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Abstract. Effective program abstraction is needed to successfully ap-
ply model checking in practice. This paper studies the question of con-
structing abstractions that preserve branching time properties. The key
challenge is to simultaneously preserve the existential and universal as-
pects of a property, without relying on bisimulation. To achieve this, our
method abstracts an alternating transition system (ATS) formed by the
product of a program with an alternating tree automaton for a property.
The AND-OR distinction in the ATS is used to guide the abstraction,
weakening the transition relation at AND states, and strengthening it
at OR states. We show semantic completeness: i.e., whenever a program
satisfies a property, this can be shown using a finite-state abstract ATS
produced by the method. To achieve completeness, the method requires
choice predicates that help resolve nondeterminism at OR states, and
rank functions that help preserve progress properties. Specializing this
result to predicate abstraction, we obtain exact characterizations of the
types of properties provable with these methods.

1 Introduction

It is generally accepted that effective, automated, program abstraction is cen-
tral to the successful application of model checking techniques. Methods in-
clude the use of transformations (e.g., [11,21]), and predicate abstraction (e.g.,
[19,4,29,3,33,20]). Most current methods use abstractions that preserve univer-
sal temporal properties, such as those expressible in linear temporal logic (LTL)
and ACTL∗. In several settings, there is a need for methods that preserve the
full range of branching time properties, including mixed existential and universal
ones – for instance, to analyze programs with unresolved non-determinism, or
to analyze process-environment interaction [1].

The key challenge is to simultaneously preserve both the universal and the ex-
istential aspects of a branching time property during abstraction. Methods for
universal properties rely on establishing a simulation relation [26] from the con-
crete to an abstract program. To preserve all branching time properties in a
similar manner requires a bisimulation between the two programs, which is too
restrictive. We propose a method that abstracts not the program, but rather the
product alternating transition system (ATS) that is formed from the program
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and an alternating tree automaton for the property. The ATS can be abstracted
through local transformations, weakening the transition relation at AND states,
and strengthening it at OR states, in a manner similar to that of [14].

As the verification problem is undecidable in general even for invariance proper-
ties, no algorithm exists that can always construct a finite-state abstract program
precise enough to prove that a concrete program satisfies a property. Hence, we
look for semantic completeness : if a program satisfies a property, can this fact be
shown using a finite state abstract program constructed by the method, ignor-
ing computability issues? (In practice, the computability question corresponds to
using a powerful enough decision procedure.) Uribe [32] and Kesten and Pnueli
[22] showed that simulation-based abstraction must be augmented with fairness
to be complete for LTL progress properties, such as termination. The fairness
constraints serve to abstractly represent such termination requirements.

This completeness result does not, however, apply to all universal properties; for
instance, to logics such as ACTL. Technically, the problem is that disjunction of
temporal state formulas, as in AX(p) ∨ AX(¬p), cannot be represented in LTL.
Thus, for branching time properties, we have the distinction of AND vs. OR
branching in addition to the invariance-progress distinction that was considered
earlier. This distinction is important: we show that to achieve completeness, one
requires choice predicates at OR states, which provide hints for the resolution of
the OR nondeterminism, in addition to the rank predicates needed for abstract-
ing liveness properties. As in [32,22], our completeness result links the deductive
provability of a property on a program — using a proof system designed in [27]
— to the construction of a finite abstract ATS. The analysis reveals that ab-
straction without any augmentation can be used only to verify those properties
that have proofs with uniform OR choice (a precise definition is given later),
and bounded progress measures, showing why both types of augmentation are
needed to verify arbitrary properties.

We examine the consequences of these results for predicate abstraction, which
defines the abstract state space in terms of boolean variables that correspond
to concrete program predicates. Automatically discovering relevant predicates
is a key problem, for which several heuristics have been proposed (e.g., [29,8]).
Based on our completeness results, we can give an exact characterization of the
properties provable using such discovery methods.

To summarize, the main contribution of this paper is a new abstraction method
for branching time properties, which does not rely on bisimulation. This is the
first such method for branching time properties that is known to be complete.
As corollaries, we derive several completeness results for predicate discovery
procedures. In addition, a key intermediate theorem shows how to construct a
deductive proof of correctness on the concrete state space from a feasible abstract
ATS. Such proof construction is of independent interest [28].
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2 Preliminaries

In this section, we recall the definition of alternating tree automata (ATA), and
the product construction used in model checking. For the rest of the paper, we
fix an action set Σ and a set of atomic propositions, AP .

An labeled transition system (LTS) M over Σ and AP is is defined by a tuple
(S, I, R, L), where S is a set of states, I is the subset of initial states, R ⊆
S × Σ × S is a transition relation, and L : S → 2AP is a labeling of states with
atomic propositions. We assume that the relation R is total over Σ; i.e., for each
a in Σ, every state has an a-successor.

An alternating tree automaton (ATA) over Σ and AP is given by a tuple (Q ∪
{tt ,ff }, q̂, δ, F ), where Q is a finite set of states, q̂ in Q is the initial state, δ is a
transition relation, and F = (F0, . . . , F2n) is a partition of Q, called the parity
acceptance condition [17]. A sequence of automaton states is accepted if the least
index i such that a state from Fi occurs infinitely often on the sequence is even.
The transition relation δ maps an automaton state, and a predicate on AP to
one of: ff (an error state); tt (an accept state); q1 ∧ q2 (forking off automaton
copies in state q1 and q2); q1 ∨ q2 (choosing to proceed in either state q1 or
state q2); 〈a〉q1 (continuing in q1 for some a-successor); [a]q1 (continuing in q1

for every a-successor).

An LTS M = (S, I, R, L) satisfies a property given by an ATA A = (Q, q̂, δ, F )
iff player I has a winning strategy in an infinite, two player game [17]. In this
game, a configuration is a pair of a computation tree node of M labeled by a
state s, and an automaton state q. A configuration labeled (s, q) is a win for
player I if δ(q, L(s)) = tt ; it is a loss if δ(q, L(s)) = ff . For other values of δ,
player I picks the next move iff δ(q, L(s)) is either 〈a〉q1 or q1 ∨ q2. Player I
picks an a-successor for s for 〈a〉q1, or the choice of disjunct. Similarly, player II
picks an a-successor for s for [a]q1, or the choice of conjunct for q1 ∧ q2. A play
of the game is a win for player I iff it either ends in a win for I, or it is infinite
and the sequence of automaton states on it satisfies F . A strategy is a function
mapping a partial play to the next move; given strategies for players I and II,
one can generate the possible plays. Finally, the LTS satisfies the automaton
property iff player I has a winning strategy (one for which every generated play
is a win for player I) for the game played on the computation tree of the LTS
from the initial configuration labeled (ŝ, q̂).

Every closed formula of the µ-calculus [24] can be translated in linear time to an
equivalent ATA [17]. The transition relation of the automaton has the following
simple form: each state has a single transition for the input predicate true, except
for a transition to tt on predicate l; in which case, there is another transition to
ff on ¬l. In the rest of the paper, we work with such simple automata.

An alternating transition system (ATS) over a set Γ of state labels is defined
by a tuple (S, I, R, L), where S, the set of states, is partitioned into AND and
OR subsets, I is a set of initial states, R ⊆ S × S is the transition relation, and
L : S → Γ is the state labeling.
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The model checking problem is to determine whether M satisfies A at all initial
states, and is written as M |= A. This can be determined using a product ATS,
M × A, defined by (S, I, R, L), where S = SM × QA, I = IM × {q̂A}, and
L : (s, q) → q. R((s, q), (s′, q′)) holds based on the value of δA(q, l), as follows:
(i) ff , tt : q′ = δA(q, l) ∧ s′ = s ∧ l(s), (ii) q1 ∧ q2, q1 ∨ q2: q′ ∈ {q1, q2} ∧ s′ = s,
as l ≡ true, and (iii) 〈a〉q1, [a]q1: q′ = q1 ∧ RM (s, a, s′), as l ≡ true. A state
is an OR state if δA(q, l) is either q1 ∨ q2 or 〈a〉q1, and an AND state otherwise.
In [16], it is shown that M satisfies A iff player I has a winning strategy in the
game graph defined by M × A, where player I makes choices at OR states, and
player II at AND states, and that this can be determined by model checking.

3 The Abstraction Method

We define our abstraction method for the product alternating transition system
(ATS). Soundness is shown by constructing a valid concrete proof of correctness
given the feasibility of the abstract ATS. This construction also indicates why
augmentation with choice predicates and rank functions is needed in general.
In the following, let M = (S, I, R, L) be an LTS over Σ and AP , and let A =
(Q, q̂, δ, F ), where F = (F0, . . . , F2n) (for some n), be an ATA over Σ and AP .
Let M × A be the product ATS, constructed as shown earlier.

The basic abstraction idea is simple: we are given an abstract domain S, and a
set of left-total abstraction relations {ξq | q ∈ Q}, where each ξq ⊆ S × S. We
also define ξtt and ξff to be S × S, and say that (s, q) is related to (t, q) iff sξqt
holds. We abstract the ATS M ×A by weakening its transition relation at AND
states (thus allowing “more” transitions), and strengthening it at OR states
(thus “eliminating” some transitions). The result is an abstract ATS, denoted
by M × A. The abstract ATS is given by (S′, I ′, R′, L′).

– The abstract set of states, S′ = S × Q. The abstract OR states are those
where δ(q, true) has the form q1 ∨ q2 or 〈a〉q1, all others are AND states.
Thus, related concrete and abstract states have the same AND/OR tag.

– The abstract state (t, q̂) is in I ′ if there exists s ∈ I for which sξq̂t.
– The abstract transition relation, R′, is given by:

• For an abstract AND state (t, q), the transition ((t, q), (t′, q′)) is in R′ if
there exists a concrete state (s, q) and a successor (s′, q′) that are related
to (t, q), (t′, q′) respectively.

R′((t, q), (t′, q′)) ⇐ (∃s : sξqt : (∃s′ : s′ξq′t′ : R((s, q), (s′, q′))))

• For an abstract OR state (t, q), the transition ((t, q), (t′, q′)) is in R′ only
if for every (s, q) which is related to (t, q), there exists a successor (s′, q′)
which is related to (t′, q′).

R′((t, q), (t′, q′)) ⇒ (∀s : sξqt : (∃s′ : s′ξq′t′ : R((s, q), (s′, q′))))

– The abstract labeling function L′ maps a state (t, q) to q.



292 Kedar S. Namjoshi

Consistency: For each q ∈ Q, [φq ⇒ (∃k : (ρq = k))] (ρq is defined for every
state in φq)
Initiality: [I ⇒ φq̂] (every initial state satisfies the initial invariant)
Invariance and Progress: For each q ∈ Q, and predicate l over AP , based on
the form of δ(q, l), check the following.

– tt : there is nothing to check.
– ff : [φq ⇒ ¬l] holds,
– q1 ∧ q2: [φq ∧ l ∧ (ρq = k) ⇒ (φq1 ∧ (ρq1 �q k)) ∧ (φq2 ∧ (ρq2 �q k))]
– q1 ∨ q2: [φq ∧ l ∧ (ρq = k) ⇒ (φq1 ∧ (ρq1 �q k)) ∨ (φq2 ∧ (ρq2 �q k))]
– 〈a〉q1: [φq ∧ l ∧ (ρq = k) ⇒ 〈a〉(φq1 ∧ (ρq1 �q k))]
– [a]q1: [φq ∧ l ∧ (ρq = k) ⇒ [a](φq1 ∧ (ρq1 �q k))]

Fig. 1. Deductive Proof System for Automaton Properties

Precise Abstraction: Notice that the method allows some flexibility in the defi-
nition of R′. If R′ is defined in a way that the implications become equivalences,
we say that R′ is precise (precision of abstractions is studied in depth in [10,14]).
This flexibility can be exploited in practice by doing approximate but faster cal-
culations of a less precise R′. Precise abstractions are needed for completeness,
though, as is shown later. Note also that the abstract ATS can be constructed
by symbolic calculations, thus avoiding the explicit construction of M × A.

Theorem 0 (Soundness) For any LTS M and alternating tree automaton A,
let M × A be defined by the abstraction method, based on a set of abstraction
relations {ξq}. Then, if M × A is feasible, so is M × A.

One can prove this theorem by showing that the relation α given by: (s, q)α(t, q′)
iff q = q′ and sξqt is an alternating refinement relation [1] which preserves the
labeling (i.e., the automaton component). Therefore, any winning strategy for
player I in M × A, induces (through the refinement) a winning strategy on M×A.
However, we use a different argument, showing how to construct a deductive
proof that M satisfies A, given that M × A is feasible. This construction provides
information useful for the completeness proof.

Deductive Proofs: A deductive proof system (from [27]) for proving that M
satisfies A is shown in Fig. 1. One needs: (i) for each automaton state q, an
invariance predicate, φq , which is a subset of S, (ii) non-empty, well ordered sets
W1, . . . , Wn with associated partial orders �1, . . . ,�n. Let W = W1 × . . .×Wn,
and let � be the lexicographic well order defined on W from {�i}, (iii) for
each automaton state q, a partial rank function ρq : S → W . Let ≺i be the
restriction of ≺ to the first i components. For an automaton state q, the rank
change predicate (a �q b) holds either if q belongs to an odd indexed F2i−1 and
a ≺i b, or if q is in an even indexed F2i and a �i b (this odd/even distinction is
clearly related to the parity condition). A proof is valid if it meets the conditions
given the figure.
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Theorem 1 [27] For program M and automaton A, M |= A iff there is a valid
deductive proof that M satisfies A.

Theorem 2 (Proof Construction) If M × A is feasible, there is a valid de-
ductive proof that M satisfies A.
Proof Sketch. Let A be the set of states that are wins for player I in M × A.
The proof construction is similar to that in [27] so, for lack of space, we present
only a short sketch. The proof Π is defined by (φ, ρ, W ), where: (i) φq(s) holds
iff there exists t such that sξqt and (t, q) is in A, (ii) ρq(s) is the minimum of the
signatures of states t such that sξqt and (t, q) ∈ A, and (iii) W is the domain of
the signatures. The signature [31] of a state in A is an n-tuple of ordinals which,
roughly, measures the progress made toward satisfying A’s acceptance condition.
For example, if A has a Büchi acceptance condition, it is the distance in M ×A
to an accepting state.

We consider in detail only the case where δ(q, true) = 〈a〉q1. If φq(s) and (ρq(s) =
k) holds for any state s of M and any k ∈ W , from the definitions, there is t
such that sξqt, (t, q) ∈ A, and t has signature k. As (t, q) is an OR state, it
has a successor, (t′, q1), in A. By the ∀∃ abstraction for OR states, (s, q) must
have a successor (s′, q1) such that s′ξq1t

′. Thus, s′ is an a-successor of s in M ,
and φq1 (s

′) holds. By a property of signatures [31], the signature of (t′, q1) is k′,
where k′ �q k. By definition, ρq1(s′) � k′, so that ρq1(s′) �q k. �
Proof of Theorem 0: The soundness theorem follows from the combination of
Theorems 1 and 2. If M × A is feasible, by Theorem 2, there is a valid concrete
proof that M satisfies A. Applying Theorem 1, it follows that M satisfies A. �
Theorem 2 gives valuable information about the constructed proof Π if M × A
is finite-state:

– (Uniform OR Choice) By the ∀∃ nature of the abstraction at OR states,
for q such that δ(q, true) = q1 ∨ q2, if (t, q) has a transition to (t′, q1), then
for every s such that sξqt holds, there is a transition from (s, q) to (s, q1). A
similar observation holds for the 〈a〉 case.

– (Bounded Progress) As the abstract ATS is finite-state, the rank domain
W is a finite set. Thus, Π shows that M satisfies A using only bounded
progress measures.

These restrictions mean that the abstraction procedure, although sound, cannot
be complete. To illustrate this, consider showing the property EF(x ≥ 0) (i.e.,
there exists a future where x ≥ 0) for the following program M .

var x: integer; initially true

actions (a) x := x-1 (b) x := x+1

The property is true at every initial state, but showing this requires a proof with
unbounded progress measure (the measure ρ(x) = −x, if x < 0, else 0.). The
automaton A for the property is defined below, and a fragment of the product
ATS is shown in Fig. 2.
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States: {q0, q1, q2, q3, q4}; Initial state: q0

Transitions: δ(q0, true) = q1 ∨ q2; δ(q1, x ≥ 0) = tt ; δ(q1, x < 0) = ff ;
δ(q2, true) = q3 ∨ q4; δ(q3, true) = 〈a〉q0; δ(q4, true) = 〈b〉q0

Parity condition: ({q1}, {q0, q2, q3, q4})

(−2, q0) (1, q0)(−1, q0)

(−1, ff )

(0, q0)

(0, q4)

(−1, q2)(−1, q1)

(−1, q3) (−1, q4)

(0, q1)

(0, tt) (0, q3)

(0, q2)

Fig. 2. A portion of M × A

Now consider the abstract ATS in Fig. 3. Here, neg stands for {x | (x < 0)}
and nneg for {x | (x ≥ 0)}. Solid lines indicate transitions that are in the pre-
cise abstraction. However, these transitions, in themselves, are not sufficient for
feasibility since there is no way to pick transitions so that it is possible to sat-
isfy the acceptance condition from the abstract state (neg , q0). We would like, in
particular, the dashed transitions from state (neg, q4) to exist in the abstraction,
but these are ruled out by the strong ∀∃ nature of the abstraction at OR states.
Clearly, it is not possible for all states where x < 0 to have a b-transition to a
state where x < 0, and similarly, it is not possible for all such states to have
a b-transition to a state where x ≥ 0. On the other hand, the ∀∃ abstraction
is needed for soundness at OR states. Moreover, no finite refinement of the neg
state will resolve this problem.

(neg , q0)

(neg , q2)(neg , q1)

(neg , q3)(neg , ff ) (neg , q4)

(nneg , q0)

(nneg , q1)

(nneg , tt) (nneg , q3)

(nneg , q2)

(nneg , q4)

Fig. 3. A Possible Abstraction

Choice Predicates: A way out of this dilemma is given by the introduction of
choice predicates. The essential idea is to weaken the ∀ quantification at an
abstract OR state (t, q) in the ∀∃ abstraction to apply only to a subset of the
states in ξ−1

q (t). These subsets are supplied to the abstraction procedure through
a partial function ε, defined for a subset of OR-states, called the choice states
in the sequel. At each choice state (t, q), the function supplies, for a possible



Abstraction for Branching Time Properties 295

transition to a state (t′, q′), a predicate ε((t, q), (t′, q′)) (note that the transition
is possible if either δ(q, true) = q1 ∨ q2, and q′ ∈ {q1, q2}, or δ(q, true) = 〈a〉q1

and q′ = q1). An abstract transition ((t, q), (t′, q′)) from a choice state (t, q)
is computed by restricting the ∀ quantification in the ∀∃ abstraction to states
satisfying its choice predicate. The union of choice predicates for all transitions
in R′ from (t, q) should be a superset of ξ−1

q (t).

At (neg, q4), we let the choice predicate for the transition to (neg, q0) be (x <
−1), and the predicate for the transition to (nneg, q0) be (x = −1). This adds
back the dashed transitions in Fig. 3. However, it also creates a different problem.
The transition from (neg, q4) to (neg , q0) introduces an infinite loop, which does
not exist in the original ATS, since this transition increments the value of x. To
solve this difficulty, we use rank functions in a manner similar to that in [32,22].

