Skip to main content

Multivariate Group Effect Analysis in Functional Magnetic Resonance Imaging

  • Conference paper
Book cover Information Processing in Medical Imaging (IPMI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

In functional MRI (fMRI), analysis of multisubject data typically involves spatially normalizing (i.e. co-registering in a common standard space) all data sets and summarizing results in a single group activation map. This widely used approach does not explicitely account for between-subject anatomo-functional variability. Therefore, we propose a group effect analysis method which makes use of a multivariate model to select the main signal variations that are common to all subjects, while allowing final statistical inference on the individual scale. The normalization step is thus avoided and individual anatomo-functional features are preserved. The approach is evaluated by using simulated data and it is shown that sensitivity is drastically improved compared to more conventional individual analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büchel, C., Turner, R., Friston, K.: Lateral geniculate activations can be detected using intersubject averaging and fMRI. Magn. Reson. Med. 38, 691–694 (1997)

    Article  Google Scholar 

  2. Price, C.J., Friston, K.: Cognitive conjunction: A new approach to brain activation experiments. NeuroImage 5, 261–270 (1997)

    Article  Google Scholar 

  3. Holmes, A.P., Friston, K.J.: Generalisability, random effects & population inference. NeuroImage 7, S754 (1998)

    Google Scholar 

  4. Friston, K.J., Holmes, A.P., Price, C.J., Büchel, C., Worsley, K.J.: Multisubject fMRI studies and conjunction analysis. NeuroImage 10, 385–396 (1999)

    Article  Google Scholar 

  5. Worsley, K.J., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C.: A general statistical analysis for fMRI data. NeuroImage 15, 1–15 (2002)

    Article  Google Scholar 

  6. Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. In: 3-Dimensional proportional system: an approach to cerebral imaging, Thieme, New York (1988)

    Google Scholar 

  7. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from functional MRI data using Independent Component Analysis. Hum. Brain Mapp. 14, 140–151 (2001)

    Article  Google Scholar 

  8. Svensén, M., Kruggel, F., Benali, H.: ICA of fMRI group study data. NeuroImage 16, 551–563 (2002)

    Article  Google Scholar 

  9. Benali, H., Mattout, J., Pélégrini-Issac, M., Meusburger, F., Derpierre, O., Kherif, F., Poline, J.B., Burnod, Y.: Hierarchical multivariate group analysis of functional MRI data. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, ISBI 2002, pp. 843–846 (2002)

    Google Scholar 

  10. Caussinus, H.: Models and uses of principal components analysis. In: de Leeuv, J. (ed.) Multidimensional data analysis, pp. 149–178. DSWO Press, Leiden (1986)

    Google Scholar 

  11. Mattout, J., Pélégrini-Issac, M., Garnero, L., Burnod, Y., Benali, H.: Multivariate PCA-based regression analysis of fMRI time series. NeuroImage 11, S586 (2000)

    Article  Google Scholar 

  12. Fine, J., Pousse, A.: Assymptotic study of the multivariate functional model. Application to metric choice in principal component analysis. Statistics 23, 63–83 (1992)

    MathSciNet  MATH  Google Scholar 

  13. Sijbers, J., den Dekker, A.J., Van Audekerke, J., Verhoye, M., Van Dyck, D.: Estimation of the noise in magnitude MR images. Magn. Reson. Med. 16, 87–90 (1998)

    Google Scholar 

  14. Velicer, W.F.: Determining the number of components from matrix of partial correlations. Psychometrika 41, 321–327 (1976)

    Article  MATH  Google Scholar 

  15. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)

    MATH  Google Scholar 

  16. Metz, C.E.: Basic principles of ROC analysis. Semin. Nucl. Med. 8, 283–298 (1978)

    Article  Google Scholar 

  17. Kruggel, F., Zysset, S., von Cramon, D.Y.: Nonlinear regression functional MRI data: an item-recognition task study. NeuroImage 11, 173–183 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benali, H., Mattout, J., Pélégrini-Issac, M. (2003). Multivariate Group Effect Analysis in Functional Magnetic Resonance Imaging. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics