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Abstract. We study the Hausdorff Voronoi diagram of point clusters
in the plane and derive a tight combinatorial bound on its structural
complexity. We present a plane sweep algorithm for the construction of
this diagram improving upon previous results. Motivation for the in-
vestigation of this type of Voronoi diagram comes from the problem of
computing the critical area of a VLSI Layout, a measure reflecting the
sensitivity of the design to spot defects during manufacturing.

1 Introduction

Given a set S of point clusters in the plane their Hausdorff Voronoi diagram is
a subdivision of the plane into regions such that the Hausdorff Voronoi region
of a cluster P € S is the locus of points closer to P, according to the Hausdorff
distancdl, than to any other cluster in S. As it was shown in [9], the Hausdorff
Voronoi region of P can be defined equivalently as the locus of points ¢ whose
maximum distance from any point of P is less than the maximum distance of
t from any other cluster in S. The Hausdorff Voronoi region of P is subdivided
into finer regions by the farthest-point Voronoi diagram of P. This structure
generalizes both the ordinary Voronoi diagram of points and the farthest-point
Voronoi diagram. It is equivalent to the ordinary Voronoi diagram of points if
clusters degenerate to single points and to the farthest-point Voronoi diagram if
S consists of a single cluster.

The Hausdorff Voronoi diagram has appeared in the literature under differ-
ent names, defined in terms of the maximum distance and not in terms of the
Hausdorff distance, and motivated by independent problems. In [3] it was termed
the Voronoi diagram of point clusters, in [1] the closest covered set diagram, and
in [7)9] the min-max Voronoi diagram. The equivalence to the Voronoi diagram
under the Hausdorff metric was shown in [9]. In [3] combinatorial bounds re-
garding this diagram were derived by means of envelopes in three dimensions.
It was shown that the size of this diagram is O(n?a(n)) for arbitrary clusters of
points, and O(n) for clusters of points with disjoint convex hulls, where n is the
total number of points on the convex hulls of individual clusters in S. The latter

! The (directed) Hausdorff distance from set A to B is h(A, B) =
{maxqeca minyep d(a, b)}. The Hausdorff distance between A and B is dn(A, B) =
max{h(A, B),h(B,A)}.

F. Dehne, J.-R. Sack, M. Smid (Eds.): WADS 2003, LNCS 2748, pp. 439-[50] 2003.
© Springer-Verlag Berlin Heidelberg 2003



440 E. Papadopoulou

was also shown in [1]] for disjoint convex shapes and arbitrary convex distance
functions. An 2(n?) example of n intersecting segments was given in [3]. In [9]
a tighter combinatorial bound on the size of the diagram was given and the lin-
earity property was extended to the more general class of non-crossing clusters
(see Def. ). An O(n?a(n))-time algorithm for the construction of this diagram
was given in [3] by applying a divide and conquer technique for envelopes of
piece-wise linear functions in three dimensions. This time complexity was auto-
matically improved to O(n?) by the tighter combinatorial bound given in [9]. In
[1] the problem for disjoint convex sets was reduced to abstract Voronoi diagrams
and the randomized incremental construction of [5] was proposed for the compu-
tation of the diagram. This approach resulted in an O(knlogn)-time algorithm,
where k is the time to construct the Hausdorff bisector of two convex polygons.
In [9] a direct divide and conquer algorithm was given for the construction of
the Hausdorff Voronoi diagram of time complexity O((n + M + N + K)logn),
where M was the number of pairs of points on the convex hull of crossing clus-
ters, N was O(nlogn), and K was the total number of points of clusters entirely
enclosed in the minimum enclosing circle of some P € S. In [7] the simpler Lo
version of the problem was investigated and a simple plane sweep algorithm of
time complexity O((n 4+ K)logn) was given for the non-crossing case.

In this paper we derive a tight combinatorial bound on the structural com-
plexity of the Hausdorff Voronoi diagram. In particular we show that the size
of the diagram is O(n + m), where m is the number of crucial supporting seg-
ments among pairs of crossing clusters (see Def. ). Crucial supporting segments
are entirely enclosed in the minimum enclosing circle of one of the clusters. We
also present a simple plane sweep algorithm for the construction of the Haus-
dorff Voronoi diagram of time complexity O(M + (n + m + K)logn), where
K = YpesK(P), K(P) is the number of clusters entirely enclosed in the anchor
circle of P, M = YXpcgM(P) and M (P) is the number of points ¢ € @ enclosed
in the anchor circle of P such that either @ is entirely enclosed in the anchor
circle of P or @ is crossing with P. The anchor circle of P is a specially defined
enclosing circle (see Def. @), generally larger than the minimum enclosing circle of
P. This algorithm improves the time complexity of previous results, generalizes
the plane sweep construction for Voronoi diagrams, and remains simple.

Our motivation for studying the Hausdorff Voronoi diagram comes from an
application in VLSI manufacturing as explained in [7]9], in particular critical
area extraction for predicting the yield of a VLSI chip. The critical area is a
measure reflecting the sensitivity of a VLSI design to manufacturing defects due
to dust particles and other contaminants on materials and equipment. In [7/9] the
critical area computation problem for via-blocks was shown to be reducible to the
Hausdorft Voronoi diagram (termed the min-max Voronoi diagram). Via-blocks
represent the 2nd most important defect mechanism (after shorts) for yield loss.
For more details on the critical area computation problem and its connection to
the Hausdorff Voronoi diagram see e.g. [GI7RJ9[TT]. Plane sweep is our method
of choice for this problem because of the very large data volume of VLSI designs.
The advantage of plane sweep is that we never need to keep the entire Voronoi
diagram in memory. Instead we only keep the wavefront, the portion of the
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Voronoi diagram bounding the sweep-line. As soon as a Voronoi cell is computed,
critical area computation can be performed independently within that cell, and
the cell can be immediately discarded.

In the following, due to lack of space, we skip proofs that are easy to derive.

2 Preliminaries and Definitions

The farthest distance between two sets of points A,B is dsf(A,B) =
max{d(a,b),a € A,b € B}, where d(a,b) denotes the ordinary distance be-
tween two points a, b. The (directed) Hausdorff distance from A to B, h(4, B) =
{max,ec4 minye g d(a,b)}. The (undirected) Hausdorff distance between A and
B is dp(A, B) = max{h(A, B),

h(B, A)}. The Hausdorff bisector between A and B is b, (A, B) = {y | dn(y, A) =
dn(y, B)} and the farthest bisector is b (A, B) = {y | ds(y, A) = ds(y, B)}. As it
was shown in [9] the Hausdorff bisector and the farthest bisector are equivalent.
In the following we simply use the generic term inter-bisector to denote both.

The farthest Voronoi region of point p; € P is freg(p;) = {z | d(z,p;) >
d(z,p;),p; € P} and the farthest Voronoi diagram of a set of points P is denoted
as f-Vor(P). It is well known (see e.g. [10]) that f-Vor(P) consists of unbounded
convex regions, one for each point on the convex hull of P. The bisectors of
f-Vor(P) are portions of ordinary bisectors, denoted b(p;,p;), pi,p; € P, and
they are called intra-bisectors. The convex hull of P is denoted as CH(P). A
segment P;p; connecting any two points on CH(P) is called a chord.

The tree structure of f-Vor(P) is called the intra-bisector tree of P and it is
denoted as T'(P). T(P) is assumed to be rooted at an arbitrary point yo € T'(P).
Every point y € T(P) is weighted by d¢(y, P), the radius of the smallest circle
centered at y entirely enclosing P. The circle centered at y of radius ds(y, P)
is called a P-circle and it is denoted as KCy. K passes through p;,p; € P such
that y € b(pi,p;). Point y partitions T(P) in two parts: T'(y) and T,(y), where
T(y) consists of all descendents of y in the rooted T'(P) including y, and T,(y) is
the complement of T'(y). If y is a vertex of T'(P) and an incident intra-bisector
segment yy; is explicitly specified to contain y then T'(y) consists of the subtree
rooted at y containing segment yy;; T,(y) is still the complement of T'(y). For
figures and more details see [9]. Chord p;p; (y € b(pi, pj)) partitions K, in two
parts: Ky, referred to as the rear portion of Ky, enclosing the points of CH (P)
that induce T'(y), and IC;; , referred to as the forward portion, enclosing the points
of CH(P) inducing T.(y). The characterization of the portions of K, as rear or
forward depends on the root of T'(P) and can be reversed for a different choice
of the root. Any point ¢ in K is called rear and any point in IC{; is called
forward, with respect to intra-bisector point y, b(p;, p;), and the root of T'(P).
The following observation is a generalization of one given in [9] and is used
throughout the paper.