We suppose that a set of rank function {ηq | q ∈ Q} is supplied, which map states
in S to a well-founded set with the structure specified in the proof system. We
add to each abstract transition a label (‘good’ or ‘bad’) indicating whether the
rank given by η changes in a way appropriate to the change of automaton state
along the transition. The final method, for the supplied abstraction relations
{ξq}, rank functions {ηq}, and the choice function ε is given below. The abstract
ATS is given by (S′, I ′, R′, L′), where S′, I ′, and L′ are defined as before. The
definition of the abstract transition relation, R′, is modified to the following,
where g is the label on the abstract transition.

– For an abstract AND state (t, q),

R′((t, q),g, (t′, q′)) ⇐
(∃s : sξqt : (∃s′ : s′ξq′t′ : R((s, q), (s′, q′)) ∧ g ≡ ηq′(s′) �q ηq(s)))

– For an abstract choice state (t, q),

R′((t, q),g, (t′, q′)) ⇒ ε((t, q), (t′, q′)) �= ∅ ∧ (∀s : sξqt ∧ s ∈ ε((t, q), (t′, q′)) :
(∃s′ : s′ξq′ t′ : R((s, q), (s′, q′)) ∧ g ≡ ηq′(s′) �q ηq(s)))

– The transitions from abstract OR states are as for choice states with choice
predicate ε ≡ true.

Taking, in addition to the choice augmentation discussed above, the rank func-
tions where for s such that x(s) < 0, ηq0(s) = −3 ∗ x(s), ηq1 (s) = −3 ∗ x(s) −
1, ηq2 = −3 ∗ x(s) − 2, and for x(s) ≥ 0, all values are 0, and applying the
augmented abstraction procedure, we obtain the abstract ATS shown in Fig. 4,
where η-good transitions are labeled with ∗.
We only consider abstract ATS’s where at a choice state (t, q), the union of the
choice predicates on its successors together form a superset of ξ−1

q (t). We define
a game on such abstract ATS which is identical to the game defined in Section
2, except that: (a) player II has the choice of successor at every choice state,
and (b) all infinite plays satisfy either the parity acceptance condition of the
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*

*

*

*

(neg , q0)

(neg , q2)(neg , q1)

(neg , q3)(neg , ff ) (neg , q4)

(nneg , q0)

(nneg , q1)

(nneg , tt) (nneg , q3)

(nneg , q2)

(nneg , q4)

Fig. 4. Abstract ATS after Augmented Abstraction

automaton or, from some point on, contain only η-good transitions. We say that
an abstract ATS is subtly feasible if player I has a winning strategy in the new
game. The bold transitions in Fig. 4 indicate such a winning strategy.

Theorem 3 (Soundness of Augmented Abstraction) For any LTS M and
alternating tree automaton A, let M × A be defined by the augmented abstraction
procedure above, based on a set of abstraction relations {ξq}, choice predicate ε,
and rank functions {ηq}. If M × A is subtly feasible, then M × A is feasible.

Proof. As M × A is subtly feasible, player I has a winning strategy on it. Let
A be the set of winning states for player I. We use this strategy to provide a
winning strategy for the player on M × A. Inductively, we assume that for a
state (s, q) on a play following this strategy, there is an abstract state (t, q) in A
such that sξqt holds. This is true for the initial states of M × A as every initial
state of the abstract ATS is in A.

Consider any state (s, q) on a play, and let (t, q) be its corresponding abstract
state. If (s, q) is an AND-state, let (s′, q′) be any successor chosen by player II.
By the definition of the abstract ATS, there is a successor (t′, q′) of (t, q) that
matches it. Now suppose that (s, q) is an OR state, and that (t, q) is a choice
state. Let (t′, q′) be a successor of (t, q) (which is in A by the new game rules)
such that s ∈ ε((t, q), (t′, q′)). Such a successor must exist because the choice
predicates at (t, q) cover ξ−1

q (t). The ∀∃ abstraction implies that (s, q) has a
successor (s′, q′) such that s′ξq′t′ holds. Player I picks this successor. A similar
argument applies to ordinary OR states.

Any constructed play π has a corresponding play π′ in the winning game on
the abstract ATS, which agrees with it on the sequence of automaton states. So
if π is maximal and finite, it must end in a state with label tt . If π is infinite,
we show by contradiction that it must satisfy F . If not, then π′ does not do so
either, and the new acceptance condition implies that it eventually consists of
only η-good transitions. Thus, from some point on, the least F -index in π is odd
(say 2k − 1), and all of its transitions correspond to η-good transitions in π′.
At each such concrete transition, the η-goodness condition, with the definition
of �, ensure that η, restricted to the first k components, does not increase, and
strictly decreases infinitely often. This contradicts the well-foundedness of the
rank domain. �
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4 Completeness

Theorem 4 (Completeness) If M satisfies an ATA property A, there is an
augmented abstraction M × A that is subtly feasible.
Proof. Since M satisfies A, by Theorem 1, there is a valid proof Π = (φ, ρ, W )
of this fact. The constructed abstraction follows the proof very closely, as is also
the case for the constructions in [32,22] for LTL.

Let the abstract domain S be the set {aq | q ∈ Q} ∪ {att , aff } ∪ {⊥}. Let the
abstraction relations for q ∈ Q be: sξqt iff φq(s) ∧ t = aq or ¬φq(s) ∧ t = ⊥ holds.
The state ⊥ is an unreachable state used to ensure that each ξq is left-total. The
rank functions used for abstraction are {ρq} from the proof. The choice predicate
is defined only for those abstract OR states (aq, q) where δ(q, true) = q1 ∨ q2:
ε((aq, q), (aq′ , q′)) is the set {s |φq′(s) ∧ ρq′(s)�q ρq(s)}, and is empty for other
possible successor states. We claim that the precise abstract program constructed
with these choices is subtly feasible. Inductively, the winning strategy ensures
that the only reachable configurations are those of the form (aq, q), where q is
in Q ∪ {tt}, and φq is non-empty. This is true of the only initial state, (aq̂, q̂).

Suppose (aq, q) is reached according to some partial play. Since φq is non-empty,
there is a related concrete state (s, q). If δ(q, true) = q1 ∧ q2, then by the proof,
s satisfies φq1 and φq2 . Thus, (aq, q) has (aq1 , q1) and (aq2 , q2) as successor states.
As the abstraction is precise, these are the only possible successors. Now suppose
that δ(q, true) = [a]q′. Then, by the proof, for every a-successor (s′, q′) of (s, q)
in M × A, φq′ (s′) holds, and there is at least one such successor, so that (aq, q)
has (aq′ , q′) as its only successor. If δ(q, l) = ff (so that δ(q,¬l) = tt), by the
proof, [φq ⇒ ¬l], so (aq, q) can only have the successor (att , tt). Suppose that
(aq, q) is a choice state, so that δ(q, true) = q1 ∨ q2. By the proof, ξ−1

q (aq) = φq

is covered by the two choices, so that every state in φq satisfies some choice, and
that (aq1 , q1) and (aq2 , q2) are the only possible successors of this abstract state.
Otherwise, (aq, q) is an OR state and δ(q, true) = 〈a〉q′. By the proof, every state
s satisfying φq has an a-successor satisfying φq′ . Hence, (aq, q) has a transition
to (aq′ , q′), which is picked by player I.

It follows from the proof that every abstract transition is ρ-good. Thus, every
infinite play either satisfies the parity acceptance condition or has only ρ-good
transitions, and every maximal finite path in A must end with automaton com-
ponent tt . Hence, the abstract ATS is subtly feasible. �
The abstract ATS constructed in this manner for the example program is given
in Fig. 5, with the winning strategy outlined in bold (int stands for the set of all
integers). This uses the same rank functions as for Fig. 4, and invariants defined
by the abstract state component.

