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Abstract. We consider the problem of reasoning with linear temporal
logic on truncated paths. A truncated path is a path that is finite, but
not necessarily maximal. Truncated paths arise naturally in several areas,
among which are incomplete verification methods (such as simulation or
bounded model checking) and hardware resets. We present a formalism
for reasoning about truncated paths, and analyze its characteristics.

1 Introduction

Traditional ltl semantics over finite paths [15] are defined for maximal paths in
the model. That is, if we evaluate a formula over a finite path under traditional
ltl finite semantics, it is because the last state of the path has no successor in
the model. One of the consequences of extending ltl [16] to finite paths is that
the next operator has to be split into a strong and a weak version [15]. The strong
version, which we denote by X!ϕ, does not hold at the last state of a finite path,
while the weak version, which we denote by Xϕ, does.

In this paper, we consider not only finite maximal paths, but finite trun-
cated paths. A truncated path is a finite path that is not necessarily maximal.
Truncated paths arise naturally in incomplete verification methods such as sim-
ulation or bounded model checking. There is also a connection to the problem
of describing the behavior of hardware resets in temporal logic, since intuitively
we tend to think of a reset as somehow cutting the path into two disjoint parts -
a finite, truncated part up until the reset, and a possibly infinite, maximal part
after the reset.

Methods of reasoning about finite maximal paths are insufficient for reasoning
about truncated paths. When considering a truncated path, the user might want
to reason about properties of the truncation as well as properties of the model.
For instance, the user might want to specify that a simulation test goes on long
enough to discharge all outstanding obligations, or, on the other hand, that an
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obligation need not be met if it “is the fault of the test” (that is, if the test is
too short). The former approach is useful for a test designed (either manually or
by other means) to continue until correct output can be confirmed. The latter
approach is useful for a test which has no “opinion” on the correct length of a
test - for instance, a monitor running concurrently with the main test to check
for bus protocol errors.

At first glance, it seems that the strong operators (X! and U) can be used in
the case that all outstanding obligations must be met, and the weak operators
(X and W) in the case that they need not. However, we would like a specification
to be independent of the verification method used. Thus, for instance, for a
specification [p U q], we do not want the user to have to modify the formula to
[p W q] just because she is running a simulation.

In such a situation, we need to define the semantics over a truncated path. In
other words, at the end of the truncated path, the truth value must be decided. If
the path was truncated after the evaluation of the formula completed, the truth
value is already determined. The problem is to decide the truth value if the path
was truncated before the evaluation of the formula completed, i.e., where there is
doubt regarding what would have been the truth value if the path had not been
truncated. For instance, consider the formula Fp on a truncated path such that
p does not hold for any state. Another example is the formula Gq on a truncated
path such that q holds for every state. In both cases we cannot be sure whether
or not the formula holds on the original untruncated path.

We term a decision to return true when there is doubt the weak view and a
decision to return false when there is doubt the strong view. Thus in the weak
view the formula Fp holds for any finite path, while Gq holds only if q holds at
every state on the path. And in the strong view the formula Fp holds only if
p holds at some state on the path, while the formula Gq does not hold for any
finite path. Alternatively, one can take the position that one should demand the
maximum that can be reasonably expected from a finite path. For formulas of
the form Fp, a prefix on which p holds for some state on the path is sufficient to
show that the formula holds on the entire path, thus it is reasonable to demand
that such a prefix exist. In the case of formulas of the form Gq, no finite prefix
can serve as evidence that the formula holds on the entire path, thus requiring
such evidence is not reasonable. Under this approach, then, the formula Fp holds
only if p holds at some state on the path, while the formula Gq holds only if q
holds at every state on the path. This is exactly the traditional ltl semantics
over finite paths [15], which we term the neutral view.

In this paper, we present a semantics for ltl over truncated paths based
on the weak, neutral, and strong views. We study properties of the truncated
semantics for the resulting logic ltl

trunc, as well as its relation to the informative
prefixes of [12]. We examine the relation between truncated paths and hardware
resets, and show that our truncated semantics are mathematically equivalent to
the reset semantics of [3].

The remainder of this paper is structured as follows. Section 2 presents our
truncated semantics. Section 3 studies properties of our logic as well as its relation
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to the informative prefixes of [12]. Section 4 shows the relation to hardware resets.
Section 5 discusses related work. Section 6 concludes.

2 The Truncated Semantics

Recall that ltl is the logic with the following syntax:

Definition 1 (ltl formulas).

– Every atomic proposition is an ltl formula.
– If ϕ and ψ are ltl formulas then the following are ltl formulas:

• ¬ϕ • ϕ ∧ ψ • X! ϕ • [ϕ U ψ]

Additional operators are defined as syntactic sugaring of the above operators:
• ϕ ∨ ψ

def= ¬(¬ϕ ∧ ¬ψ) • ϕ → ψ
def= ¬ϕ ∨ ψ • X ϕ

def= ¬(X! ¬ϕ)
• F ϕ

def= [true U ϕ] • G ϕ
def= ¬F ¬ϕ • [ϕ W ψ] def= [ϕ U ψ] ∨ Gϕ

According to our motivation presented above, the formula ϕ holds on a trun-
cated path in the weak view if up to the point where the path ends, “nothing
has yet gone wrong” with ϕ. It holds on a truncated path in the neutral view
according to the standard ltl semantics for finite paths. In the strong view, ϕ
holds on a truncated path if everything that needs to happen to convince us that
ϕ holds on the original untruncated path has already occurred. Intuitively then,
our truncated semantics are related to those of standard ltl on finite paths as
follows: the weak view weakens all operators (e.g. U acts like W, X! like X), the
neutral view leaves them unchanged, and the strong view strengthens them (e.g.
W acts like U, X like X!).

We define the truncated semantics of ltl formulas over words1 from the
alphabet 2P . A letter is a subset of the set of atomic propositions P such that
true belongs to the subset and false does not. We will denote a letter from 2P by �
and an empty, finite, or infinite word from 2P by w. We denote the length of word
w as |w|. An empty word w = ε has length 0, a finite word w = (�0�1�2 · · · �n)
has length n + 1, and an infinite word has length ∞. We denote the ith letter of
w by wi−1 (since counting of letters starts at zero). We denote by wi.. the suffix
of w starting at wi. That is, wi.. = (wiwi+1 · · ·wn) or wi.. = (wiwi+1 · · ·). We
denote by wi..j the finite sequence of letters starting from wi and ending in wj .
That is, wi..j = (wiwi+1 · · ·wj).

We make use of an “overflow” and “underflow” for the indices of w. That
is, wj.. = ε if j ≥ |w|, and wj..k = ε if j ≥ |w| or k < j. For example, in the
semantics of [ϕ U ψ] under weak context, when we say “∃k”, k is not required
to be less than |w|.

The truncated semantics of an ltl formula are defined with respect to finite
or infinite words and a context indicating the strength, which can be either

1 Relating the semantics over words to semantics over models is done in the standard
way. Due to lack of space, we omit the details.
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weak, neutral or strong. Under the neutral context only non-empty words are
evaluated; under weak/strong contexts, empty words are evaluated as well. We
use w |=S

ϕ to denote that ϕ is satisfied under the model (w, S), where S is “−”
if the context is weak, null if it is neutral, and “+” if it is strong. We use w to
denote an empty, finite, or infinite word, ϕ and ψ to denote ltl formulas, p to
denote an atomic proposition, and j and k to denote natural numbers.

holds weakly: For w such that |w| ≥ 0,

1. w |=−p ⇐⇒ |w| = 0 or p ∈ w0

2. w |=−¬ϕ ⇐⇒ w |=+
/ ϕ

3. w |=−ϕ ∧ ψ ⇐⇒ w |=−ϕ and w |=−ψ

4. w |=−X! ϕ ⇐⇒ w1.. |=−
ϕ

5. w |=−[ϕUψ] ⇐⇒ ∃k such that wk.. |=−ψ, and for every j < k, wj.. |=−ϕ

holds neutrally: For w such that |w| > 0,

1. w |= p ⇐⇒ p ∈ w0

2. w |=¬ϕ ⇐⇒ w |=/ ϕ

3. w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

4. w |= X! ϕ ⇐⇒ |w| > 1 and w1.. |= ϕ

5. w |= [ϕUψ] ⇐⇒ ∃k < |w| such that wk.. |= ψ, and for every j < k, wj.. |= ϕ

holds strongly: For w such that |w| ≥ 0,

1. w |=+
p ⇐⇒ |w| > 0 and p ∈ w0

2. w |=+¬ϕ ⇐⇒ w |=−/ ϕ

3. w |=+
ϕ ∧ ψ ⇐⇒ w |=+

ϕ and w |=+
ψ

4. w |=+
X! ϕ ⇐⇒ w1.. |=+

ϕ

5. w |=+ [ϕUψ] ⇐⇒ ∃k such that wk.. |=+
ψ, and for every j < k, wj.. |=+

ϕ

Our goal was to give a semantics to ltl formulas for truncated paths, but we
have actually ended up with two parallel semantics: the neutral semantics, and
the weak/strong semantics. The weak/strong semantics form a coupled dual pair
because the negation operator switches between them. Before analyzing these
semantics, we first unify them by augmenting ltl with truncate operators that
connect the neutral semantics to the weak/strong semantics. Intuitively, trunc w
truncates a path using the weak view, while trunc s truncates using the strong
view. Formally, ltl

trunc is the following logic, where we use the term boolean
expression to refer to any application of the standard boolean operators to atomic
propositions, and we associate satisfaction of a boolean expression over a letter
wi with satisfaction of the boolean expression over the word wi..i.

Definition 2 (ltl
trunc formulas).

– Every atomic proposition is an ltl
trunc formula.
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– If ϕ and ψ are ltl
trunc formulas and b is a boolean expression, then the

following are ltl
trunc formulas:

• ¬ϕ • ϕ ∧ ψ • X! ϕ • [ϕ U ψ] • ϕ trunc w b

We also add the dual of the trunc w operator as syntactic sugar as follows:

ϕ trunc s b
def= ¬(¬ϕ trunc w b)

The semantics of the standard ltl operators are as presented above. The se-
mantics of the truncate operator are as follows:

– w |=−ϕ trunc w b ⇐⇒ w |=−ϕ or ∃k < |w| s.t. wk |= b and w0..k−1 |=−
ϕ

– w |= ϕ trunc w b ⇐⇒ w |= ϕ or ∃k < |w| s.t. wk |= b and w0..k−1 |=−
ϕ

– w |=+
ϕ trunc w b ⇐⇒ w |=+

ϕ or ∃k < |w| s.t. wk |= b and w0..k−1 |=−
ϕ

Thus, trunc w performs a truncation and takes us to the weak view, and, as
we show below, trunc s performs a truncation and takes us to the strong view.
There is no way to get from the weak/strong views back to the neutral view.
This corresponds with our intuition that once a path has been truncated, there
is no way to “untruncate” it.

3 Characteristics of the Truncated Semantics

In this section, we study properties of the truncated semantics as well as its
relation to the informative prefixes of [12]. All theorems are given here without
proof; the proofs can be found in the full version of the paper. We first examine
relations between the views. The first theorem assures that the strong context is
indeed stronger than the neutral, while the neutral is stronger than the weak.

Theorem 3 (Strength relation theorem). Let w be a non-empty word.

1. w |=+
ϕ =⇒ w |= ϕ

2. w |= ϕ =⇒ w |=−ϕ

The proof, obtained by induction on the structure of the formula, relies on the
following lemma.

Lemma 4 Let ϕ be a formula in ltl
trunc. Then both ε |=−ϕ and ε |=+

/ ϕ.

The following corollary to Theorem 3 states that for infinite paths, the
weak/neutral/strong views are the same. Recall that the neutral view with-
out the trunc w operator is that of standard ltl over finite and infinite paths.
Thus, for ltl

trunc formulas with no truncation operators (that is, for ltl for-
mulas), Corollary 5 implies that all three views are equivalent over infinite paths
to standard ltl semantics.

Corollary 5 If w is infinite, then w |=−ϕ iff w |= ϕ iff w |=+
ϕ.
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Intuitively, a truncated path w satisfies ϕ in the weak view if w “carries
no evidence against” ϕ. It should then follow that any prefix of w “carries no
evidence against” ϕ. Similarly, w satisfies ϕ in the strong view if it “supplies
all the evidence needed” to conclude that ϕ holds on the original untruncated
path. Hence any extension of w should also “supply all evidence needed” for this
conclusion. The following theorem confirms these intuitive expectations. We first
formalize the notions of prefix and extension.

Definition 6 (Prefix, extension).

u is a prefix of v, denoted u 
 v, if there exists a word u′ such that uu′ = v.
w is an extension of v, denoted w � v, if there exists a word v′ such that vv′ = w.

Theorem 7 (Prefix/extension theorem).

1. v |=−
ϕ ⇐⇒ ∀u 
 v, u |=−

ϕ

2. v |=+
ϕ ⇐⇒ ∀w � v, w |=+

ϕ

We now examine our intuitions regarding some derived operators. Since the
trunc w operator takes us to the weak view, we expect the trunc s operator to
take us to the strong view. The following observation confirms our intuition by
capturing directly the semantics of the trunc s operator.

Observation 8

– w |=−ϕ trunc s b ⇐⇒ w |=−
ϕ and ∀k < |w| if wk |= b then w0..k−1 |=+

ϕ

– w |= ϕ trunc s b ⇐⇒ w |= ϕ and ∀k < |w| if wk |= b then w0..k−1 |=+
ϕ

– w |=+
ϕ trunc s b ⇐⇒ w |=+

ϕ and ∀k < |w| if wk |= b then w0..k−1 |=+
ϕ

The following observation shows that our intuitions regarding F and G on
truncated paths hold. In particular, Fϕ holds for any formula ϕ in weak context
on a truncated path, and Gϕ does not hold for any formula ϕ in strong context
on a truncated path.

Observation 9

• w |=−Fϕ ⇐⇒ ∃k s.t. wk.. |=−ϕ • w |=−Gϕ ⇐⇒ ∀k, wk.. |=−
ϕ

• w |= Fϕ ⇐⇒ ∃k < |w| s.t. wk.. |= ϕ • w |= Gϕ ⇐⇒ ∀k < |w|, wk.. |= ϕ

• w |=+
Fϕ ⇐⇒ ∃k s.t. wk.. |=+

ϕ • w |=+
Gϕ ⇐⇒ ∀k, wk.. |=+

ϕ

Note that for k ≥ |w|, wk.. = ε and by Lemma 4, ε |=−
ϕ and ε |=+

/ ϕ for every ϕ.
Thus Observation 9 shows that for every formula ϕ and for every finite word w,
w |=−Fϕ and w |=+

/ Gϕ.
We have already seen that for infinite words, the semantics of the

weak/neutral/strong contexts are equivalent and, in the absence of truncation
operators, are the same as those of standard ltl. The following observations
show that for finite words, the strength of an operator matters only in the neu-
tral context since in a weak context every operator is weak (U acts like W and
X! acts like X) and in a strong context every operator is strong (W acts like U
and X acts like X!).
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Observation 10 Let w be a finite word.

• w |= Xϕ ⇐⇒ w |=¬(X! ¬ϕ) • w |= [ϕUψ] ⇐⇒ w |=¬[¬ψW(¬ϕ ∧ ¬ψ)]
• w |=+

Xϕ ⇐⇒ w |=+
X! ϕ • w |=+ [ϕUψ] ⇐⇒ w |=+ [ϕWψ]

• w |=−Xϕ ⇐⇒ w |=−X! ϕ • w |=−[ϕUψ] ⇐⇒ w |=−[ϕWψ]

A consequence of this is that under weak context it might be the case that both ϕ
and ¬ϕ hold, while under strong context it might be the case that neither ϕ nor
¬ϕ holds. It follows immediately that ϕ∧¬ϕ may hold in the weak context, while
ϕ∨¬ϕ does not necessarily hold in the strong context. For example, let ϕ = XXp.
Then on a path w of length 1, w |=−

ϕ ∧ ¬ϕ, and w |=+
/ ϕ ∨ ¬ϕ. This property of

the truncated semantics is reminiscent of a similar property in intuitionistic logic
[6], in which ϕ ∨ ¬ϕ does not necessarily hold.

We now argue that the truncated semantics formalizes the intuition behind
the weak, neutral and strong views. Recall that one of the motivating intuitions
for the truncated semantics is that if a path is truncated before evaluation of ϕ
“completes”, then the truncated path satisfies ϕ weakly but does not satisfy ϕ
strongly. If the evaluation of ϕ “completes” before the path is truncated, then the
truth value on the truncated path is the result of the evaluation. Thus, in order
to claim that we capture the intuition we need to define when the evaluation of
a formula completes. In other words, given a word w and a formula ϕ we would
like to detect the shortest prefix of w which suffices to conclude that ϕ holds or
does not hold on w. We call such a prefix the definitive prefix of ϕ with respect
to w.

Definition 11 (Definitive prefix). Let w be a non-empty path and ϕ a for-
mula. The definitive prefix of w with respect to ϕ, denoted dp(w, ϕ), is the short-
est finite prefix u 
 w such that

u |=−ϕ ⇐⇒ u |= ϕ ⇐⇒ u |=+
ϕ

if such u exists and 
 otherwise.

Intuitively, if w is finite and dp(w, ϕ) = 
, then even after examination of all
of w, our decision procedure leaves doubt about the dispositions of both ϕ and
¬ϕ on w. Therefore, both are satisfied weakly on w, neither is satisfied strongly
on w, and all of w is needed to determine which one is satisfied neutrally on w.
If dp(w, ϕ) �= 
, then for finite or infinite w, examination of dp(w, ϕ) is exactly
enough for our decision procedure to resolve without doubt the truth value of
ϕ over any prefix v of w such that v � dp(w, ϕ). Therefore, any proper prefix
of dp(w, ϕ) satisfies weakly both ϕ and ¬ϕ, while dp(w, ϕ) satisfies strongly
exactly one of ϕ or ¬ϕ, as do all of its extensions. The following theorem states
this formally:

Theorem 12 (Definitive prefix theorem). Let v be a non-empty word and
ϕ an ltl

trunc formula.

– If dp(v, ϕ) �= 
 then
• u ≺ dp(v, ϕ) =⇒ u |=−ϕ and u |=−¬ϕ
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• u � dp(v, ϕ) =⇒ u |=+
ϕ or u |=+¬ϕ

– Otherwise
• for every finite u 
 v, (u |=−

ϕ and u |=−¬ϕ) and (u |=+
/ ϕ and u |=+

/ ¬ϕ)

Plainly, dp(w, ϕ) = dp(w,¬ϕ). If u is the definitive prefix of w with respect
to ϕ, then it is its own definitive prefix with respect to ϕ. That is:

Proposition 13 Let w be a non-empty word and ϕ an ltl
trunc formula. Then

dp(w, ϕ) �= 
 =⇒ dp(w, ϕ) = dp(dp(w, ϕ), ϕ)

The definitive prefix of the truncated semantics is closely related to the con-
cept of informative prefix in [12]. That work examines the problem of model
checking safety formulas for standard ltl over maximal paths. Let a safety for-
mula be a formula ϕ such that any path w violating ϕ contains a prefix w0..k all
of whose infinite extensions violate ϕ [15]. Such a prefix is termed a bad prefix
by [12]. Our intuitive notion of a bad prefix says that it should be enough to
fully explain the failure of a safety formula. However, [12] showed that for ltl

over maximal paths, there are safety formulas for which this does not hold. For
instance, consider the formula ϕ = (G(q ∨ FGp) ∧ G(r ∨ FG¬p)) ∨ Gq ∨ Gr. In
standard ltl semantics, ϕ is equivalent to Gq ∨Gr, and the bad prefixes are ex-
actly the finite words satisfying ¬(Gq∨Gr). However, we somehow feel that such
a prefix is too short to “tell the whole story” of formula ϕ on path w, because
it does not explain that (FGp) ∧ (FG¬p) is unsatisfiable.