Lemma 1. For any point y € T(P), such that y € b(p;,p;), the following holds:
For any y; € T(y), IC?JJp C IC{;], and Ky C K. For any yr € T.(y), Ky, C Ky,.
The observation is valid for any root of T(P).
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Definition 1. Two chords ;q; € Q and p;p; € P are called crossing iff they
intersect and all p;,p;, ¢i, q; are points of the convex hull of PUQ); otherwise they
are called non-crossing. Cluster @ is said to be crossing chord p;p; € P iff there
is a chord q;q; € Q that is crossing p;p;; otherwise Q) is said to be non-crossing
with pip;. Two clusters P,Q are called non-crossing iff their convex hulls admit
at most two supporting segments.

Let S be a set of point clusters. The Hausdorff Voronoi region of cluster P € S
is hreg(P) = {z | dy(z,P) < ds(z,Q),¥Q € S} and it may be disconnected.
hreg(P) is further partitioned into finer regions by f-Vor(P). For any point
p € P, hreg(p) = {z | d(z,p) = df(z, P) < ds(x,Q),VQ € S}. The collection
of all (non-empty) Hausdorff Voronoi regions defined by S, together with their
bounding edges and vertices, is called the Hausdorff Voronoi diagram of S. The
bounding edges of hreg(P) consist of portions of inter-bisectors and the inner
edges consist of portions of intra-bisectors among the points on the convex hull of
P. The vertices are classified into three types: inter-vertices where at least three
inter-bisectors meet, intra-vertices where at least three intra-bisectors meet, and
mixed-vertices where at least one intra-bisector and two inter-bisectors meet.

By definition, a mixed Voronoi vertex v is the center of a P-circle IC,, passing
through p;,p; € P and ¢; € @, entirely enclosing both clusters P and @ and
not containing any other cluster in S. Clearly v is a vertex of the intra-bisector
br (P, Q) that is incident to T(P). Since by, (P, Q) is a subgraph of f-Vor(P U Q)
[O], any vertex of the intra-bisector b, (P, Q) is a mixed Voronoi vertex of H-
Vor({P,Q}) and a candidate for a mixed Voronoi vertex of H-Vor(S). Vertex
v is characterized as crossing (resp. non-crossing) iff @ is crossing (resp. non-
crossing) with p;p;. Furthermore, v is characterized as rear (resp. forward) iff
q; € K" (resp. ¢; € KI). The characterization of a mixed vertex as rear or forward
depends on the choice of the root for the intra-bisector tree.

3 Structural Complexity

In this section we give a tight bound on the structural complexity of the Haus-
dorff Voronoi diagram.

Lemma 2. Consider the mized vertices induced on T(P) by by (P, Q). We have
the following properties:

— For any rear non-crossing vertexr v, T.(v) N hreg(P) = 0. Thus, T(P) can
contain at most one rear non-crossing mized Voronoi vertez.

— For any forward non-crossing vertex v, T(v) N hreg(P) = 0. Thus, T(P)
can contain at most |T(P)| forward non-crossing mized Voronoi vertices, at
most one for each unbounded segment of T(P).

— Any crossing forward vertex on T(P) must be followed by a crossing rear
vertex (considering only vertices of by (P, Q)).

— Any rear (resp. forward) vertex delimits the beginning (resp. ending) of a
component of T(P) N hreg(P) as we traverse T(P) from the root to the
leaves.
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Proof. For a rear non-crossing v, @ € K5 UCH (P) and for a forward non-crossing
v, Q € Kl UCH(P). The first two statements are easy to derive by Lemma [Il
Consider a path from the root to a leaf of T(P) that contains vertices of
bs(P,Q). Let y1 (resp. y) be the first (resp. last) vertex along this path that
is contained in hreg(P). y; may be the root of T(P) (if yo € hreg(P)) and yi
may extend to infinity. Because of the first two statements of this Lemma, any
vertex between y; and yi, except y1, yx, must be crossing. Let v be such a vertex
between y; and y;, and let p;,p; € P, ¢; € Q be the points inducing v. If v is
delimiting the ending of hreg(P) and the begining of hreg(Q), as we walk from
Y1 to yk, then ¢; must be part of K/, that is v must be forward. On the contrary,
if v is delimiting the begining of hreg(P) after hreg(Q), v must be in K} i.e.,
v must be rear. Thus, all the vertices between y; and y; must be crossing and
must be alternating between forward and rear starting with a forward. Since yy,
cannot be rear, any crossing forward mixed vertex on the path must be followed
by a rear crossing mixed vertex. This also derives the last statement. a

Let v be a mixed vertex of by, (P, Q) induced by (g:,pi,p;), ¢ € Q,pi,p; € P.
Clearly g;, p;, p; are points of CH(PUQ). We say that vertex v can be attributed
to the first pair of supporting segments encountered as we traverse CH (P U Q)
from ¢; to p; and p;. We have the following property.

Lemma 3. Every rear vertex of by (P, Q) on T(P) can be attributed to a unique
pair of supporting segments between CH(P) and CH(Q) that are entirely en-
closed in the P-circle centered at the root of T(P).

Proof. Let v; be a rear vertex of by, (P, Q) induced by (¢;,pi,pj). ¢ € Q,pi,p;j €
P, that can be attributed to the pair of supporting segments (s1, s2). Since v; is
rear, s1,s2 € K, . By Lemma[ll K C K,,, where yq is the root of T'(P), and
thus, s1,82 € Ky,. Let v; be another vertex of b, (P, Q) induced by a triplet of
points (g;,p;,05),q; € Q,p;,p; € P. The only way for K,; to enclose both P
and @ is for all three g;,pf, p;- be enclosed in the same slice of K., as defined by
triangle (g;, pi,p;). But then either ¢; € IC{; i.e., v; is forward, or ¢; must be
part of a different component of CH(P U @) than ¢, i.e., v; is attributed to a
pair of supporting segments other than (s, s2). O

Lemma 4. If there is a P-circle through p;,p; € P that encloses () then there
can be no Q-circle through q;,q; € @ that encloses P such that q;q; and p;p; are
CTrossing.

Definition 2. Let P,Q be a pair of crossing clusters and let (s1,s2) be a pair
of supporting segments between CH(P) and CH(Q) enclosed in the minimum
enclosing circle of P such that there is a vertex of by (P, Q) that can be attributed
to (s1,82). Segments s1, 82 are called crucial supporting segments for P. The
number of crucial supporting segments of P is denoted by m(P).

Theorem 1. The structural complexity of H-Vor(S) is O(n+m), wheren is the
total number of points on convex hulls of clusters in S, and m = Xpcgm(P) is
the total number crucial supporting segments between pairs of crossing shapes.
The bound is tight in the worst case.
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Proof. As it was shown in [9] the structural complexity of H-Vor(S) is propor-
tional to the number of mixed Voronoi vertices of H-Vor(S). By Lemmal[2, the
number of non-crossing mixed Voronoi vertices is O(n). (This was also shown in
[9]). Also by Lemma BI (3rd statement) the number of crossing mixed Voronoi
vertices is proportional to the number of rear crossing mixed Voronoi vertices.
But by Lemma[3] any rear mixed Voronoi vertex can be attributed to a unique
pair of supporting segments enclosed in ICy,. By considering the center of the
minimum enclosing circle of P as the root of T'(P), the pair of supporting seg-
ments associated with a rear crossing mixed Voronoi vertex must be crucial.
Therefore, the number of crossing mixed Voronoi vertices is O(m).

To obtain the lower bound it is enough to construct a set S such that every
rear crossing vertex of by (P, @), P,Q € S, remains a Voronoi vertex in H-Vor(S).
Consider a vertical segment P = p1ps and its minimum enclosing circle, Kp. Let
€ > 0 be a small constant and let [;,1 < i < k, be a set of horizontal lines, each
€ > 0 above the other, where [; is the horizontal line through the midpoint of
P. Let Q;,1 <1i <k be a set of horizontal line segments each located on line [;
(see Figure [[). Let K; (resp. R;) 1 < i < k be the P-circle passing through the
leftmost (resp. rightmost) point of @;. The left endpoint of @; is chosen in the
interior of KC;_1, € away from the boundary of C;_1. The right endpoint of @; is
in the exterior of IC;_1, ¢/2 away from the boundary. By construction, R; and
IC; enclose exactly P and @; in their interior and the same holds for any P-circle
centered on [; between the centers of R; and K;. Thus, the center of K;,1 < i < k,
remains a vertex in H-Vor(S). By Lemma Hl there can be no @;-circle enclosing
P i.e., all vertices of by (P, Q;) must be incident to T'(P). Thus, the only crucial
supporting segments are the O(k) supporting segments between P and @);, each
pair inducing a rear mixed Voronoi vertex in H-Vor(S). The construction is
shown using segments for clarity only. Each @); can be substituted by a cluster
Q. of arbitrarily many points forming a thin convex shape around segment Q;
such that no endpoint of the original set of segments is enclosed in CH(Q?) as
shown in Figure 2l Segment P can also be substituted by a cluster P’ forming
a thin convex shape to the right of segment P with no change in the arguments
of the proof. o

Fig.1. The 2(m) construction for the Fig.2. Segments can be substituted by
complexity of H-Vor(S). convex polygons.
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4 A Plane Sweep Algorithm

In this section we give a plane sweep algorithm to construct the Hausdorff
Voronoi diagram of S. The algorithm is based on the standard plane sweep
paradigm of [2[4] but requires special events to handle mixed Voronoi vertices
and disconnected Voronoi regions. The farthest Voronoi diagram of each indi-
vidual cluster P is assumed to be available and it can be constructed by divide
and conquer in O(|P|log|P|) time. The plane sweep basically stitches together
the farthest Voronoi diagrams of the individual clusters of S into the Hausdorff
Voronoi diagram of S.

The plane sweep process assumes a vertical sweep-line [; sweeping the entire
plane from left to right. The distance to the sweeping line is measured in the or-
dinary way and not in the Hausdorff metric i.e., d(p, ;) = min{d(p,y),y € l;} for
any point p. At any instant ¢ of the sweeping process we compute H-Vor(S; Ul;)
for Sy = {P € S | max,ecpx(p) < t} where z(p) is the z-coordinate of point
p € P, and dy(p,l:) = d(p, ;). Following the terminology of [2] the boundary of
the Voronoi region of [; is called the wavefront at time t. The bisectors incident
to the wavefront are called spike bisectors and consist of inter- and intra- spike
bisectors. The wavefront consists of parabolic arcs, called waves, corresponding
to ordinary bisectors between points p € S; and the sweep line l;. As the sweep
line moves to the right, the wavefront and the endpoints of spike bisectors move
continuously to the right. The combinatorial structure of the wavefront changes
only at certain events organized in an event queue. We have two types of events,
site events when new waves appear in the wavefront, and spike events when old
waves disappear. Spike events correspond to the intersection of two neighbor-
ing spike bisectors and their treatment remains similar to the ordinary plane
sweep paradigm. Site events are different and their handling is illustrated in the
following.

Definition 3. The priority of any point v € H-Vor(S) orv € f-Vor(P),P € S,
is priority(v) = z(v) + d(v,p;), where p; is the owner of region bounded by
v in H-Vor(S) or f-Vor(P) respectively. In other words, priority(v) equals the
rightmost x-coordinate of the circle centered at v passing through p;.

The point of minimum priority for any cluster P is the intra-bisector point
Yo(P) (for brevity Yp) derived by shooting a horizontal ray backwards from the
rightmost point p, of P, until it hits the boundary of freg(p,) in f-Vor(P).
Throughout this section (unless explicitly noted otherwise) we assume that
the root of T'(P) is Yo(P). As a result, the definition of a rear/forward mixed
Voronoi vertex or rear/forward cluster always assumes that the corresponding
intra-bisector tree is rooted at the point of minimum priority. The P-circle g
centered at Yy(P) is referred to as the minimum priority circle of P. Clearly,

priority(Yo) = z(p;).

Lemma 5. Lety; € T(P). Then priority(y;) < priority(y;) for any y; € T(y;)
(assuming that the the root of T(P) is Yo(P)).