4.1 Predicate Abstraction

Predicate abstraction[19] defines the abstract state space in terms of boolean
variables corresponding to concrete program predicates. Computing a relevant
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*

*

**

*

(int , q0)

(neg , q2)(nneg , q1)

(∅, q3)(nneg , tt) (neg , q4)

Fig. 5. Abstract ATS derived from the completeness proof

set of predicates is impossible in general [20]; however, there are several heuristics
for predicate discovery. The general predicate discovery scheme [29,8] starts with
a set P0 of predicates from the correctness property, and iteratively computes
Pi+1 by adding the predicates in the weakest precondition wp [15] of Pi to Pi.
Let the limit of this procedure be denoted by the set P∗.

From a modification of the main completeness theorem, we can derive the reverse
direction of the following theorem. Note that the forward direction holds from
the first soundness theorem. Thus, we obtain an exact characterization of the
completeness of predicate discovery methods.

Theorem 5 (Relative Completeness of Predicate Discovery) For an LTS
M and ATA A, predicate discovery coupled with abstraction produces a feasible
result iff there is a proof that M satisfies A where the invariants in the proof are
constructed from predicates in P∗, the progress ranks are bounded, and the OR
choices are uniform.

In [2], the authors show completeness of predicate discovery for invariance prop-
erties (i.e., AG(p)) relative to an oracle which can widen intermediate results of
the fixpoint computation of Φ = EF(¬p), by dropping some conjunctive terms.
Notice that the widened fixpoint, Φ+, is defined in terms of predicates from P∗,
and ¬(Φ+) is an inductive invariant implying AG(p). Thus, a generalization of
their result including existential and progress properties can be derived from
these observations and Theorem 5. This method of proof also shows that the re-
sult holds for more powerful “clairvoyant” oracles, which may perform widening
using predicates in P∗ that do not appear at the current stage.

Theorem 6 (Bisimulation and Finite-state Completeness) If LTS M
has a finite bisimulation quotient preserving the predicates, AP , in a property
A, then predicate discovery coupled with abstraction produces a feasible result.
Proof Sketch. The proof hinges on the fact that symbolic algorithms for bisim-
ulation minimization (e.g., [5,25]) compute a finite quotient that is based on P∗

for a suitable initial choice of P0. Bisimulation ensures that the conditions in
Theorem 5 on progress ranks and OR choice are met. Consequently, predicate
discovery always produces a feasible abstraction for finite-state systems. �



Abstraction for Branching Time Properties 299

5 Related Work

There is a large literature on the links between program abstraction and model
checking – we discuss here only the most closely related results. As mentioned
earlier, [32,22,23] show that simulation augmented with progress hints is com-
plete for linear time properties, based on earlier work on deductive approaches
[6,30]. Our abstraction method builds on this work, but uses progress hints dif-
ferently, and handles branching time logics (such as the µ-calculus), which are
more powerful than LTL and include both universal and existential modalities.
We also offer a finer analysis of completeness, with and without progress hints.

Another closely related line of research is the work in [10,13,14] on abstraction
for the µ-calculus and sub-logics, based on the abstract interpretation paradigm
[12]. The abstract program has two transition relations, one used for checking
existential properties, the other for universal ones. Our method uses similar ∃∃
and ∀∃ abstractions, but the duality is expressed locally by the alternation within
the ATS. These papers study the precision of abstract interpretations, but not
completeness. It is not known whether their abstraction methods are complete.
From the results of this paper, however, this seems unlikely, since completeness
seems to require both choice predicates and rank functions, applied in a manner
closely tied to the property automaton. A completeness result is given in [9] for
CTL∗, but only under a strict congruence assumption on the concrete system.
Partial transition systems (e.g., those with may and must relations) have been
used to define abstractions preserving branching time properties [7,18] – but with
a “gap” where preservation is uncertain. Partial information is an orthogonal
issue, and such methods can be incorporated in the analysis of ATS’s. We have
related our completeness results to those in [2] in the previous section.

Acknowledgements: Thanks go to Dennis Dams for very helpful discussions
in the course of this work, and to the referees for several insightful comments.
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