The concept of a prefix which tells the whole story regarding the failure
of formula ϕ on path w is formalized by [12] as an informative prefix. The
precise definition in [12] is inductive over the finite path and the structure of
¬ϕ, which is assumed to be in positive normal form. The definition accomplishes
an accounting of the discharge of the various sub-formulas of ¬ϕ and is omitted
due to lack of space. From the intuitive description, if u is an informative prefix
for ϕ, then we should have that u |=+¬ϕ, or equivalently, u |=−/ ϕ. The following
theorem confirms this expectation and its converse.

Theorem 14 (Informative prefix theorem). Let w be a non-empty finite
word and ϕ an ltl formula.

w |=−/ ϕ ⇐⇒ w is informative for ϕ

Notice that Theorem 14 shows that the notion of informative prefix for ϕ, de-
fined in terms of syntactic structure, is captured semantically by the weak/strong
truncated semantics. Furthermore, the definitive prefix does not require formulas
to be in positive normal form, as does the informative prefix, and is symmetric
in ϕ and ¬ϕ, as opposed to the informative prefix, which is defined only for for-
mulas that do not hold. The precise relation of definitive prefixes to informative
prefixes is given by the following corollary.

Corollary 15 Let w be a non-empty path and let ϕ be an ltl formula.
If dp(w, ϕ) = 
, then w has no informative prefix for either ϕ or ¬ϕ.
Otherwise, dp(w, ϕ) is the shortest informative prefix of w for either ϕ or ¬ϕ.
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4 Relation to Hardware Resets

There is an intimate relation between the problem of hardware resets and that
of truncated vs. maximal paths: a hardware reset can be viewed as truncating
the path and canceling future obligations; thus it corresponds to the weak view
of truncated paths. We now consider the relation between the semantics given
to the hardware reset operators of ForSpec [3] (termed the reset semantics by
[2]) and of Sugar2.0 [8] (termed the abort semantics by [2]) and the truncated
semantics we have presented above. We show that the truncated semantics are
equivalent to the reset semantics, thus by [2], different from the abort semantics.

Reset Semantics The reset semantics are defined as follows, where [3] uses
accept on as the name of the trunc w operator. Let a and r be mutually exclusive
boolean expressions, where a is the condition for truncating a path and accepting
the formula, and r is the condition for rejection. Let w be a non-empty word2.
As before, we use ϕ and ψ to denote ltl

trunc formulas, p to denote an atomic
proposition, and j and k to denote natural numbers. The reset semantics are
defined in terms of a four-way relation between words, contexts a and r, and
formulas, denoted |=R. The definition of the reset semantics makes use of a two-
way relation between letters and boolean expressions which is defined in the
obvious manner.

1. 〈w, a, r〉 |=Rp ⇐⇒ w0 |=Ra ∨ (p ∧ ¬r)

2. 〈w, a, r〉 |=R¬ϕ ⇐⇒ 〈w, r, a〉 |=R/ ϕ

3. 〈w, a, r〉 |=Rϕ ∧ ψ ⇐⇒ 〈w, a, r〉 |=Rϕ and 〈w, a, r〉 |=Rψ

4. 〈w, a, r〉 |=RX! ϕ ⇐⇒ w0 |=Ra or ( w0 |=R/ r and |w| > 1 and 〈w1.., a, r〉 |=Rϕ )

5. 〈w, a, r〉 |=R[ϕ U ψ] ⇐⇒ there exists k < |w| such that 〈wk.., a, r〉 |=Rψ, and
for every j < k, 〈wj.., a, r〉 |=Rϕ

6. 〈w, a, r〉 |=Rϕ trunc w b ⇐⇒ 〈w, a ∨ (b ∧ ¬r), r〉 |=Rϕ

Abort Semantics The abort semantics are defined in [8] as the traditional
ltl semantics over finite and infinite (non-empty) paths, with the addition of a
truncate operator (termed there abort), as follows, where we use |=A to denote
satisfaction under these semantics:

w |=Aϕ trunc w b ⇐⇒ either w |=Aϕ or there exist j < |w| and word w′ such
that wj |=Ab and w0..j−1w′ |=Aϕ

Intuitively, the reset and abort semantics are very similar. They both specify
that the path up to the point of reset must be “well behaved”, without regard to

2 In [3], the reset semantics are defined over infinite words. We present a straightfor-
ward extension to (non-empty) finite as well as infinite words.
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the future behavior of the path. The difference is in the way future obligations
are treated, and is illustrated by the following formulas:

(G(p → F(ϕ ∧ ¬ϕ))) trunc w b (1)
(G¬p) trunc w b (2)

Formulas 1 and 2 are equivalent in the abort semantics, because the future
obligation ϕ∧¬ϕ is not satisfiable. They are not equivalent in the reset semantics,
because the reset semantics “do not care” that ϕ ∧ ¬ϕ is not satisfiable. Thus
there exist values of w, a, and r such that Formula 1 holds under the reset
semantics, while Formula 2 does not. For example, consider a word w such that
p holds on w5 and for no other letter and b holds on w6 and on no other letter.
If a = r = false, then Formula 1 holds on word w in the reset semantics under
contexts a and r, while Formula 2 does not.

As shown in [2], the difference between the reset and the abort semantics
causes a difference in complexity. While the complexity of model checking the
reset semantics is pspace-complete, the complexity of model checking the abort
semantics is space(exp(k, n))-complete where n is the length of the formula and
k is the nesting depth of trunc w.

Unlike the abort semantics, the truncated and reset semantics make no exis-
tential requirements of a path after truncation. The truncated semantics discard
the remainder of the path after truncation, while the reset semantics accumulate
the truncate conditions for later use. Theorem 16 states that they are the same.

Theorem 16 (Equivalence theorem). Let ϕ be a formula of ltl
trunc, a and

r mutually exclusive boolean expressions, and w a non-empty word. Then,

〈w, a, r〉 |=Rϕ ⇐⇒ w |= (ϕ trunc w a) trunc s r

In particular, for an infinite w, 〈w, false, false〉 |=Rϕ in the reset semantics if
and only if w |= ϕ in the truncated semantics. It follows easily that the truncated
semantics are not more expressive or harder to decide than the reset semantics,
which were shown in [2] to have the same expressiveness and complexity as ltl.

5 Related Work

Semantics for ltl is typically defined over infinite paths. Often finite paths are
dealt with by infinitely repeating the last state (see e.g. [7]). Lichtenstein et
al. [14] were the first to extend the semantics of ltl to finite paths. In particu-
lar, they introduced the strong next operator (see also [13],[15, pages 272-273]).
However, they consider only finite maximal paths, and the issue of truncated
paths is not considered.

The issue of using temporal logic specifications in simulation is addressed
by [1]. They consider only a special class of safety formulas [4] which can be
translated into formulas of the form Gp, and do not distinguish between maximal
and truncated paths.
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The idea that an obligation need not be met in the weak view if it “is the
fault of the test” is directly related to the idea of weak clocks in [8], in which
obligations need not be met if it “is the fault of the clock”. The weak/strong
clocked semantics of [8] were the starting point for investigations that have led
to [9], which proposes a clocked semantics in which the clock is strengthless, and
to the current work, which preserves much of the intuition of the weak/strong
clocked semantics in a simpler, unclocked setting.

The work described here is the result of discussions in the LRM sub-committee
of the Accellera Formal Verification Technical Committee. Three of the languages
(Sugar2.0, ForSpec, CBV [10]) examined by the committee enhance temporal
logic with operators intended to support hardware resets. We have discussed
the reset and abort semantics of ForSpec and Sugar2.0 in detail. The opera-
tor of CBV, while termed abort, has semantics similar to those of ForSpec’s
accept on/reject on operators. As we have shown, our truncated semantics are
mathematically equivalent to the reset semantics of ForSpec. However, the reset
semantics take the operational view in that they tell us in a fairly direct manner
how to construct an alternating automaton for a formula. Our approach takes
the denotational view and thus tells us more directly the effect of truncation on
the formula. This makes it easy to reason about the semantics in a way that is
intuitively clear, because we can reason explicitly about three constant contexts
(weak/neutral/strong) which are implicit in the operational view.

Bounded model checking [5] considers the problem of searching for coun-
terexamples of finite length to a given ltl formula. The method is to solve the
existential model checking problem for ψ = ¬ϕ, where ϕ is an ltl formula to be
checked. An infinite path π of a model M that shows that M |= Eψ is called a
witness for ψ. The existence of a witness has to be demonstrated by exhibiting
an appropriate path πk of finite length k. In some cases, this can be done by
finding a path πk with a loop (two identical states); this can be expanded to an
infinite path in which the loop is repeated infinitely often. But a finite path πk

can also demonstrate the existence of a witness, even if it is not known to have
a loop. This can be understood in the framework of the truncated semantics as
follows: The bounded semantics without a loop of [5] is the strong semantics for
ltl formulas in positive normal form. If πk satisfies ψ in this semantics, then by
Theorems 7 and 3, every extension of πk satisfies ψ in the neutral semantics. As-
suming there is at least one transition from every state in M , there is an infinite
extension π of πk that is a computation path of M . Then π is a witness for ψ.
Conversely, if there is no path of length k satisfying ψ in the bounded semantics
without a loop, then every path of length k weakly satisfies ϕ. As noted in [5], the
bounded semantics without a loop break the duality between strong and weak
operators. The truncated semantics provide the missing dual weak semantics,
and therefore render unnecessary the restriction of [5] to positive normal form.

The completeness threshold (CT ) of [11] is reminiscent of our definitive prefix.
However, CT is defined with respect to a model and a formula while the definitive
prefix is defined with respect to a word and a formula. Even if we try to compare
the definitions by taking for a word w a model Mw that accepts w alone, the
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definitions do not coincide: the definitive prefix for any word with respect to the
formula Gp is 
 but there exists a model Mw accepting Gp with a bounded CT .

In [17] the problem of determining the value of a formula over finite paths
in simulation is also considered. Their semantics can be formulated using the
notion of bad/good prefixes by defining a 3-valued satisfaction that returns true
if a good prefix [12] is seen, false if a bad prefix is seen and pending otherwise.
The resulting semantics is different than the truncated semantics and is quite
similar to the abort semantics.

6 Conclusion and Future Work

We have considered the problem of reasoning in temporal logic over truncated
as well as maximal paths, and have presented an elegant semantics for ltl

augmented with a truncate operator over truncated and maximal paths. The se-
mantics are defined relative to three views regarding the truth value of a formula
when the truncation occurs before the evaluation of the formula completes. The
weak view is consistent with a preference for false positives, the strong view with
a preference for false negatives, and the neutral view with the desire to see as
much evidence as can reasonably be expected from a finite path.

We have studied properties of the truncated semantics for the resulting logic
ltl

trunc, as well as its relation to the informative prefixes of [12]. We have
examined the relation between truncated paths and hardware resets, and have
shown that our truncated semantics are mathematically equivalent to the reset
semantics of [3].

Future work is to investigate how the weak/neutral/strong paradigm can be
generalized: in particular, whether there are useful correspondences between al-
ternative weak/neutral/strong semantics and other decision procedures for ltl,
analogous to that between the truncated semantics and the classical tableau con-
struction. Having a generalized framework, we might be able to find a logic that
has the acceptable complexity of the truncated semantics, while allowing rewrite
rules such as (ϕ∧¬ϕ

def= false), which are prohibited in the truncated semantics.
In addition, we would like to combine the truncated semantics with those

of ltl
@ [9], to provide an integrated logic which supports both hardware clocks

and hardware resets for both complete and incomplete verification methods.
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