446 E. Papadopoulou

Proof. The priority of any y; € T(P) is given by the rightmost vertical line I
tangent to /C,,. Since priority(Yy) < priority(y;), and Ky, C Ko (Lemma[Tl),
must be tangent to IC{Z_. But by Lemma [T ICZJ;, C IC{;j for every y; € T'(y;). Thus,
priority(y;) < priority(y;). |

The following Lemma can be easily derived from Lemma[2] and Lemma [

Lemma 6. Let hreg;(P) be a connected component of hreg(P), P € S, that does
not contain Yo(P). Then hreg;(P) must have exactly one rear mized Voronoi
vertex on T (P) and this is the point of minimum priority of hreg;(P). If Yo(P) €
hreg;(P) all mized Voronoi vertices of hreg;(P) NT(P) are forward.

By the definition of the wavefront, any Voronoi point v € H-Vor(S) must
enter the wavefront at time ¢ = priority(v). Thus, appropriate site events need
to be generated so that at least one event exists (site or spike event) for every
vertex of H-Vor(S). We define two types of site events: ordinary vertez events,
one for every vertex of T(P), P € S, and mixed vertex events (for brevity mized
events) whose purpose is to predict the rear mixed Voronoi vertices of H-Vor(S).
Ordinary vertex events are readily available from f-Vor(P), P € S. Mixed events
get generated throughout the algorithm. An event is called valid if it falls on or
ahead the wavefront at the time of its priority. An event falling behind the
wavefront at the time of its priority is called invalid. Any event is processed at
the time of its priority.

Let’s first consider the vertex event corresponding to Yp(P) and let’s assume
that the event is valid. Let p;p, be the chord inducing Yy (ie., Yy € b(pi,pr))
where p, is the rightmost point of P. Then at time ¢, the waves of p; and p,. enter
the wavefront for the first time, separated by the intra-bisector b(p;, p,). In more
detail, let ¢; be the owner of the intersection point r where the horizontal ray
from p, hits the wavefront (see Figure B)). The wave of ¢; is split at point 7 into
two waves wy,ws (say w; is above wsg), and the two rays of the spike bisector
b(g;,pr) emanating from r enter the wavefront, serving as new gliding tracks
for waves wy and ws. Furthermore, three new waves enter the wavefront: waves
w3, wy for p, and wave ws for p; gliding along the two rays of b(p;, pr) emanating
from Yy. The ordering of the waves from top to bottom is wy,ws, ws, wy, ws.
FiguresBh and Bb depict the wavefront before and after the update, and Figure[3c
shows the topological arrangement of the new waves. Spike events are generated
as in the ordinary Voronoi diagram construction.

The update of the wavefront at any other valid ordinary vertex event y; €
T(P),y; # Yo, is similar and is depicted in Figure [ In detail, let p;, p;,py € P
be the points inducing y;. Since y; is valid, at time ¢t = priority(y;), point y;
must be a point of the wavefront incident to exactly one spike intra-bisector, say
b(pi,pj). Note that by Lemma Bl only one of the intra-bisectors incident to y;
can contain points of lower priority than y;. At time ¢, a new wave for point pg
must enter the wavefront gliding between the spike intra-bisectors b(pg, p;) and
b(pr,p;) as shown in Figure [l

Let’s now consider the handling of an invalid vertex event y; € T(P) (y; may
be Yy) and the generation of a mixed vertex event. At time ¢ = priority(y;) point
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b(p.p )

Fig. 5. The update of the wavefront at a

Fig. 4. The wavefront update at an ordi- > .
valid mixed vertex event.

nary valid vertex event.

y; is behind the wavefront. Let y; be any immediate descendent of y; in T'(P) that
is not yet covered by the wavefront (if any). Then segment 7;y; must intersect
the wavefront at a point Y. The following process repeats for all immediate
descendents of y; that are not yet covered by the wavefront. Let g; € @); be the
owner of Y in H-Vor(S;) and let 7;5; € b(p;, p;). Point ¢; may be rear or forward
with respect to p;p;. Let’s first consider the case where (); is non-crossing with
pip;- If g; is forward then by Lemma2 T'(Y) N hreg(P) = 0. Thus, we eliminate
all vertex events of T'(y;) from the event queue. If g; is rear, we eliminate from the
event queue any vertex event associated with T,(Y). If ¢; is rear and d(y;,p;) <
d¢(y;,Q;) then bs(Q;, P) must intersect 7;7; at a mixed vertex m;. Since vertex
m; may or may not appear in H-Vor(S), a mixed-vertex event needs to get
generated for m;. Vertex m; can be easily determined in O(|CH(Q;)|) time
by considering intersections of 7;7; with f-Vor(Q;) (see also Lemma [). Note
that if d(y;,p;) > ds(y;,@;), no mixed event gets generated as there can be
no portion of hreg(P) on 7;y;. Let’s now assume that @; is crossing with p;p;.
Similarly to the non-crossing case, if d(y;,p;) < df(y;, Q;) then a mixed vertex
event m; needs to get generated for 7;y; at the point where b (Q;, P) intersects
7:y;- Although b(Q;, P) may induce several rear mixed vertices on T'(P), it can
induce at most one on a single segment 7;7;. To determine m,; we walk on ¥;y;
backwards starting at y;, considering intersections with f-Vor(Q;), until m; is
determined. The search starts at y; and not at ¥ to maintain time complexity
as it will be evident in Lemma[J.
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The handling of a mixed vertex event is similar to the handling of an ordinary
vertex event. In particular, let y, € T(P) be a mixed vertex event induced by
pi,p; € P,g; € @ and let y; be the immediate descendent of y, in T'(P). y, is
valid iff at time ¢ = priority(y,), y, is a point of the wavefront, in particular a
point on the wave of ¢;. If y, is valid then the wave of g; is split into two waves
w1, w2, and new waves for p; and p; enter the wavefront between w; and wo,
separated by the spike intra-bisector 7 g; € b(pi,p;), as shown in Figure [l If
yr is determined to be invalid then a new mixed-vertex event may be generated
similarly to the case of an invalid vertex event.

The handling of spike events is identical to the ordinary Voronoi diagram
construction with the exception of the need to generate mixed events for crossing
clusters. A spike event between a spike intra-bisector b(p;,p;) of P and a spike
inter-bisector by, (P, Q) corresponds to a forward mixed Voronoi vertex v induced
on T'(P) by Q. If Q is crossing with p;p; then v may be followed on T'(P) by a
rear mixed Voronoi vertex. Thus, in this case, a mixed event induced by @ on
b(pi, p;j) may need to be generated, exactly as for the case of an invalid ordinary
vertex event. If @ is non crossing with p;p; then T'(v) N hreg(P) = () and thus,
we can eliminate all the vertex events of T'(v) from the event queue.

The correctness of the algorithm follows from the correctness of the plane
sweep paradigm of [2] as long as we can show that no rear mixed Voronoi vertex
can be missed. In other words, we need to show that a mixed vertex event
gets generated for every rear mixed Voronoi vertex of H-Vor(S). Note that by
Lemma [3] the minimum priority of any connected component of hreg(P) occurs
at a rear mixed Voronoi vertex of T'(P) (if not Yy(P)), therefore a starting point
for all connected Voronoi regions can be obtained if we have events for all rear
mixed Voronoi vertices and the roots of intra-bisector trees. The following lemma
shows that no mixed events can be missed and can be derived from the above
discussion.

Lemma 7. Lety; € T(P) be an invalid site event or a valid spike event involving
a crossing cluster Q. Let y; be an immediate descendent of y; in T (P). If a mized-
vertex event y, gets generated on segment y;y; € T'(P) during the handling of
Yi, then g;gy Nhreg(P) = 0. If no mized-vertex event gets generated on ;y; then
¥:y; N hreg(P) = 0.

The time complexity depends on the number of mixed vertex events that
get generated and the time to produce them. In the following we concentrate in
formally bounding this number.

Definition 4. Let r be the horizontal ray extending backwards from the right-
most point p,. of P. Let C, be the circle centered on r passing through p, that
contains exactly one cluster in its interior (in the worst case that cluster is P).
The cluster contained in C). is called the anchor of P.

Definition 5. Let A be the anchor of P. If A # P, let Y, be the nearest common
ancestor of all rear vertices of by(P, A) on T(P). The P-circle centered at 'Y, is
called the anchor circle of P and it is denoted as K,(P). If A = P, the anchor
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circle is the minimum enclosing circle of P. The priority of the anchor circle is
priority(Yy).

The anchor circle coincides with the minimum enclosing circle of P when
Yo(P) € hreg(P). In case of non-crossing clusters, the anchor circle of P is the
minimum radius P-circle entirely enclosing both P and its anchor. In the worst
case, the anchor circle of P coincides with the minimum priority circle of P, in
which case Y, = Yy and T.(Y,) = 0. Since any component of hreg(P) N T(P)
must be bounded by a rear mixed vertex or Yy, T.(Y,) N hreg(P) = 0. For the
sake of formally bounding the number of mixed vertex events, we can add the
following step when handling the invalid site event corresponding to Yy (P), in
order to ensure that no mixed vertex events get generated for T.(Y,): Determine
the anchor of P and produce a mixed vertex event for Y, (if ¥, does not coincide
with a vertex of T'(P)); eliminate T.(Y,) i.e., delete all vertex events of T.(Y,)
from the event queue. The correctness of the algorithm is not affected by the
addition of this step.

Lemma 8. The number of mized vertex events generated throughout the algo-
rithm is O(K + m), where K = YXpcsK(P), K(P) is the number of clusters
entirely enclosed in the anchor circle of P, and m is as defined in Theorem [l

Proof. We have two types of mixed vertex events: crossing and non-crossing. Let
m; be a non-crossing mixed vertex event induced by @ on T'(P). By Lemma [2]
m; is unique as ) can induce at most one rear non-crossing mixed vertex on
T(P). Since Q € K},,, UCH(P) and m; € T(Y,), @ must be entirely enclosed in
Ka(P) as K, C Kq(P). Thus, O(K) bounds the total number of non-crossing
mixed events. By construction the total number of crossing mixed vertex events
is upper bounded by the the total number of crossing vertices on b, (P, Q) for
any pair of crossing clusters (P, Q). But this number is O(m) as it was shown in
Theorem [11 O

Lemma 9. The generation time for all mized vertex events induced on T(P) by

a single cluster Q is O(|CH(Q) N Ky (P)|).

Proof. The claim is easy to see for a non-crossing @ as Q € K,(P) and @ can
induce at most one mixed event on T'(P) (see Lemma R)). If Q is crossing with
P then @ may induce several crossing mixed vertex events on T'(P). However,
we claim that any ¢, € @ that gets visited during the generation of a single
mixed vertex event m;, cannot be visited again during the generation of another
mixed vertex event on T(P). Let ¢, € @ be visited during the generation of
m; € 3;y; € T(P), that is, freg(q,) is intersected by 7;7;. (Recall that the
traversal of 7;y; starts at y; and y; is an ancestor of y; in T'(P)). Then g, € Ky,
but ¢, ¢ I, for any y € m;y; N freg(qy). Thus, ¢, & K, for any v € T(y;)
since Ky, C K (Lemma [I)). Furthermore, ¢, ¢ K7, for any u € Te(y;) that is
not an ancestor of y;, since Ky N K7 = (). Thus, ¢, cannot be considered again
during the generation of another mixed vertex event on T'(P). Since m; € T(Y,),
qr € K}, C Ko(P). Thus, only points in CH(Q) N Ky (P) can be visited. O
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Theorem 2. H-Vor(S) can be computed in O(M + (n + m + K)logn) time
by plane sweep, where n,m are as defined in Theorem [1 K is as defined in
Lemma[8, and M = XpesM(P), where M(P) is the total number of points
q € CH(Q) that are enclosed in the anchor circle of P such that either Q is
entirely contained in KCou(P) or Q is crossing with P.

Proof. By Lemma @l O(M) time is attributed to the generation of mixed vertex
events. The theorem follows from Lemma [ and the fact that O(logn) time is
spent for each event (without counting time for generation of mixed events). O

Whether the terms K, M can be eliminated from the time complexity remains
an open problem. In our VLSI application shapes are rectilinear in nature, well
spaced, and in their majority non-crossing. A small number of crossings may be
present due to non-neighboring redundant vias. In this setting both K, M remain
small. In the simpler L., non-crossing case, experimental results on VLSI via-
layers indicated that K was negligible compared to n [7].
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