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Abstract

We study deterministic one-way communication complexity of functions with
Hankel communication matrices. Some structural properties of such matrices are
established and applied to the one-way two-party communication complexity of
symmetric Boolean functions. It is shown that the number of required communi-
cation bits does not depend on the communication direction, provided that neither
direction needs maximum complexity. Moreover, in order to obtain an optimal
protocol, it is in any case sufficient to consider only the communication direction
from the party with the shorter input to the other party. These facts do not hold
for arbitrary Boolean functions in general. Next, gaps between one-way and two-
way communication complexity for symmetric Boolean functions are discussed.
Finally, we give some generalizations to the case of multiple parties.

1 Introduction

The communication complexity of two-party protocols was introduced by Yao [16] in
1979. The theory of communication complexity evolved into an important branch of
computational complexity (for a general survey of the theory see e.g. Kushilevitz and
Nisan [9]).

1A preliminary version of these results has been presented at 14. FCT 2003, Springer, LNCS 2751.
2Supported by DFG research grant Re 672/3.
3Part of this work was done while visiting International University Bremen, Germany.
4On leave from Instytut Informatyki, Uniwersytet Wrocławski, Wrocław, Poland.
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In this paper we consider one-way communication, i.e. we restrict the commu-
nication to a single round. This simple model has been investigated by several au-
thors for different types of communication such as fully deterministic, probabilistic,
nondeterministic, and quantum (see e.g. [16, 12, 1, 11, 3, 8, 7]). We study the de-
terministic setting. One-way communication complexity finds application in a wide
range of areas, e.g. it provides lower bounds on VLSI complexity and on the size of
finite automata (cf. [5]). Moreover, one-way communication complexity of symmetric
Boolean functions is connected with binary decision diagrams by the following obser-
vation due to Wegener [15] (see also [13]): The size of an optimal protocol coincides
with the number of nodes at a certain level in a minimal OBDD.

We consider the standard two-party communication model: Initially the parties,
called Alice and Bob, hold disjoint parts of input data x and y, respectively. In order
to compute a function f(x, y), they exchange messages between each other according
to a communication protocol.

In a (deterministic) one-way protocol P for f , one of the parties sends a single mes-
sage to the other party, and then the latter party computes the output f(x, y). We call
P a protocol of type A → B if Alice sends to Bob and of type B → A if Bob sends to
Alice. The size of P is the number of different messages that can potentially be trans-
mitted via the communication channel according to P . The one-way communication
size SA→B(f) of f is the size of the best protocol of type A → B. It is clear that the
respective one-way communication complexity is CA→B(f) = dlog SA→B(f)e. For
the case when Bob sends messages to Alice, we analogously use the notation SB→A

and CB→A. Note that throughout this paper, log always denotes the binary logarithm.
The main results of this paper deal with one-way communication complexity of

symmetric Boolean functions – an important subclass of all Boolean functions. A
Boolean function F is called symmetric, if permuting the input bits does not affect the
function value. Some examples for symmetric functions are and, or, parity, majority,
and arbitrary threshold functions. We assume that to compute F Alice holds m input
bits and Bob holds n bits. As the function value of a symmetric Boolean function only
depends on the number of 1’s in the input (cf. [14]), it is completely determined by
the sum of the number of 1’s in Alice’s input part and the number of 1’s in Bob’s part.
Hence for such functions, we are faced with the problem of determining the one-way
communication complexity of a function

f : {0, . . . , m} × {0, . . . , n} → {0, 1}

associated to F , where f(x, y) only depends on the sum x + y. Note that SA→B(F ) ≤
m + 1 is a trivial upper bound on the one-way communication size of F .

Let us assume that Alice’s input part is at most as large as Bob’s is (i.e. let m ≤
n). While for arbitrary functions this property does not imply which communication
direction admits the better one-way protocols, we show that the converse is true for
symmetric Boolean functions F , namely in this case we have CA→B(F ) ≤ CB→A(F ).
Moreover, we prove that if some protocol of type A → B does not require maximal
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size, i.e. if SA→B(F ) < m + 1, then both directions yield the same complexities, i.e.
CA→B(F ) = CB→A(F ).

We also present a class of families of symmetric Boolean functions for which one-
way communication is almost as powerful as two-way communication. More pre-
cisely, for any family of symmetric Boolean functions F1, F2, F3 . . . with

Fm : {0, 1}2m → {0, 1},

let fm : {0, . . . , m} × {0, . . . , m} → {0, 1} denote the integer function associated to
Fm. We prove that if fm ⊆ fm+1 for all m ∈ N, then either the one-way communica-
tion complexities of F1, F2, F3 . . . are almost all equal to a constant c or the two-way
communication complexities of F1, F2, F3 . . . are infinitely often maximal. We show
that one can easily test whether the first or the second case occurs: The two-way com-
munication complexities are infinitely often maximal if and only if the unary language
{0k+` | fk+`(k, `) = 1, k, ` ∈ N} is nonregular.

On the other hand, we construct an example of a symmetric Boolean function hav-
ing one-way communication complexity exponentially larger than its two-way com-
munication complexity. Finally, we generalize the two-party model to the case of
multiple parties and extend our results to such a setting.

Our proofs are based on the fact that the communication matrix of the integer
function f associated with a symmetric Boolean function F is a Hankel matrix. In
general, the entries of the communication matrix Mf of f are defined by mi,j = f(i, j).
A Hankel matrix is a matrix in which the entries on each anti-diagonal are constant
(equivalently, mi,j only depends on i+ j). Hankel matrices are completely determined
by the entries of their first rows and their last columns. Thus with any (m + 1)× (n +
1)-Hankel matrix H we associate a function fH such that fH(0), fH(1), . . . , fH(n)
compose the first row of H and fH(n), fH(n + 1), . . . , fH(m + n) make up its last
column. One of the main technical contributions of this paper is a theorem saying
that if m ≤ n and H has less than m + 1 different rows, then fH is periodic on
a certain large interval. We apply this property to the one-way communication size
using a known relationship between this measure and the number of different rows in
communication matrices.

As a byproduct, we obtain a word combinatorial property: Let w be an arbitrary
string over some alphabet Σ. Then, for m ≤ d|w|/2e and n = |w|−m+1, the number
of different substrings of w of length n is at most as large as the number of different
substrings of w of length m. Moreover, if the former number is strictly less than m
(note that it can be at most m in general), then the number of different substrings of
length n and the number of different substrings of length m coincide.

The paper is organized as follows: In Section 2, we introduce basic definitions
and notation. Section 3 deals with the examination of the number of different rows
and columns in Hankel matrices involving certain periodicity properties. In Section
4, we state some applications of these properties. Then, in Section 5, we present a
class of symmetric Boolean functions with both maximal one-way and two-way com-
munication complexity, and then we construct a symmetric Boolean function with an
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exponential gap between its one-way and its two-way communication complexity. Fi-
nally, in Section 6, we discuss natural extensions of our results to the case of multiple
parties.

2 Preliminaries

For any integers 0 ≤ k < k′, let [k..k′] denote the set {k, k + 1, . . . , k′}, and denote
[0..k] by [k] for short. By N we denote the set of nonnegative integers. We consider
deterministic one-way communication protocols between Alice and Bob for functions
f : [m] × [n] → Σ, where Σ is an arbitrary (finite or infinite) nonempty set. More
specifically, we assume that Alice holds a value x ∈ [m], and Bob holds a value
y ∈ [n] for some fixed positive integers m and n. Their aim is to compute the value
f(x, y).

Let M(m, n) denote the set of all (m + 1) × (n + 1) matrices M = (mi,j) with
mi,j ∈ Σ. It will be convenient for us to enumerate the rows from 0 to m and the
columns from 0 to n. For a given function f : [m] × [n] → Σ, we denote by Mf the
corresponding communication matrix in M(m, n).

Definition 1 For a matrix M ∈ M(m, n), define #row(M) to be the number of dif-
ferent rows of M , and similarly let #col(M) be the number of different columns of M .
Furthermore, for any i, j ∈ [m], let i ∼M j denote that the rows i and j of M are
equal.

Since the sender has to specify the type of row (resp. column) his input belongs to, it
is easy to characterize the one-way communication size by #row and #col.

Fact 1 For all m, n ∈ N and for every function f : [m] × [n] → Σ, it holds that
SA→B(f) = #row(Mf ) and SB→A(f) = #col(Mf ).

In this paper we will restrict ourselves to functions f that only depend on the sum
of the arguments. Note that for such functions f the communication matrix Mf is a
Hankel matrix. The problem of finding protocols for such restricted f arises naturally
when one considers symmetric Boolean functions.

Definition 2 Let f : [s] → N, λ ≥ 1 and s1, s2 ∈ [s] with s1 ≤ s2 − λ. We call f
λ-periodic on [s1..s2], if for all x ∈ [s1..s2 − λ], f(x) = f(x + λ).

Obviously, f is λ-periodic on [s1..s2] if and only if for all x, x′ ∈ [s1..s2] with λ |
(x − x′), it holds that f(x) = f(x′).

3 Periodicity of Rows and Columns in Hankel Matrices

This section is devoted to examine the relationship between the number of different
rows and the number of different columns in a Hankel matrix. Lemmas 1 through 3
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are technical preparations for Theorem 1 which gives an explicit characterization of a
certain periodic behaviour of the function associated with a Hankel matrix and of the
Hankel matrix itself. Theorems 2 and 3 reveal all possible constellations of values for
#row(H) and #col(H) for a Hankel matrix H . The results will be applied to the theory
of one-way communication in Section 4.

Fact 2 Let f : [s] → N be λ-periodic on [s1..s2] ⊆ [s] and on [t1..t2] ⊆ [s] such that
s1 ≤ t1 and t1 + λ ≤ s2. Then f is λ-periodic on [s1..t2].

Proof: Let x ∈ [s1..t2 − λ]. If x ≤ t1, then s1 ≤ x ≤ x + λ ≤ t1 + λ ≤ s2, so
f(x) = f(x+λ) because of the λ-periodicity on [s1..s2]. On the other hand, if x > t1,
then f(x) = f(x + λ) because of the λ-periodicity on [t1..t2]. ut

Lemma 1 Let H ∈ M(m, n) be a Hankel matrix, m0, m1 ∈ [m] with m0 < m1, and
λ ∈ [1..m1 − m0]. Then the following two statements are equivalent:

(a) fH is λ-periodic on [m0..m1 + n].

(b) For all x ∈ [m0..m1] and all k ∈ N such that x + kλ ≤ m1, x ∼H x + kλ.

Proof: “(a)⇒(b)”: Let x ∈ [m0..m1] and k ∈ N such that x + kλ ≤ m1. For all
y ∈ [n],

x + y ≥ m0 and x + y + kλ ≤ m1 + n .

Since fH is λ-periodic on [m0..m1 + n], we have fH(x + y) = fH(x + kλ + y).
“(b)⇒(a)”: Let x ∈ [m0..m1 + n − λ]. We consider two cases. If x ≤ m0 + n,
then fH(x) = fH(m0 + (x − m0)) = fH(m0 + λ + (x − m0)) = fH(x + λ) ,
because m0 ∼H m0 + λ by hypothesis. If on the other hand x > m0 + n, then
x − n > m0 and x − n + λ ≤ m1. By hypothesis, x − n ∼H x − n + λ, and thus
fH(x) = fH(x − n + n) = fH(x − n + λ + n) = fH(x + λ) . ut

Corollary 1 Let H ∈ M(m, n) be a Hankel matrix and i, j ∈ [m] with i < j. Then
i ∼H j if and only if fH is (j − i)-periodic on [i..j + n].

Corollary 2 Let H ∈ M(m, n) be a Hankel matrix. If fH is λ-periodic on [m0..m1 +
n] for some m0, m1 ∈ [m] with m0 < m1 and some λ ∈ [1..m1−m0], then #row(H) ≤
m0 + λ + m − m1, where equality holds if and only if all rows 0, . . . , m0 + λ− 1 and
m1 + 1, . . . , m are pairwise different.

Lemma 2 Let H ∈ M(m, n) be a Hankel matrix and m0, m
′
0, i, j ∈ [m] such that

m0 ≤ i < j, m′
0 − m0 ≤ n + 1, j − m0 ≤ n + 1, i ∼H j, and m0 ∼H m′

0. Then fH is
(j − i)-periodic on [m0..j + n].

Proof: Choose λ = j − i and µ0 = m′
0 − m0. By Corollary 1, fH is

(i) µ0-periodic on [m0..m
′
0 + n] and
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Figure 1: An illustration of Case 1.

(ii) λ-periodic on [i..j + n].

Let x ∈ [m0..j + n − λ]. In order to show that fH(x + λ) = fH(x), we consider:

Case 1: m0 ≤ x < i: Let k ∈ N such that i ≤ x+ kµ0 ≤ i+µ0 − 1. We need to show
that

x, x + kµ0, x + kµ0 + λ, x + λ ∈ [m0..m
′
0 + n] and (1)

x + kµ0, x + kµ0 + λ ∈ [i..j + n] (2)

in order to apply properties (i) and (ii) to the corresponding elements. Property (1)
follows from m0 ≤ x and x+kµ0 +λ ≤ i+µ0 +λ−1 = j +m′

0−m0 −1 ≤ m′
0 +n.

Property (2) is due to i ≤ x + kµ0 and x + kµ0 + λ ≤ j − 1 + µ0 ≤ j + n. Now (cf.
Fig. 1) fH(x) = fH(x + kµ0) = fH(x + kµ0 + λ) = fH(x + λ) , where the first and
the last equality follow from properties (1) and (i), and the middle equality is due to
properties (2) and (ii).
Case 2: i ≤ x ≤ j + n − λ: In this case, fH(x) = fH(x + λ) by Corollary 1. ut

The following Lemma is symmetric to the previous one:

Lemma 3 Let H ∈ M(m, n) be a Hankel matrix and m1, m
′
1, i, j ∈ [m] such that

i < j ≤ m1, m1 − m′
1 ≤ n + 1, m1 − i ≤ n + 1, i ∼H j, and m1 ∼H m′

1. Then fH is
(j − i)-periodic on [i..m1 + n].

Proof: Let H = (hi,j). We define λ = j − i and H ′ = (h′
µ,ν) ∈ M(m, n) by

h′
µ,ν = hm−µ,n−ν for (µ, ν) ∈ [m] × [n], i.e. we rotate H by 180 degrees in the plane.

Clearly, H ′ is again a Hankel matrix. Moreover, we have fH(z) = fH′(m + n− z) for
all z ∈ [m + n]. We set m0 = m − m1, m′

0 = m − m′
1, i′ = m − j, and j ′ = m − i.
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Now it is easy to check that H ′, i′, j ′, m0, and m′
0 fulfill the preconditions of Lemma

2 and m + n − x − λ ∈ [m0..j
′ + n − λ], thus yielding

fH(x + λ) = fH′(m + n − x − λ) = fH′(m + n − x) = fH(x) .

ut

Theorem 1 Let m ≤ n + 1 and H ∈ M(m, n) be a Hankel matrix with #row(H) <
m + 1. Then there exist λ ∈ [1..n] and m0, m1 ∈ [m] with m1 − m0 ≥ λ such that the
following two properties hold:

(a) The function fH is λ-periodic on [m0..m1 + n].

(b) If i, j ∈ [m] with i < j and i ∼H j, then i, j ∈ [m0..m1] and λ | (j − i).

Moreover, m0, m1 and λ can be explicitly determined as follows:
m0 = min{k ∈ [m] | ∃k′ ∈ [m] with k′ > k and k ∼H k′} ,
m1 = max{k ∈ [m] | ∃k′ ∈ [m] with k′ < k and k ∼H k′} , and

λ = min{j − i | i, j ∈ [m] with i ∼H j and i < j} .

Proof: Since #row(H) < m + 1, there exist i, j ∈ [m] with i < j such that i ∼H j.
Thus, m0, m1 and λ are well-defined. Clearly, m1 − m0 ≥ λ. Choose i0, j0 ∈ [m]
such that i0 ∼H j0 and j0 − i0 = λ. Since m ≤ n, all preconditions of Lemma 2
and Lemma 3 are satisfied. Thus we conclude that fH is λ-periodic on both discrete
intervals [m0..j0 + n] and [i0..m1 + n]. Fact 2 now yields property (a). Now let
i, j ∈ [m] with i < j and i ∼H j. Let k ∈ N such that j − i = kλ + r with 0 ≤ r < λ.
By property (a), fH is λ-periodic on [m0..m1 + n], and so by Lemma 1 (note that
i + kλ = j − r ≤ j ≤ m1), we have i + kλ ∼H i ∼H j. As r = j − i− kλ < λ and λ
is the minimal difference between two equal rows of different indices, we have r = 0,
so λ | (j − i). ut

Using Corollary 2 we deduce two consequences of Theorem 1:

Corollary 3 For H, m0, m1 and λ as in Theorem 1, #row(H) = m0 + λ + m − m1,
i.e. H has exactly m0 + λ + m − m1 pairwise different rows.

Corollary 4 Let m ≤ n + 1 and H ∈ M(m, n) be a Hankel matrix with #row(H) <
m + 1. Then #col(H) ≤ #row(H).

Proof: Let m0, m1 and λ be as in Theorem 1. From Theorem 1, we have that the
function fH = fHT is λ-periodic on [m0..m1 + n] = [m0..(m1 + n − m) + m]. Now
Corollary 2 implies that

#row(HT ) ≤ m0 + λ + n − (m1 + n − m) = m0 + λ + m − m1 = #row(H),

where the last equality is due to Corollary 3. Hence the corollary follows since we
have #col(H) = #row(HT ). ut

The next lemma states an “expansion property” of Hankel matrices with at least
two equal rows.
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Lemma 4 For arbitrary m, n ∈ N let H ∈ M(m, n) be a Hankel matrix with
#row(H) < m+1. Then there exist m′ ≥ n and a Hankel matrix H̃ ∈ M(m′, n) such
that #row(H̃) = #row(H) and #col(H̃) = #col(H).

Proof: We duplicate the area between two equal rows until the total number of rows
exceeds the total number of columns n. This process effects neither the number of
different rows nor the number of different columns. To do this we proceed as follows.
Since #row(H) < m + 1, there exist m0, m1 ∈ [m] with m0 < m1 and m0 ∼H m1.
Set λ = m1 − m0, and let c ∈ N such that m + cλ ≥ n. We set m′ = m + cλ and
define H̃ = (h̃i,j) ∈ M(m′, n), where for j ∈ [n],

h̃i,j =







hi,j if i < m0 ,

hm0+`,j if i = m0 + kλ + ` for some k ∈ [c] and some ` ∈ [λ − 1] ,

hi−cλ,j , if i ≥ m1 + cλ .

Now, H̃ is again a Hankel matrix, and both properties #row(H̃) = #row(H) and
#col(H̃) = #col(H) hold. ut

Theorem 2 Let m ≤ n + 1 and H ∈ M(m, n) be a Hankel matrix with #row(H) <
m + 1. Then #row(H) = #col(H).

Proof: From Corollary 4, we have #row(H) ≥ #col(H). By Lemma 4, there exist
m′ ≥ n and a Hankel matrix H̃ ∈ M(m′, n) such that #row(H̃) = #row(H) and
#col(H̃) = #col(H). Thus, again by Corollary 4, we obtain #row(H) = #row(H̃) =
#col(H̃T ) ≤ #row(H̃T ) = #col(H̃) = #col(H) . Consequently, we have #row(H) =
#col(H). ut

Theorem 3 Let m ≤ n and H ∈ M(m, n) be a Hankel matrix with #row(H) =
m + 1. Then #col(H) ≥ m + 1.

Proof: Induction on n: For n = m, we have H = HT and thus

#col(H) = #row(HT ) = #row(H) = m + 1.

Now suppose that n > m. Let H ′ ∈ M(m, n − 1) be the matrix H without its last
column. We consider two cases:
Case 1: n ∼HT n′ for some n′ ∈ [n − 1]. Then #col(H) = #col(H ′). In addition,
#row(H ′) = m+1, because if #row(H ′) ≤ m was true, then we had i ∼H′ j for some
0 ≤ i < j ≤ m, and thus i ∼H j, since fH(i + n) = fH(i + n′) = fH(j + n′) =
fH(j + n). Thus, we get #col(H) = #col(H ′) ≥ m + 1 by induction hypothesis.
Case 2: n 6∼HT n′ for all n′ ∈ [n − 1]. Then #col(H) = #col(H ′) + 1. Once again,
we have to consider two subcases:
Case 2a: #row(H ′) = m + 1: Then #col(H) = #col(H ′) + 1 = m + 2 > m + 1 by
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induction hypothesis.
Case 2b: #row(H ′) ≤ m: Assume that #row(H ′) < m, and let

m0 = min{k ∈ [m] | ∃k′ ∈ [m] with k′ > k and k ∼H k′} ,

m1 = max{k ∈ [m] | ∃k′ ∈ [m] with k′ < k and k ∼H k′} ,

λ = min{k′ − k | k, k′ ∈ [m] with k < k′ and k ∼H k′} ,

where m′
0, m′

1 and λ′ are the corresponding numbers for H ′. By Corollary 3, we have
#row(H ′) = m′

0+m−m′
1+λ′, and by Theorem 1 f is λ′-periodic on [m′

0..m
′
1+n−1].

Since #row(H ′) < m by assumption, λ′ < m′
1 − m′

0. In particular, m0 ∼H m0 + λ′,
and thus λ | λ′ by Theorem 1. Consequently, m0 ≤ m′

0, m1 ≥ m′
1 − 1 and λ ≤ λ′.

Hence again by Corollary 3,

#row(H) = m0 + m − m1 + λ ≤ m′
0 + m − (m′

1 − 1) + λ′

≤ m′
0 + m − m′

1 + λ′ + 1 = #row(H ′) + 1 < m + 1 ,

contradicting the precondition #row(H) = m + 1. Thus, #row(H ′) = m. By Theo-
rem 2, #col(H ′) = #row(H ′) = m. Consequently, #col(H) = #col(H ′) + 1 = m + 1.

ut

Note that for Hankel matrices over Σ with |Σ| ≥ m + n + 1 we can say even
more. Namely, if m ≤ n, then for all r ∈ [m + 1..n + 1], there exists a Hankel
matrix H ∈ M(m, n) with #row(H) = m + 1 and #col(H) = r. To see this, define
f : [m] × [n] → Σ = {a0, . . . , am+n} by f(x, y) = a(x+y) mod r. Then H = Mf is a
Hankel matrix fulfilling the requested properties.

4 Applications

Theorems 2 and 3 can be summarized in terms of one-way communication as follows.

Theorem 4 Let m ≤ n and f : [m] × [n] → Σ be a function for which the corre-
sponding communication matrix Mf is a Hankel matrix. Then the following properties
hold:

(a) SA→B(f) ≤ SB→A(f).

(b) If SA→B(f) < m + 1, then SA→B(f) = SB→A(f).

This result can immediately be applied to symmetric Boolean functions:

Corollary 5 Let m ≤ n and F : {0, 1}m × {0, 1}n → {0, 1} be a symmetric Boolean
function. Then the following properties hold:

(a) SA→B(F ) ≤ SB→A(F ).

(b) If SA→B(F ) < m + 1, then SA→B(F ) = SB→A(F ).
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Proof: The communication matrix Mf of the function f : [m]× [n] → {0, 1} defined
by

f(x, y) = F ((1, . . . , 1
︸ ︷︷ ︸

x

, 0, . . . , 0
︸ ︷︷ ︸

m−x

), (1, . . . , 1
︸ ︷︷ ︸

y

, 0, . . . , 0
︸ ︷︷ ︸

n−y

))

is a Hankel matrix. Thus the claim follows from Theorem 4. ut

The results of the last paragraph can also be applied to word combinatorics as
follows:

Theorem 5 Let w be an arbitrary string over some alphabet Σ, and let Nw(i) denote
the number of different subwords of w of length i. Then, for m ≤ d|w|/2e and n =
|w| −m+1, we have Nw(n) ≤ Nw(m). Moreover, if Nw(n) < m (note that Nw(n) ≤
m in general), then Nw(n) = Nw(m).

Proof: Let m ≤ d|w|/2e, n = |w| − m + 1, and w = w1 . . . wm+n−1 with wi ∈ Σ
for 1 ≤ i ≤ m + n − 1. Define the Hankel matrix H = (hi,j) ∈ MΣ(m − 1, n − 1)
by hi,j = wi+j+1. The rows of H make up the subwords of w of length n, while the
columns of H compose the subwords of w of length m. Now Theorem 2 and Theorem
3 prove the claim. ut

5 One-Way versus Two-Way Protocols

In this section we first present a class of families of functions for which one-way
communication complexties are almost the same as two-way communication com-
plexties. We denote the two-way complexity of F by C(F ). Let F1, F2, F3 . . . with
Fm : {0, 1}2m → {0, 1} be a family of symmetric Boolean functions and let fm : [m]×
[m] → {0, 1} denote the integer function associated to Fm, i.e. F (x1, . . . , x2m) = 1 if
and only if f(

∑m
i=1 xi,

∑2m
i=m+1 xi) = 1.

Theorem 6 Let F1, F2, F3 . . . be a family of symmetric Boolean functions such that
fm ⊆ fm+1 for all m ∈ N. Then either

(a) for almost all m ∈ N, CA→B(Fm) = c for some constant c or

(b) for infinitely many m ∈ N, C(Fm) = dlog(m + 1)e.

Moreover, (b) holds iff the language L = {0k+` | fk+`(k, `) = 1, k, ` ∈ N} is nonreg-
ular.

Proof: First, Theorem 11.3 in [6] gives a nice characterization of (non)regular unary
languages in terms of the rank of certain Hankel matrices. This characterization was
first observed by Condon et al. [2]. It says that the unary language L is nonregular if
and only if for infinitely many m ∈ N, rank(Mfm

) = m + 1 (i.e. the communication
matrix Mfm

has maximum rank). Second, Mehlhorn and Schmidt [10] showed that
C(f) ≥ log(rank(Mf)) for every f . Combining these facts we get that for nonregular
L, C(fm) = dlog(m + 1)e for infinitely many m ∈ N.

10



On the other hand, if L is regular then by the Myhill-Nerode Theorem [4] the
infinite matrix M = (mi,j)i,j∈N defined by mi,j = 1 iff 0i+j ∈ L, has constant number
of different rows. Hence the theorem follows. ut

Example 1 Let Fm(x1, x2, . . . , x2m) = 1 if and only if the number of 1’s in the se-
quence x1, x2, . . . , x2m is the square of some integer. By Theorem 6 either for all
m ∈ N, C(Fm), CA→B(Fm) ≤ c for some constant c or for infinitely many m ∈ N,
CA→B(Fm) = C(Fm) = dlog(m + 1)e. Since the language {0n | n is the square
of some integer} is nonregular, the (one-way) communication complexity of Fm is max-
imal for infinitely many m ∈ N.

Next, we construct a symmetric Boolean function with an exponential difference
between its one-way and its two-way communication complexity. Let p0, p1, . . . with
pi < pi+1 for all i ∈ N be the sequence of all prime numbers. According to the
Prime Number Theorem, there are at least `

log `
prime numbers in the interval [`] for

all ` ≥ 5. For k = dlog log me and n = 2k · (1 +
∏2k−1

i=0 pi), consider the function
f : [m] × [n] → {0, 1} defined by f(x, y) = 1 iff

⌊
z
2k

⌋
mod pz mod 2k = 0, where

z = x + y. Using the following two-way protocol, one can see that the two-way
communication complexity of f is at most 4 log log m: In the first round, Bob sends
y0 = y mod 2k to Alice. In the second round, Alice sends z0 = (x + y0) mod 2k

and z′ =
⌊

x+y0

2k

⌋
mod pz0 to Bob. Finally, Bob computes f(x, y) by checking whether

(
⌊

y

2k

⌋
+ z′) mod pz0 = 0.

