Skip to main content

Superposition Modulo a Shostak Theory

  • Conference paper
Automated Deduction – CADE-19 (CADE 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2741))

Included in the following conference series:

Abstract

We investigate superposition modulo a Shostak theory T in order to facilitate reasoning in the amalgamation of T and a free theory F. Free operators occur naturally for instance in program verification problems when abstracting over subroutines. If their behaviour in addition can be specified axiomatically, much more of the program semantics can be captured. Combining the Shostak-style components for deciding the clausal validity problem with the ordering and saturation techniques developed for equational reasoning, we derive a refutationally complete calculus on mixed ground clauses which result for example from CNF transforming arbitrary universally quantified formulae. The calculus works modulo a Shostak theory in the sense that it operates on canonizer normalforms. For the Shostak solvers that we study, coherence comes for free: no coherence pairs need to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  4. Bürckert, H.-J.: A resolution principle for clauses with constraints. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 178–192. Springer, Heidelberg (1990)

    Google Scholar 

  5. Ganzinger, H.: Shostak light. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 332–346. Springer, Heidelberg (2002)

    Google Scholar 

  6. Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition modulo a Shostak theory. Technical report, Max-Planck-Institut für Informatik, Saarbrücken (2003)

    Google Scholar 

  7. Godoy, G., Nieuwenhuis, R.: Paramodulation with built-in abelian groups. In: Proceedings of the 15th IEEE Symposium on Logic in Computer Science, pp. 413–424. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  8. Jouannaud, J.-P., March´e, C.: Termination and completion modulo associativity, commutativity and identity. Theoretical Computer Science 104(1), 29–51 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kapur, D.: A rewrite rule based framework for combining decision procedures. In: Armando, A. (ed.) FroCos 2002. LNCS (LNAI), vol. 2309, pp. 87–102. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Krstić, S., Conchon, S.: Canonization for disjoint unions of theories. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 197–211. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Le Chenadec, P.: Canonical Forms in Finitely Presented Algebras. John Wiley & Sons, Chichester (1986)

    MATH  Google Scholar 

  12. Marché, C.: Normalised rewriting and normalised completion. In: Proceedings of the 9th IEEE Symposium on Logic in Computer Science, pp. 394–403. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  13. Middeldorp, A., Zantema, H.: Simple termination revisited. In: Bundy, A. (ed.) CADE 1994. LNCS (LNAI), vol. 814, pp. 451–465. Springer, Heidelberg (1994)

    Google Scholar 

  14. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  15. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  16. Plotkin, G.D.: Building-in equational theories. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 7, ch. 4, pp. 73–90. American Elsevier (1972)

    Google Scholar 

  17. Rueß, H., Shankar, N.: Deconstructing Shostak. In: Proceedings of the 16th IEEE Symposium on Logic in Computer Science, pp. 19–28. IEEE Computer Society Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  18. Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31(1), 1–12 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shankar, N., Rueß, H.: Combining Shostak theories. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 1–18. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated Reasoning 1(4), 333–355 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Stuber, J.: Deriving theory superposition calculi from convergent term rewriting systems. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 229–245. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Waldmann, U.: Cancellative abelian monoids and related structures in refutational theorem proving (Part I). Journal of Symbolic Computation 33(6), 777–829 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganzinger, H., Hillenbrand, T., Waldmann, U. (2003). Superposition Modulo a Shostak Theory. In: Baader, F. (eds) Automated Deduction – CADE-19. CADE 2003. Lecture Notes in Computer Science(), vol 2741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45085-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45085-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40559-7

  • Online ISBN: 978-3-540-45085-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics