification, volume 2404 of
Lecture Notes in Computer Science, 2002.

[DLS01] D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. In G. Berry,
H. Comon, and A. Finkel, editors, Computer Aided Verification, volume
2102 of Lecture Notes in Computer Science, 2001.

[HJJ+96] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Proc.
TACAS ’95, 1th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, volume 1019 of Lecture Notes in Computer Sci-
ence, 1996.

[Iba78] O. H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25:116–133, 1978.



248 Parosh Aziz Abdulla et al.

[JN00] Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations
for verifying infinite-state systems. In S. Graf and M. Schwartzbach, ed-
itors, Proc. TACAS ’00, 6th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, volume 1785 of Lecture Notes in
Computer Science, 2000.

[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebra.
In Computational Problems in Abstract Algebra, pages 263–297. Pergamon
press, 1970.

[KMM+01] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. Theoretical Computer Science,
256:93–112, 2001.

[Tou01] T. Touili. Regular Model Checking using Widening Techniques. Electronic
Notes in Theoretical Computer Science, 50(4), 2001. Proc. Workshop on
Verification of Parametrized Systems (VEPAS’01), Crete, July, 2001.

[WB98] Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but
regular state spaces. In Proc. 10th Int. Conf. on Computer Aided Verifi-
cation, volume 1427 of Lecture Notes in Computer Science, pages 88–97,
Vancouver, July 1998. Springer Verlag.


	1 Introduction
	2 An Example
	3 Soundness
	4 A Coarse Equivalence
	5 Implementation
	References