Note that z0 = z mod 2k. The correctness of the protocol can be seen by investi-
gating the addition of integers using a remainder representation.

Lemma 5 C(f) ≤ 4 log log m.

For the one-way communication complexity of f we obtain:

Lemma 6 #row(Mf ) = m + 1, i.e. CA→B(f) = dlog(m + 1)e.

The proofs of the lemmas are straightforward. We conclude the section with the fol-
lowing

Theorem 7 For the symmetric Boolean function F : {0, 1}m × {0, 1}n → {0, 1}
associated with f , we have C(F ) ∈ O(log log m) and CA→B(F ) ∈ Θ(log m).

6 Multi-party Communication

So far we have analyzed the case that a fixed input partition for a function is given.
However, sometimes it is also of interest to examine the communication complexity of
a fixed function under varying the input partition. A typical question for this scenario is
whether we can partition the input in such a way that the communication complexities

11



for protocols of type A → B and B → A coincide. The main tool for these examina-
tions is the diversity ∆(f) of f which we introduce below. For a function f : [s] → Σ
and m ∈ [s], define fm : [m] × [s − m] → Σ by fm(x, y) = f(x + y) for x ∈ [m]
and y ∈ [s − m], and let rf(m) = #row(Mfm

). We define ∆(f) = maxm∈[s] rf(m).

Lemma 7 For every function f : [s] → Σ, the following conditions hold:

(a) rf(m) = m + 1 for all m ∈ [∆(f) − 1],

(b) if ∆(f) ≤ s
2
, then rf (m) = ∆(f) for all m ∈ [∆(f) − 1 .. s − ∆(f) + 1],

(c) rf(m) ≥ rf (m + 1) for all m ∈ [∆(f) − 1 .. s − 1].

Proof: Obviously, we have rf(m) ≤ m+1. From the definition of fm we can derive
that the communication matrix of fm is a Hankel matrix. The first and last part of the
claim follow directly from the following observation:

Assume that for some m we have rf (m) < m+1. Then for every i ≥ m
it holds rf(i) ≥ rf (i + 1).

Below we show that the observation is true. Note first that if rows j and k in Mfi

are equal then in Mfi+1
rows j and k are equal, too. Hence rf(m) < m + 1 implies

that for every i ≥ m it holds rf(i) < i + 1.
Let k be the maximum index of a row in Mfi

such that for some j < k the rows j
and k coincide. Such a pair exists because rf(i) < i+1. Since each row `+1 of Mfi+1

can be derived from row ` in Mfi
by deleting its first entry, it is true that in Mfi+1

the
rows j + 1 and k + 1 coincide. If k = i, then the number of different rows among the
rows 0, . . . , i in Mfi+1

is at most rf (i), the number of different rows in Mfi
. Since the

last row in Mfi+1
coincides with row j + 1, we have rf(i + 1) ≤ rf(i). If on the other

hand k < i, then the rows j +1 and k +1 do not coincide in Mfi
(by maximality of k),

so the number of different rows among rows 1, . . . , i in Mfi+1
is strictly smaller than

in Mfi
. This implies rf (i + 1) ≤ (rf(i) − 1) + 1 = rf(i).

Let us now focus on the second part of the claim. Let m = ∆(f) − 1 and n =
s − ∆(f) + 1. Then m ≤ n (since ∆(f) ≤ s

2
) and #row(Mfm

) = ∆(f) = m + 1 by
part (a). From Theorem 3 it follows that #col(Mfm

) ≥ m + 1 = ∆(f). Since Mfs−m

(for arbitrary m ∈ [s]) is the transpose of Mfm
, we have #col(Mfs−m

) = #row(Mfs
).

Consequently,

rf(∆(f) − 1) = ∆(f)

≤ #col(Mf∆(f)−1
)

= #row(Mfs−∆(f)+1
) = rf (s − ∆(f) + 1) .

On the other hand, rf is nonincreasing on [∆(f) − 1..s − 1] by part (c), so rf(m) =
∆(f) for all m ∈ [∆(f) − 1..s − ∆(f) + 1]. ut
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It is an immediate consequence of Lemma 7 that ∆(f) equals the minimum m such
that Mfm

has less than m + 1 different rows, provided that such an m exists.
The diversity is helpful to analyze the case that more than two parties are involved.

For such multi-party communication we assume that the input is distributed among d
parties P1, . . . , Pd. Every party Pi knows a value xi ∈ [mi]. The goal is to compute a
fixed function f : [m1]× . . .× [md] → Σ. Analogously to communication matrices in
the two-party case, we use multidimensional arrays to represent f .

Let M(m1, . . . , md) be the set of all d-dimensional (m1 + 1) × . . . × (md + 1)
arrays M with entries M(i1, . . . , id) ∈ Σ for ij ∈ [mj], j ∈ [1..d]. M is called the
communication array of a function f iff M(i1, . . . , id) = f(i1, . . . , id). We denote the
communication array of f by Mf .

Recall that in the two-party model the sender has to specify the type of row/column
his input belongs to. In the multi-party case each party has to specify the type of
subarray determined by his input value. Therefore, for each k ∈ [1..d] and each
x ∈ [mk], we define the subarray M

(k)
x ∈ M(m1, . . . , mk−1, mk+1, . . . , md) of M

by M
(k)
x (i1, . . . , ik−1, ik+1, . . . , id) = M(i1, . . . , ik−1, x, ik+1, . . . , id) for all 0 ≤ ij ≤

mj , j ∈ [1..d] \ {k}. Finally, for k ∈ [1..d] we define #subk(M) as the number of
different subarrays with fixed kth dimension:

#subk(M) = |{ M (k)
x | x ∈ [mk] }| .

We call M ∈ M(m1, . . . , md) a Hankel array, if M(i1, . . . , id) = M(j1, . . . , jd)
for every pair (i1, . . . , id), (j1, . . . , jd) ∈ [m1] × . . . × [md] with i1 + . . . + id =
j1 + . . . + jd. For a Hankel array M ∈ M(m1, . . . , md), let fM : [

∑d

i=1 mi] → Σ be
defined by fM (x) = M(x1, . . . , xd), if x = x1 + . . .+xd. Note that fM is well-defined
since M is a Hankel array.

Lemma 8 For a function f such that the corresponding communication array M is a
Hankel array, we have rfM

(mk) = #subk(M) for every k ∈ [1..d].

Proof: Since the value of the function f depends on the sum of its variables, it is
sufficient to show the claim for k = 1.

Assume that for x1, x
′
1 ∈ [m1] the corresponding subarrays M

(1)
x1 and M

(1)
x′

1
are

different. Then there exists x2 ∈ [m2], . . . , xd ∈ [md] such that M(x1, x2, . . . , xd) 6=
M(x′

1, x2, . . . , xd) and therefore fM(x1 + x2 + . . . + xd) 6= fM(x′
1 + x2 + . . . + xd)

and fm1(x1, x2 + . . . + xd) 6= fm1(x
′
1, x2 + . . . + xd). Hence if two subarrays M

(1)
x1

and M
(1)
x′

1
are different, then also the rows x1 and x′

1 in Mfm1
are different, too. This

implies rfM
(m1) ≥ #sub1(M).

Analogously, let us assume that for x1, x
′
1 ∈ [m1] the rows in Mfm1

are different.
Then there exists y ∈ [

∑

i∈[2..d] mi] such that fm1(x1, y) 6= fm1(x
′
1, y). Choosing

x2 ∈ [m2], . . . , xd ∈ [md] such that y = x2 + . . . + xd we get

M(x1, x2, . . . , xd) = fM(x1 + x2 + . . . + xd) = fm1(x1, y)

6= fm1(x
′
1, y) = fM(x′

1 + x2 + . . . + xd) = M(x′
1, x2, . . . , xd) .
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Hence if rows x1 and x′
1 in Mfm1

are different then also the two subarrays M
(1)
x1 and

M
(1)
x′

1
are different. This implies rfM

(m1) ≤ #sub1(M). ut

To study communication complexity issues for multi-party computations, we first
consider the following natural extension of the one-way communication model to mul-
tiple parties. Let P1, . . . , Pd be connected by a directed chain specified by a permuta-
tion π : [1..d] → [1..d], i.e. Pπ(i) can only send messages to Pπ(i+1) for i ∈ [d− 1]. Let
Sπ(f) be the size of an optimal protocol on a chain specified by π computing f . More
precisely, Sπ(f) is the number of possible communication sequences on the network
in an optimal protocol for f (of that specific kind).

We will now present a protocol of minimal size for a fixed chain network and
functions f such that Mf is a Hankel array. During the computation the parties use the
Hankel arrays Mi defined by

Mi(yi, . . . , yd) = Mf(z1, . . . , zd)

where yi =
∑i

j=1 zπ(j) and yj = zπ(j) for all j ∈ [i + 1..d]. Furthermore, let Γi(yi) be

the minimum value z such that (Mi)
(1)
z = (Mi)

(1)
yi . The protocol works as follows:

1. Pπ(1) sends γ1 = Γ1(xπ(1)) to Pπ(2).

2. For i ∈ [2..d−1], Pπ(i) receives γi−1 from Pπ(i−1) and sends γi = Γi(xπ(i)+γi−1)
to Pπ(i+1).

3. Pπ(d) receives γd−1 from Pπ(d−1). Then Md(γd−1 + xπ(d)) is the result of the
function.

Theorem 8 For a function f such that Mf ∈ M(m1, . . . , md) is a Hankel array, the
size of the protocol presented above is minimal.

Before giving a proof of the theorem we provide some auxiliary notions. If a
protocol P runs on a chain Pπ(1), . . . , Pπ(n), then we call P π-ordered. For a given
π-ordered protocol P let S(P) be the number of different communication sequences
of P and let S(P, r) be the number of different communication sequences of P on
inputs z1 ∈ [m1], . . . , zd ∈ [md] with f(z1, . . . , zd) = r. Finally, for a function f :
[m1] × . . . × [md] → Σ and a value r ∈ Σ let

Sπ(f, r) = min
P computes f and is π−ordered

S(P, r) .

The theorem above follows from the following lemma:

Lemma 9 Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel array.
Then a π-ordered protocol P is optimal according to S(P) and S(P, r) for every
r ∈ Σ iff for each i ∈ [1..d − 1] the message sent by the party Pπ(i) to Pπ(i+1) only
depends on the subfunction of f obtained by fixing the inputs of Pπ(1), . . . , Pπ(i) and
on the message received by Pπ(i).
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Proof: Let us first assume that there exists a party Pπ(i) with i ∈ [1..d − 1] and two
inputs xπ(1), . . . , xπ(i) and yπ(1), . . . , yπ(i) such that (1) they specify two different sub-
functions fx, fy of f and (2) Pπ(i) sends the same message to Pπ(i+1) for both inputs.
Since fx, fy are different functions, there exists an input zπ(i+1), . . . , zπ(d) for the par-
ties Pπ(i+1), . . . , Pπ(d) such that fx and fy result in different values. Since the parties
Pπ(i+1), . . . , Pπ(d) cannot distinguish between both inputs, the protocol computes an
incorrect value for at least one input. On the other hand, we do not increase S(P) and
S(P, r) if Pπ(i) adds some information about the received message to the message it is
going to send.

Let us now assume that there exists i ∈ [1..d − 1] such that for two different
partial inputs xπ(1), . . . , xπ(i) and yπ(1), . . . , yπ(i) that specify the same subfunction f ′

of f , the party Pπ(i) receives the same message but sends two different messages to
Pπ(i+1). Let X be the set of all inputs where the values of Pπ(1), . . . , Pπ(i) are given by
xπ(1), . . . , xπ(i). For x ∈ X let Yx denote the set of all inputs for which Pπ(i) receives
the same message from its predecessor as for the input x, the input of Pπ(i) is given by
zπ(i) and the input of Pπ(j) is given by xπ(j) for all j ∈ [i + 1..d].

Note that f(x) = f(y) for every x ∈ X and every y ∈ Yx. Hence we do not
increase the size of the protocol if Pπ(i) sends on both inputs the same messages to
Pπ(i+1). Moreover, if every party only sends to its successor a unique message for each
y ∈ Yx we reduce total size as well as the size of S(P, f(x)). ut

Note that the communication size Sπ may depend on the order π of the parties on
the chain. We call a permutation π : [1..d] → [1..d] with mπ(i) ≤ mπ(i+1) for all
i ∈ [1..d − 1] a grading of m1, . . . , md. Consequently, for a grading π of m1, . . . , md,
the ordering is optimal with respect to the communication size.

Theorem 9 Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel array,
and let π be a grading of m1, . . . , md. Then for every permutation π′ : [1..d] → [1..d]
Sπ(f) ≤ Sπ′

(f) .

To prove the theorem above, we present a more general result:

Lemma 10 Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel array, π
be a grading of m1, . . . , md, and P be a π-ordered protocol for f that is optimal with
respect to protocol size. Then for every permutation π ′ : [1..d] → [1..d]

S(P) ≤ Sπ′

(f) and ∀r ∈ Σ : S(P, r) ≤ Sπ′

(f, r) .

Proof: Within this proof let M = Mf for short.
The proof follows by induction on d. For d = 2 each protocol corresponds to a

one-way two-party protocol. Hence from Theorem 4 we can conclude that for every
grading π of m1, m2 a π-ordered protocol P is optimal with respect to protocol size if
P1 only specifies the type of the row of M which is determined by its input.

The proof of the second condition of the lemma above is more complicated. For a
permutation π′ : {1, 2} → {1, 2} let P ′ be an arbitrary π′-ordered protocol computing
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f on the two-party chain. Then each message sent from Pπ′(1) to Pπ′(2) specifies a

subset of subarrays M
π′(1)
x with x ∈ [mπ′(1)] of M . Hence the size S(P ′, r) is at least

as large as the number of different subarrays M
π′(1)
x which contain r. Hence a π′-

ordered protocol P ′′ that is optimal with respect to S(P ′′, r) uses only one message for
every type of subarray (see Lemma 9). This implies

S(P) = Sπ′

(f) and ∀r ∈ Σ : S(P, r) = Sπ′

(f, r)

for every grading π′ of m1, m2.
Let us now assume that π′ is not a grading of m1, m2 and P ′ is an π′-ordered proto-

col that is optimal with respect to S(P ′, r). For easier notation assume that π′(1) = 2
and π′(2) = 1. Hence for a grading π of m1, m2 we have π(1) = 1 and π(2) = 2. Let
P be an optimal π-ordered protocol. We consider the following cases:

1. If for every x2 ∈ [m2], r appears in M
(2)
x2 , then r also appears in every subarray

M
(1)
x1 with x1 ∈ [m1]. Hence Sπ′′

(f, r) = Sπ′′

(f) for every permutation π′′. The
claim follows directly from Theorem 4.

2. There exists no x2 ∈ [m2] such that r appears in M
(2)
x2 . Then f(x1, x2) 6= r for

every input x1 ∈ [m1], x2 ∈ [m2]. The claim follows directly.

3. There exists x2, x
′
2 ∈ [m2] such that r does appear in M

(2)
x2 but not in M

(2)
x′

2
.

(a) r does not appear in M
(2)
0 . Then choose x′

2 ∈ [m2] to be maximal such that
r does not appear in M

(2)
x for every x ∈ [x′

2]. Hence r appears in M
(2)
x′ for

every x′
2 + 1 ≤ x′ ≤ min{m2, x

′
2 + m1 + 1}. This case is illustrated in

Figure 2.

If x′
2 +m1 +1 ≤ m2, then there are at least m1 +1 different subarrays M

(2)
x′

which contain r, e.g. the subarrays M
(2)
x′

2+1 to M
(2)
x′

2+m1+1. Since the number
of different communication strings of a π-ordered protocol P is bounded
by m1 + 1, the claim follows directly.

If x′
2 + m1 + 1 > m2, then the number of different subarrays M

(2)
x′ which

contain r is m2 − x′
2. Since M is a Hankel array, the number of different

subarrays M
(1)
x′′ with x′′ ∈ [m1] which contain r is m2 −x′

2, too – the claim
follows directly.

(b) r does not appear in M
(2)
m2 . This case is symmetric to case 3.a and follows

analogously.

(c) There exists z2, z
′
2 ∈ [m2] with z2 < x′

2 < z′2 such that r appears in
M

(2)
z2 and M

(2)
z′2

. Then we choose z2 maximal and z′2 minimal such that the
condition above is fulfilled. Note that r does not appear in the subarrays
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6= r

r

Figure 2: An illustration of
Case 3.a.

r

6= r

r

Figure 3: An illustration of Case 3.c.

M
(2)
z2+1 to M

(2)
z′2−1. Since M is a Hankel array for every ` ∈ [m1 − 1], the

subarrays M
(2)
x with

x ∈ {max{0, z2 − `}, . . . , z2} ∪ {z′2, . . . , min{m2, z
′
2 + m1 − ` − 1}}

are pairwise different and contain r. This implies that the number of dif-
ferent subarrays M

(2)
x with x ∈ [m2] containing r is at least min{m1 +

1, m2 − z′2 + z2 + 2}. Hence for m1 + 1 ≤ m2 − z′2 + z2 + 2 the claim
follows directly.

Let us now assume that m1 + 1 > m2 − z′2 + z2 + 2. Since M is a Hankel
array, r appears only in M

(1)
x if x ∈ {0, . . . , z2}∪{m1−(m2−z′2), . . . , m1}.

Hence the number of subarrays M
(1)
x with x ∈ [m1] containing r is m2 −

z′2 + z2 + 2.

Let us now investigate the case that d > 2, that means that the chain contains more
than two parties P1, . . . , Pd. We will show that for every grading π of m1, . . . , md,
there exists a π-ordered protocol P such that for every permutation πs : [1..d] → [1..d]
and for every πs-ordered protocol Ps it holds:

S(P) ≤ S(Ps) and ∀r ∈ Σ : S(P, r) ≤ S(Ps, r) . (3)

Note that for two permutations π1, π2 which are equivalent in the sense that for every
i ∈ [1..d] mπ1(i) = mπ2(i), we can simulate any π1-ordered protocol on a chain that
is given by the permutation π2 without increasing the size of the protocol. Hence it is
sufficient to show that (3) holds for some grading π of m1, . . . , md.

For i ∈ [1..d] and x ∈ [mi] let f
(i)
x denote the integer function corresponding to

M
(i)
x . Furthermore, let π

(i)
x be a grading of m1, . . . , mi−1, mi+1, . . . , md, and let P (i)

x

be a π
(i)
x -ordered protocol for f

(i)
x that fulfills the conditions of Lemma 10.

Since for every input x ∈ [mπs(1)] M
(πs(1))
x is a Hankel array, we can apply the

induction hypothesis to prove the existence of an optimal π
(πs(1))
x -ordered protocol

P
(πs(1))
x for f

(πs(1))
x such that for every permutation π′ : [1..d − 1] → [1..d − 1] and

every r ∈ Σ

S(P (πs(1))
x ) ≤ Sπ′

(f (πs(1))
x ) and S(P (πs(1))

x , r) ≤ Sπ′

(f (πs(1))
x , r) .
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This implies that for every permutation π ′′ : [1..d] → [1..d] with π′′(1) = πs(1) there
exists a protocol Ph on the chain that starts with Pπs(1) and where the remaining parties

are π
(πs(1))
x -ordered such that

S(Ph) =
∑

M
(πs(1))
x

S(P (πs(1))
x ) ≤

∑

M
(πs(1))
x

Sπ′′′

(f (πs(1))
x ) = Sπ′′

(f)

and

S(Ph, r) =
∑

M
(πs(1))
x

S(P (πs(1))
x , r) ≤

∑

M
(πs(1))
x

Sπ′′′

(f (πs(1))
x , r) = Sπ′′

(f, r)

where π′′′ denotes the permutation that corresponds to π ′′ without π(1). The proto-
col Ph can be constructed as follows: The first party Pπs(1) computes the type of the

subarray M
(πs(1))
x with x ∈ [mπs(1)] that is given by its input xπs(1). The remaining

parties simulate the protocol P (πs(1))
x . Note that if πh is a grading of m1, . . . , md then

the claim follows directly.
Let us focus now on the case that πh is not a grading of m1, . . . , md. Since πh(i) is

a grading of mπh(2), . . . , mπh(d), the value mπh(2) is minimal for all values m1, . . . , md.
We proceed in two steps:

1. In the first step, we will investigate permutations π̃h that are similar to πh except
for the first two values, i.e. mπ̃h(1) = mπh(2) and mπ̃h(2) = mπh(1).

2. In the second step, we will investigate permutations π ′
h with π′

h(1) = π̃h(1).

For any x1 ∈ [mπh(1)] and x2 ∈ [mπh(2)] define fx1,x2 as the subfunction of f where
we assign to the πh(1)-th and πh(2)-th variable of f the values x1 and x2, respectively.
Furthermore, let Mx1,x2 denote the communication array of fx1,x2 . Note that Mx1,x2 is
a Hankel array, too.

Let us now divide Ph into two parts. The first part P1
h consists of the strategies

for the first two parties Pπh(1) and Pπh(2). If Ph is optimal according to its size S(Ph)
and S(Ph, r) with respect to all πh-ordered protocols, we can assume that Pπh(2) only
sends the type of the subarray Mx1,x2 to Pπh(3).

The second part P2
h(Mx1,x2) of Ph consists of the strategies for the remaining d−2

parties Pπh(3) to Pπh(d) where the input of the first two parties is given by x1 and x2,
respectively. Let ΣM be the set of all subarrays Mx1,x2 , then we have

S(Ph) =
∑

Mx1,x2∈ΣM

S(P1
h, Mx1,x2) · S(P2

h(Mx1,x2)) ,

and for all r in the range of f we have

S(Ph, r) =
∑

Mx1,x2∈ΣM

S(P1
h, Mx1,x2) · S(P2

h(Mx1,x2), r) .
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Let g : [mπh(1)] × [mπh(2)] → ΣM be the function that is computed by the first two
parties in the chain. Note that the communication array Mg of g is a Hankel array
again.

Let π̃h be a permutation with π̃h(1) = πh(2), π̃h(2) = πh(1), and π̃h(i) = πh(i)
for all i ∈ [3..d]. We will now investigate the π̃h-ordered protocol P̃h that is defined as
follows: P̃h runs an optimal strategy to compute g on the first two parties and simulates
Ph on the remaining parties. Analogously to the partition of Ph, we partition P̃h into
two parts P̃1

h and P̃2
h. From the base case with d = 2 we can conclude that there exists

such a subprotocol P̃1
h with

S(P̃h) =
∑

Mx1,x2∈ΣM

S(P̃1
h, Mx1,x2) · S(P̃2

h(Mx1,x2))

≤
∑

Mx1,x2∈ΣM

S(P1
h, Mx1,x2) · S(P̃2

h(Mx1,x2)) = S(Ph)

and

S(P̃h, r) =
∑

Mx1,x2∈ΣM

S(P̃1
h, Mx1,x2) · S(P̃2

h(Mx1,x2), r)

≤
∑

Mx1,x2∈ΣM

S(P1
h, Mx1,x2) · S(P̃2

h(Mx1,x2), r) = S(Ph, r)

for all r in the range of f .
Analogously to the construction of Ph we can now apply a transformation on P̃h to

get a π′
h-ordered protocol P ′

h for a permutation π′
h(1) = π̃h(1) and mπ′

h
(i) ≤ mπ′

h
(i+1)

for all i ∈ [2..d − 1] such that P ′
h fulfills the following inequalities:

S(P ′
h) ≤ S(P̃h) ≤ S(Ph) ≤ Sπs(f) ≤ S(Ps)

and for all r in the range of f

S(P ′
h, r) ≤ S(P̃h, r) ≤ S(Ph, r) ≤ Sπs(f, r) ≤ S(Ps, r)

for every πs-ordered protocol Ps.
Since mπ̃h(1) is minimal for all values m1, . . . , md and the values mπ′

h
(i) for i ∈

[2..d] are ordered according to their size, we can conclude that π ′
h(i) is a grading of

m1, . . . , md. ut

A second generalization of the two-party model is the simultaneous communica-
tion complexity (denoted by C ||), where all parties can simultaneously write in a single
round on a blackboard. This means that the messages sent by each party do not de-
pend on the messages sent by the other parties. After finishing the communication
round, each party has to be able to compute the result of the function (see e.g. [9]). For
two-party communication it is well-known that

C ||(f) = CA→B(f) + CB→A(f) = dlog SA→B(f)e + dlog SB→A(f)e .
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Similarly, for the d-party case we have

C ||(f) =
∑

i∈[1..d]dlog #subi(Mf )e .

Hence if Mf is a Hankel array and if for some k ∈ [1..d] we have #subk(Mf ) ≤
mini∈[1..d] mi, then by Lemmas 7 and 8

C ||(f) = d · dlog ∆(fMf
)e .

As a third generalization, we consider the case that in each round some party can
write a message on a blackboard. The message and its sender may depend on messages
that have been published on the board in previous rounds. We restrict the communi-
cation such that each party (except for the last one) publishes exactly one message on
the blackboard, and in each round exactly one message is published. After finishing
the communication rounds, at least one party has to be able to compute the result of
the function. Let S2 be the corresponding size of an optimal protocol. Note that this
model generalizes both of the previous models.

Theorem 10 Let f be a function such that Mf ∈ M(m1, . . . , md) is a Hankel array
and let π be a grading of m1, . . . , md. Then Sπ(f) = S2(f) .

Proof: The proof follows by complete induction on the number of parties d. For d = 2
the claim follows directly from the standard one-way two-party scenario.

For d > 2 let us first note that the first party that writes a message to the blackboard
has to be determined by the protocol independently of the concrete input. Let Pk be
the party that writes its message first. The second party that writes a message on the
blackboard may depend on the type of M

(k)
xk where zk ∈ [mk] is the input of Pk. Let

f
(k)
xk describe the function with communication array M

(k)
xk . Since M

(k)
xk is a Hankel

array too, we can apply the induction hypothesis to the computation of f
(k)
xk . Note that

M
(k)
xk ∈ M(m1, . . . , mk−1, mk+1, . . . , md). Hence for a grading πk : [1..d − 1] →

[1..d − 1] of m1, . . . , md−1 we have:

Sπk(f (k)
xk

) = S2(f (k)
xk

) .

Since the first party that writes a message on the blackboard is chosen independently
of the concrete input, this equation implies

Sπ′

(f) =
∑

M
(k)
zk

Sπk(f (k)
zk

) =
∑

M
(i)
zi

S2(f (i)
zi

) = S2(f)

where π′(1) = k and for i ∈ [1..d − 1] π′(i + 1) = πk(i). By Theorem 9 we get for a
grading π : [1..d] → [1..d] of m1, . . . , md:

Sπ(f) ≤ Sπ′

(f) = S2(f).
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On the other hand, we can always simulate a protocol which works on a chain by a
protocol that uses a blackboard without increasing the size of the protocol. Hence

S2(f) ≤ Sπ(f).

The claim follows directly. ut

7 Conclusions and Open Problems

In this paper we have investigated one-way communication complexity of functions
for which the corresponding communication matrices are Hankel matrices. We have
established some structural properties of such matrices. As a direct application, we
have obtained a complete solution to the problem of how the communication direction
in deterministic one-way communication protocols affects the communication com-
plexity of symmetric Boolean functions. One possible direction of future research is
to study other kinds of one-way communication such as nondeterministic and random-
ized for the class of symmetric functions.

Another interesting extension of the topic is to drop the restriction to one-way pro-
tocols and consider the deterministic two-way communication complexity of symmet-
ric Boolean functions for both a bounded and an unbounded number of communication
rounds. This particularly involves results about the computation of the rank of Hankel
matrices. In addition, consequences for word combinatorics and OBDD theory may
be of interest.

Acknowledgment: We would like to thank Ingo Wegener for his useful comment on
the connection between one-way communication and OBDD theory.
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