Skip to main content

Morphology-Based Cortical Thickness Estimation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2732))

Abstract

We describe a new approach to estimating the cortical thickness of human brains using magnetic resonance imaging data. Our algorithm is part of a processing chain consisting of a brain segmentation (skull stripping), as well as white and grey matter segmentation procedures. In this paper, only the grey matter segmentation together with the cortical thickness estimation is described. In contrast to many existing methods, our estimation method is voxel-based and does not use any surface meshes. While this fact poses a principal limit on the accuracy that can be achieved by our method, it offers tremendous advantages with respect to practical applicability. In particular, it is applicable to data sets showing severe cortical atrophies that involve areas of high curvature and extremely thin gyral stalks. In contrast to many other methods, it is entirely automatic and very fast with computation times of a few minutes. Our method has been used in two clinical studies involving a total of 27 patients and 23 healthy subjects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kabani, N., Le Goualher, G., MacDonald, D., Evans, A.C.: Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13, 375–380 (2001)

    Article  Google Scholar 

  2. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using laplace’s equation. Human Brain Mapping 11(1), 12–32 (2000)

    Article  Google Scholar 

  3. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97(20), 11050–11055 (2000)

    Article  Google Scholar 

  4. Brodmann, K.: Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellaufbaus. Barth, Leipzig, Germany (1909)

    Google Scholar 

  5. Von Economo, C., Koskinas, G.: Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin (1925)

    Google Scholar 

  6. Thompson, P., Moussai, J., Zohoori, S., Goldkorn, A., Khan, A.A., Mega, M.S., Small, G.W., Cummings, J.L., Toga, A.W.: Cortical variability and asymmetry in normal aging and alzheimer’s disease. Cerebral Cortex 8, 492–509 (1998)

    Article  Google Scholar 

  7. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis. I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  8. MacDonald, D., Kabani, N., Evans, A.C.: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12, 34–356 (2000)

    Article  Google Scholar 

  9. Davatzikos, C., Prince, J.L.: An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging 14(1), 65–80 (1995)

    Article  Google Scholar 

  10. Zeng, X.L., Staib, L.H., Schultz, R.T., Duncan, J.S.: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Trans. Med. Imaging 18(10), 927–937 (1999)

    Article  Google Scholar 

  11. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Variational and level set methods in computer vision. In: IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, Canada (July 2001)

    Google Scholar 

  12. Teo, P.C., Sapiro, G., Wandell, B.A.: Creating connected representations of cortical grey matter for functional MRI visualization. IEEE Transactions on Medical Imaging 16, 852–863 (1997)

    Article  Google Scholar 

  13. Joshi, M., Ciu, J., Doolittle, K., Joshi, S., Essen, D.V., Wang, L., Miller, M.I.: Brain segmentation and the generation of cortical surfaces. Neuroimage 9, 461–476 (1999)

    Article  Google Scholar 

  14. Miller, M.I., Massie, A.B., Ratnanather, J.T., Botteron, K.N., Csernansky, J.G.: Bayesian construction of geometrically based cortical thickness metrics. Neuroimage 12, 676–687 (2000)

    Article  Google Scholar 

  15. Xu, C., Pham, D.L., Rettmann, M.E., Yu, D.N., Prince, J.L.: Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. Med. Imaging 18(6), 467–480 (1999)

    Article  Google Scholar 

  16. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  17. Suri, J.S., Liu, K., Singh, S., Laxminarayan, S.N., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2D/3D medical imagery: a state of the art review. IEEE trans. on information technology in biomedicine 6(1), 8–28 (2002)

    Article  Google Scholar 

  18. Ugurbil, K., Garwood, M., Ellermann, J., Hendrich, K., Hinke, R., Hu, X., Kim, S.-G., Menon, R., Merkle, H., Ogawa, S., Salmi, R.: Imaging at high magnetic fields: Initial experiences at 4T. Magn. Reson. Quart. 9(259) (1993)

    Google Scholar 

  19. Norris, D.G.: Reduced power multi-slice MDEFT imaging. J. Magn. Reson. Imaging 11, 445–451 (2000)

    Article  MathSciNet  Google Scholar 

  20. Lohmann, G., Preul, C., Hund-Georgiadis, M.: Geometry-preserving white matter segmentation using T1-weighted MRI data. In: Human Brain Mapping 2000, Meeting, New York, USA, June 18-22 (2003) (accepted)

    Google Scholar 

  21. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15, 169–175 (1994)

    Article  MATH  Google Scholar 

  22. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3D pictures. Computer Graphics Image Proc. 17, 315–331 (1981)

    Article  Google Scholar 

  23. Malandain, G., Fernandez-Vidal, S.: Euclidean skeletons. Image and Vision Computing 16, 317–327 (1998)

    Article  Google Scholar 

  24. Borgefors, G., Nyström, I., Sanniti Di Baja, G.: Computing skeletons in three dimensions. Pattern Recognition 32, 1225–1236 (1999)

    Article  Google Scholar 

  25. Manzanera, A., Bernard, T., Preteux, F., Longuet, B.: nD skeletonization: a unified mathematical framework. Journal of Electronic Engineering 11, 25–37 (2002)

    Google Scholar 

  26. Saito, T., Toriwaki, J.-I.: New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognition 27(11), 1551–1565 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lohmann, G., Preul, C., Hund-Georgiadis, M. (2003). Morphology-Based Cortical Thickness Estimation. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45087-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40560-3

  • Online ISBN: 978-3-540-45087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics