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1 Introduction

Grammar-based natural language processing has reached a level where it can ‘under-
stand’ language to a limited degree in restricted domains. For example, it is possible
to parse textual material very accurately and assign semantic relations to parts of sen-
tences. An alternative approach originates from the work of Shannon over half a century
ago [41], [42]. This approach assigns probabilities to linguistic events, where mathe-
matical models are used to represent statistical knowledge. Once models are built, we
decide which event is more likely than the others according to their probabilities. Al-
though statistical methods currently use a very impoverished representation of speech
and language (typically finite state), it is possible to train the underlying models from
large amounts of data. Importantly, such statistical approaches often produce useful re-
sults. Statistical approaches seem especially well-suited to spoken language which is
often spontaneous or conversational and not readily amenable to standard grammar-
based approaches.

This chapter concerns statistical language modelling. In a speech recognition sys-
tem the role of the language model is to assign probabilities to word sequences. Re-
cently, similar models to speech recognition language models have been employed to
perform higher level tasks, such as structuring and extracting information from spoken
language. In this chapter, we first outline the basic framework of n-gram language mod-
els (section 2), which form the core of current statistical approaches. A crucial technical
consideration here is how to estimate n-gram statistics from sparse training data. We go
on to describe two approaches—based on n-gram models—to encapsulate varying con-
tents and styles: section 3 is concerned with mixture language models and section 4
builds on the observation that the occurrence rate of a word is not uniform, but varies
between documents. Finally we describe a statistical finite state model for the extraction
of information, such as proper names and dates from spoken language.

2 n-gram Language Modelling

2.1 The Basics of n-gram Modelling

The standard formulation of a statistical speech recognition system may be written as:

pw|x) e p(x|w)- p(w) . ¢))
—_——
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S. Renals, G. Grefenstette (Eds.): Text- and Speech-Triggered Info. Access, LNAI 2705, pp. 78-105, 2003.
© Springer-Verlag Berlin Heidelberg 2003


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.2
     Für schnelle Web-Anzeige optimieren: Ja
     Piktogramme einbetten: Ja
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 600 600 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 600 dpi
     Downsampling für Bilder über: 900 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein
     Bitanzahl pro Pixel: Wie Original Bit

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Untergruppen bilden unter: 100 %
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
     Methode: Standard
Arbeitsbereiche:
     Graustufen ICC-Profil: 
     RGB ICC-Profil: sRGB IEC61966-2.1
     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Nein
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Nein
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Nein
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
     EPS-Info von DSC beibehalten: Nein
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Nein

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 600 600 ]
>> setpagedevice


Statistical Language Modelling 79

The generation of the acoustic data x = {x,x,...,%} from a word sequence w =
{wi,wa,...,wn} is described by the acoustic model, p(x | w). This often takes the
form of a hidden Markov model (HMM). The language model, p(w), is a prior prob-
ability distribution over word sequences, and is typically an n-gram model (discussed
below). Since p(w) does not depend on acoustics, it is usual to estimate the language
model from textual data. Although this can introduce some distortion to the model, the
amount of reliable speech transcription is generally not sufficient for statistical estima-
tion.

Building n-grams. First we consider the following sentence:

later the prime minister tony blair telephoned mr. yeltsin

taken from the THISL data collection'. An n-gram is simply a sequence of successive
n words, e.g.,

unigram yeltsin
bigram mr. yeltsin
trigram telephoned mr. yeltsin

four-gram  blair telephoned mr. yeltsin

An n-gram model is statistical because it builds on the ‘counts’ (i.e., the number of
occurrences) of such events. Indeed, counting may be thought of as the simplest form
of statistical learning. Shown below are the most frequently occurring words in the
collection:

the 394 481 occurrences

to 240001
a 225506
in 177997
and 133962
is 109217
be 84020
that 69 265

Given that there were 7 488 445 words in the collection, we can make some simple sta-
tistical guesses: for example the word ‘the’ appears once in every 20 words on average.

Fig. 1. A finite state machine builds an n-gram language model.

! The THISL data collection [36] consists of a large amount of programme scripts, audio data,
and some human generated reference transcriptions from a variety of TV and radio news and
current affairs programmes broadcast by the BBC since 1997.
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More formally, we can specify a finite state machine that generates a sequence of
words using a probabilistic model? (figure 1). For computational reasons, we apply the
Markov assumption; that is to say the model has a limited horizon, and is time invariant.
The former implies that the current word does not depend on the entire history, but at
most on the last few words. The latter asserts that an n-gram model is roughly stationary.
Assuming a dependency on the two previous words results in a trigram model:

Puigram(W) = p(w1) p(wz | wi) p(ws [ wi,w2) ... pWi | Win—2,Wm—1) - (2)

Although crude in appearance, it has proven difficult to develop more sophisticated lan-
guage models that consistently outperform trigrams in large vocabulary speech recog-
nition tasks [21].

In practice, the text is normalized before counting n-gram occurrences. Text nor-
malization includes the removal of most punctuation and case information, the verbal-
ization of numbers (e.g., $12.8bn becomes ‘twelve point eight billion dollars’), the setting
of relevant markers such as sentence breaks, and the correction of spelling errors. The
vocabulary size may be restricted to a certain number (say, 65 536 words). In this case,
out-of-vocabulary (OOV) words may be mapped to a single unknown word symbol
(<unk>) when counting n-grams.

The value of n is an important question for n-gram modelling. A small value of n
leads to more reliable parameter estimation. Larger values of n lead to a more detailed
context. The total number of potential n-grams scales exponentially with n, so most
higher order n-grams do not occur in the training data’. Consequently, bigram or trigram
models are most widely used for n-gram modelling of large vocabularies.

Sparseness of Training Data. Maximum likelihood (ML) estimation maximizes the
probability of the model generating the training data. For example, the ML estimate for
a bigram (v, w)—word v, followed by word w—is given by the conditional form:

c(v,w)

p(W | V) = C(V) ) 3)

where c¢(v,w) and ¢(v) imply unigram and bigram frequencies observed in the training
data®.

ML estimation of n-gram language models can be seriously affected by training data
sparsity. For example, the THISL data collection contains about 7.5 million words;

2 This is equivalent to saying that we play a Shannon game (‘what is the next word?’) using a
probabilistic model [42].

3 Suppose the vocabulary size is 65 536 words, the number of parameters for bigram, trigram,
and four-gram models are up to 4.3 x 10°, 2.8 x 10'*, and 1.8 x 10'?, respectively. On the
other hand, a typical corpus size is on the order of 10° to 10°.

c(v,w)
N

the total number of training instances. However, it is more natural to use the conditional form
because most calculations for language modelling are carried out by exploiting conditional
relations. Thus for the rest of this chapter, we show conditional forms only.

4 The ML estimate is also given by the joint probability form, plvw) = , where N denotes
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if we estimate a trigram language models using a 65536 word vocabulary, the num-
ber of possible trigrams is about 37 million times greater than the size of the training
data. Hence simple ML estimation will result in many ‘zero probabilities’; any word
sequence, whose n-gram component was not present in the training data, will not be
processed properly using the ML formulation (2).

In order to address this problem, a variety of smoothing techniques have been de-
veloped. They are designed to ‘smooth’ the probability estimates for n-gram models so
that any n-gram component is given a non-zero probability. Smoothing techniques may
be divided into two main classes: discounting schemes for re-distributing frequencies
to unseen events; and approaches to combine different level models (e.g., interpolation,
back-off).

2.2 Discounting Techniques

ML estimation of n-gram language models results in over-estimates of the probabilities
of those n-grams that are observed in the training data. The probabilities of unobserved
n-grams are under-estimated (set to zero). This is sometimes called the zero proba-
bility problem . Discounting schemes, such as Good-Turing and absolute discounting,
address this problem by reducing, or discounting, the ML probability estimates, and
re-distributing the ‘freed’ probability mass to previously unseen events (figure 2).

frequencies in training data re-distributed

H Pl r”‘”’
L M A B CDEF HI1 J KLMN

e E e ;

D EFG J K

Fig. 2. ‘Discounted mass’ is re-distributed to events not observed in the training data.

Table 1 shows discounted bigram frequency estimates, calculated from the THISL
data collection. The details of each approach are given below.

Empirical Estimation. An empirical approach (sometimes referred to as held-out es-
timation) may be based on the question ‘how often do bigrams that appear r times in
the training data tend to occur in new data?’, using a held-out data set to empirically
validate an estimated model. Let u, denote the number of n-grams that occur exactly »
times in the training data, and ¢;( - ) and ¢, ( - ) represent frequencies in the training and
the held-out data, respectively. A discounted frequency for a bigram (v, w) is calculated
as follows [8], [28]:

1
Pomp=—""3, ca(v,w) . 4)
T (vw):
o (vw)=r
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Table 1. This table summarizes discounted bigram frequency estimates for the THISL data col-
lection. u, denotes the number of bigrams that occurred r times in the training data. 7, is an
empirical estimate derived from the test data for bigrams that occurred r times in the training
data. 7 (=r) is a simple ML estimate. 7, 74, and 7 are the cross validation, the Good-
Turing, and the absolute discounting estimates. They were obtained from the training data only,
without looking at the test data, but they are closer to 7, than the ML estimate.

r Ur femp Pt Fev ;'gt Fabs
- 0.0019 0.0015 0.0021  0.0023

839300 047 0.45 0.53 0.34

220490 1.22 1.25 1.23 1.34

90077 2.21 2.23 2.26 2.34

50826 3.24 3.21 3.23 3.34

22928 5.14 5.15 5.21 5.34
17053  6.10 6.13 6.23 6.34
13290 7.23 7.11 7.24 7.34

0
1
2
3
4
32882 4.10 5 4.20 4.18 4.34
6
7
8
10693 8.13 9 8.18 8.19 8.34

O 01NNk~ O

If the amounts of training and held-out data are different, they should be normalized.
The conditional relative bigram frequency is:

A

A - remp
femp(W | V) - C(V) .
Table 1 contains a column showing the empirical estimation of discounted bigram
frequencies for the THISL data collection, using program scripts (7488445 words,

1394406 bigrams) as the training data and reference transcriptions (487027 words,
182441 bigrams) as the held-out data.

Cross Validation. Cross validation is a related approach to the held-out estimation. It
may be carried out by the following steps [28]:

1. Separate the entire training data into K > 1 sections.
2. Foreach k= 1...K, hold out section k and

(a) from the remaining K — 1 sections (referred to as ‘development data’), collect
statistics u,(k): the number of n-grams that occur exactly r times;

(b) from the held-out section &, collect the number of total occurrences #.(k) of
bigrams that appear exactly r times in the development data; normalize #,(k)
according to the development data and the held-out data sizes.

3. Calculate the average:
Y, (k)

~ k=1..K

Y W)

k=1..K

&)
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Table 1 also shows estimates by cross validation, where program scripts were split
into two parts (one with 3 755 764 words, 906 100 bigrams, and the other with 3 732 681
words, 903 811 bigrams).

Good-Turing Discounting. The Good-Turing estimate of discounted frequencies does
not rely on a held-out data set. Originally attributed to Turing, it may be derived as a
special case of cross validation in which a single training instance is held out at each
time of iteration [8], [14], [22], [30]. The Good-Turing discounted frequency 7¢ (for

r > 0) has the form:

P = (r+ 1)L (6)

Uy

where u, is the number of n-grams that occur exactly r times in the training data.

Suppose we denote the number of the training instances by N = Zr - ur, then the
r
total discounted mass from cases for r > 0 is given by

N_zf.u,:N—Z(r-l-l)-urH =up .

which is then redistributed to all unobserved events. For a vocabulary of size V, the

number of n-grams not observed in the training data is uo = [V [* — Y u,. In this case
r
the Good-Turing estimate for r = 0 is fg; = 4
)
For the THISL data collection with 19959 vocabulary words, the number of zero
frequency bigrams is ug = 19959% — 1393940 = 396967741, among which the dis-
counted mass was thinly distributed. The zero frequency estimate is in fact not zero but

g = 0.0021 as indicated in table 1.

A

. . r . ..
If we define the discounting factor as d, = ﬁ, then we can write the conditional
r

relative frequency for discounted bigrams as:
fgt (W | V) = dc(v,w) i (W | V) ) (7N

c(v,w)

clv)

for ¢(v,w) = r > 0, using the ML estimate f,;(w | v) =

Absolute Discounting. Absolute discounting [14], [30] is an alternative scheme that
does not require a held out set, in which a constant e is subtracted from each non-zero
count, and redistributed over unseen events:

r—e ifr>0
FPaps = ix ifr=0 ®)
e zr"u, if r ,

where r and u, are defined as before. The discounting constant e may be estimated

from the held-out data. Alternatively, Ney et al. [30] suggested e ~ u ; using
u

1
+2un
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1.2 rd dy
0 - -
< | 1 053 046
Sosl 2 061 056
2 3075 072
506 4 081 078
804 5 084 081
6 087 0.85
021 7 089 0.87
_ 8 091 1.00
0 10 20 30 40 50 60 70 9 0.91 1.00

frequency for bigrams

Fig. 3. The Good-Turing estimate may not be very accurate for large r. The graph on the left indi-
cates it is no longer reliable for the THISL data collection. Instead Katz [23] suggested an alter-

- k+1
native approach that discounts for 1 < r < k only, using d; = ; S where & = M,
— 5k uj
and df =1 for r > k. For example, suppose we wish to discount d; between 1 < r <7, then
8.
& = “8 _ 0.127. The table on the right shows discounted frequencies by the Good-Turing (6)

uy
and by Katz’s formulation.

this approximation, we have calculated e = 0.656, and thus the zero frequency estimate
Paps = 0.0023, for the THISL data collection (table 1).
The conditional relative frequency for discounted bigrams is given by

Tabs €

m fml(le)_m )

for ¢(v,w) = r > 0, using the ML estimate fi,;(w | v).

fabS(W |v) = )

2.3 Smoothing with Lower Level n-grams

In the previous section we discussed discounting techniques that freed some probability
mass to take account of unseen events. We now consider two approaches that enable a
redistribution of the discounted mass by combining different levels of n-gram models
(unigram, bigram, trigram, ...) in such a way that the most precise model available
is used. We consider interpolation and back-off smoothing: each approach recursively
redistributes discounted mass from each level of an n-gram model to lower level n-gram
models.

Interpolation. The interpolation method is based on a linear combination of n-gram
models. For example, the probability for a trigram (u,v,w)—word ‘u’, followed by
word ‘v’, then ‘w’—may be smoothly estimated as:

pin(w | u,v) =Aapw | u,v) +hap(w | v) + Aip(w) +ho- A | (10)

with some constant A and constraints 27» ;= 1for 0 <A; <1[20]. Generally, A can
J

be a function of the history (i.e., ‘..., u,v’) that satisfies the total probability constraints,

Zpinr =1
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Combining different levels of n-gram models is beneficial because the discounted
probability estimate of a lower level n-gram (observed in the training data) is more reli-
able than probability estimates of unseen higher level n-grams. The following recursive
formulation is based on that by Federico ef al. [14].

Consider the estimation of a conditional trlgram probability p(w | u,v). This may
be calculated using a discounted relative frequency f (w | u,v) and a bigram probability

pwlv)

pw | uv)=Fwuv)+{1—a(u)} plw | v)

v)
where  ol(u,v) = 2 f( | u,v) . (11)
€E(u,

o(u,v) is a non-zero estimate of the marginal probability that a trigram with context
(u,v) exists in the model, where E (u,v,w) implies the trigram entry in the model.
The bigram and unigram probabilities are estimated in a similar fashion:

pw|v)=Fwlv)+{1- (V)}-p( )

where o(v) = Z fwlv) ; (12)
weE (v,

pw) = f(w)+{l—a}-A
where o=y f(w) . (13)

One possible choice of the constant may be A = with sufficiently large |W |

IW |
(say, |V | < |W ). Finally, to verify the total probability constraints for the conditional
trigram probability, suppose that Z pw|v)=1,

weE (vw)

S piwlun= S forlun (1ot} 3 ptsin=1.
€E (u,v,w)

weE (u,y,w) weE (vw)

Similar calculations may be done for bigram and unigram probabilities as well.

Back-Off. Rather than combining different level n-gram models, the back-off method
chooses the most appropriate n-gram level to use when estimating conditional proba-
bilities. The back-off method partitions the mass between n-grams which are backed
off from higher level models. An analogous recursive formulation to that used for
interpolation-based smoothing may be employed.

The conditional trigram probability p(w | u,v) is estimated using a discounted rel-
ative frequency f (w | u,v) if the trigram is observed in the training data, otherwise the
model backs off to a bigram probability estimate p(w | v):
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[ Fwuv) if E (u,v,w) exists
plw|uv) = { B(u,v)-p(w|v) otherwise
B 1 —o(u,v)
where B(u,v) = T (14)
weE (u,y,w)

B(u,v) is the back-off factor, ou(u,v) is the non-zero marginal probability estimate, and
E (u,v,w) implies the trigram entry in the model.
The bigram and unigram estimates again take a similar form:

[ Fw|v) if E (v,w) exists
plw|v) = {B(v) -p(w)  otherwise

1—ofv)
where B(v)= ————5— (15)
T
weE (vw)
[ f(w) if E(w) exists
plw) = { B-A otherwise
1—
where B = ﬁ . (16)
1
We note that ' A = |V |- A, where A = W] is again a possible choice. To verify

the total probability constraints, suppose E (u,v,w) does not exist,

Y opwiv=1- Y pwlv=1- 3T Fwlv) .

E (u,v,w)=0 weE (u,y,w) weE (u,y,w)

Thus,

Sotwluv)= Y forluw) 4By Y plw|v)=1.

w weE (u,v,w) E (u,v,w)=0

Evaluating Language Models. In order to evaluate language models, an average log
probability is often used. Suppose the test data contain N words:

1
LP:N Z 10g2p(Wi|Wi—n+1;~~~7wi—1) )
i=1...N

and the perplexity is the average branching factor defined by PP = 272 The best lan-
guage model will average the fewest guesses over the text data. For the example sen-
tence at the beginning of this chapter, table 2 shows individual trigram probabilities us-
ing the Good-Turing discounted and backed off model. From the table, we can immedi-
ately calculate the average log probability, LP = —7.55, and the perplexity, PP = 187.6.
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Table 2. This table shows probabilities for individual trigram components from the test sentence
‘later the prime minister tony blair telephoned mr. yeltsin’, using Good-Turing discounting and
back-off modelling, derived from the THISL data collection. All numbers are in log domain
(base 2). For example, this table indicates that a trigram entry for ‘the prime minister’ exists
in the model, thus the probability estimate is simply the discounted relative frequency for the
trigram. However, the trigram entry for ‘tony blair telephoned’ is not found in the model, so we
need to back-off to a bigram ‘blair telephoned’, which again does not exist and we further back-
off to a unigram ‘telephoned’. The trigram probability estimate for ‘tony blair telephoned’ is thus
a product (a sum in the log domain) of back-off factors and the discounted relative frequency for
the unigram ‘telephoned’.

(e, v, w) pwluw) fwluy) Bluv) fw|v) B Fw)
later -10.86 -10.86
later the -4.08 -4.08

later the prime -8.27 -8.27

the prime minister -0.31 -0.31

prime minister tony -6.10 -6.10

minister tony blair -1.29 -1.29

tony blair telephoned -20.88 —  -0.22 — -2.15 -18.51
blair telephoned mr. -10.03 — 0 — -0.80 -9.23
telephoned mr. yeltsin -6.15 — 0 -6.15

3 Adaptive Language Modelling: Topic Coherence

The n-gram model is syntactic and locally constrained, based on a Markov chain of
a word sequence whose parameters are derived from word frequency counts given a
training corpus. Because the n-gram is a statistical model, a fundamental assumption is
that the task domain is similar to that for the training corpus. Consequently, a relatively
large amount of training data is required to accommodate the great number of varia-
tions that may occur in spoken language. The n-gram approach works well when these
underlying assumptions of static task domain and sufficient training data hold, while it
does not when the application domain varies from the training conditions.

To address this problem, several adaptive language modelling schemes have been
proposed. Since the n-gram model has a constrained context (typically the previous two
or three words) most adaptive language modelling schemes attempt to exploit longer
distance dependencies. In this section we develop a mixture language modelling ap-
proach, in which the component models display a degree of topic coherence. We de-
compose the task into two problems: document classification (employing techniques
first developed for text retrieval) and mixture modelling.

3.1 Document Classification

Topic dependent language models may be obtained by the automatic derivation of topic
information from text, followed by the combination of global and topic dependent text
statistics. A ‘bag-of-words’ model, which is based on a histogram of weighted unigram
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frequencies, is used to estimate the topic of a document®. This approach—frequently
adopted in text retrieval—assumes that the similarity between documents can be mea-
sured from word (or term) co-occurrence statistics. The similarity operation may be
regarded as being carried out in a high dimensional space whose dimension is given by
the vocabulary size. One advantage of using such a measure is that local constraints that
might have an adverse global effect, such as word order, may be discarded. We present
a brief overview of some relevant text retrieval concepts; a more thorough discussion is
available elsewhere (e.g., [44], [45], or chapter 4 of this book).

Term Weighting. A focal point of document classification is the calculation of weights
for words according to their importance in documents. For example, unigram frequen-
cies of vocabulary items may be used. As the total word counts often vary in orders
of magnitude between documents, estimates of unigram probabilities can be used in-
stead in order to avoid possible effects of document size. It would also be beneficial to
weight the more important words in order to avoid distortions occurring due to common
non-content words.

Term weighting schemes combine global and local factors to produce weighting
factors for the within-document unigram probabilities®. Suppose that g; implies a global
weight for a word w; in a collection of documents and that /;; is a local value within
a document d;. The global weight is designed to enhance words which are not widely
distributed across many documents, whereas the local weight is usually related to term
frequency within the document. There exist a number of approaches to evaluate g; and
lij, such as tf -id f [48], and Okapi term weighting [37]. In general, a term weight a;;
has the form:

aij=gilij , (17

and a document vector for d; is defined as a collection of term weights d; = {a;;}
(which is usually very sparse). Documents can be classified according to their vector
representations. A consistent distance measure is the angle between two document vec-
tors.

Dimension Reduction. So far the distance between two documents has been defined
in a [V |-dimensional space. One text retrieval approach, known as latent semantic in-
dexing , estimates document similarity in a reduced dimension space by calculating the
principal components (eigenvectors) of the |V |-dimensional document vectors [11]. It
is based on the singular value decomposition of a very large, sparse, word by document
matrix [3]. Let A = {d;} denote an m x n matrix whose rank is r; each column describes
a document vector d j, with the entries being some measure associated with vocabulary
items in that document. A can be decomposed as

A=UzvT | (18)

5> We use the term ‘document’ loosely; in spoken language applications it may refer to an entire
story, paragraph, or even a fixed size window of, say, 500 words.

6 More generally stopping and stemming algorithms may be used before term weighting
schemes [15].
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where V7 is the transpose of V. X is an r x r diagonal matrix whose non-zero elements
correspond to the singular values, or the non-negative square roots of r eigenvalues for
AAT U and V are m x r and n x r matrices whose rows may be referred to as word and
document singular vectors. They define the orthonormal eigenvectors associated with
the r eigenvalues of AAT and AT A, respectively.

The singular vectors corresponding to the s (s < ) largest singular values are then
used to define an s-dimensional document space. Using these vectors, m X s and n X s
matrices U and V; can be redefined along with s x s singular value diagonal matrix X.
It is known that A, = USZSVST is the closest matrix (in a least square sense) of rank s
to the original matrix A [3]. As a consequence, given an m-dimensional vector d that
describes a document, it is warranted that an s-dimensional projection ds computed by

dy =d"Uz; !, (19)

lies in the closest s-dimensional document subspace with respect to the original m-
dimensional space. The projection ds represents principal components that capture the
largest variation of words and documents without sacrificing much information. s is
typically of the order of 100, many times smaller than the original document dimension.

3.2 Mixture Language Modelling

Once documents have been classified into topics, topic-dependent n-gram models may
be derived. We now outline a scheme to combine these component language models
into a mixture language model.

Formulation. A mixture model, denoted by M, is built as the weighted sum of J
components, < My,...,M; >, derived from a partitioned corpus; this is a similar ap-
proach to the dynamic cache models discussed in section 4. Let f(w, | w\"';M) and
S | w’f‘ :M;) imply n-gram type parameters for a mixture and its 7" component,
respectively. A mixture is defined as

J
pw [ Wi M) =3 cip(we [ W 55M) (20
j=1
J
Given this form and the constraints Z ¢;j = 1, we wish to find mixing factors, c;, that
j=1

maximize the likelihood for a document (sequence of words). The expectation maxi-

mization (EM) algorithm [13] is an iterative procedure that is suitable for this purpose;
we start from an appropriate initial guess c?]. If there are T words in the document,

then the p' estimate is given by

() 1M
CBP] _ % 2 ; j p(we | w) j) ' Q1)
Y e | Wi M)
k=1

The procedure is similar to other mixture density parameter estimation problems [35].
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Formula (21) produces updated estimates of the mixing factors only after the entire
document is processed. This is not very useful because a major objective is to flexibly
adjust to the varying style of documents. Suppose that 7 — 1 words {wy,...,w;_; } have
been processed so far; a new word w; is given. Then the 7" incremental estimate is
obtained recursively by

[t—1] —1.
— ch M
=L e +;yﬂﬂ where = plw vy :M) (22)

J PR J J 1] o
Z Cr p(w | wi ;M)
k=1

Using this form, the mixing factors are adjusted automatically to maximize the likeli-
hood of the document, thus indirectly incorporating topic information.

3.3 Evaluation

There is a large body of work in the general area of document classification (see chapter
4 and [28]). The Text Retrieval Conference (TREC) has been a forum for the evalua-
tion of text retrieval systems for a variety of tasks including routing, filtering and spoken
document retrieval. Recent evaluations have consistently indicated that many of the best
performing systems use Okapi term weighting [37] (or a closely related approach) and
do not employ dimension reduction. Our own experiments in mixture language mod-
elling have indicated that Okapi term-weighting performs best and that SVD dimension
reduction causes a degradation in performance [16].

Table 3 indicates that the mixture model improves the perplexity over the conven-
tional model, even though the trigram hit rate declines. A lower hit rate is unavoidable
when a corpus is partitioned to smaller subsets: despite this handicap, the mixture model
has shown improved perplexities compared with the conventional approach.

Table 3. Perplexities and trigram hit rates for a baseline model (a single trigram derived from
the complete training data), and a mixture of 10 component models (derived using Okapi term
weighting). The experiment was performed using the British National Corpus [5].

model perplexity trigram hit (%)
single model 180.0 62.4
mixture of 10 class models 164.2 42.8

4 Adaptive Language Modelling: Word Level Correlation

In both spoken and written language, word occurrences are not random but vary greatly
from document to document. Indeed, modern text retrieval relies on the degree of depar-
ture from randomness as a discriminative indicator [44], [45]. In this section we discuss
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ways to mathematically realize the intuition that an occurrence of a certain word may
increase the chance for the same word being observed later. Dynamic language models
aim to incorporate longer distance correlations between words, either through an ex-
plicit probabilistic model or by blending statistics for recent words with a global model.
An alternative approach uses a statistical model of word occurrence based on the use of
the Poisson distribution [18], [38].

4.1 Dynamic Language Models

Although a constant word rate is an unlikely premise, it is nevertheless assumed in
n-gram language modelling. The notion of adaptive modelling by a mixture of topic-
dependent language models (section 3) is one proposed solution to this problem. Al-
ternatively, Rosenfeld incorporated trigger pairs (longer distance word-level dependen-
cies) into a model structure using maximum entropy [22], [40].

The dynamic cache model is a simpler approach, based on an observation that re-
cently appearing words are more likely to re-appear than would be predicted by a static
n-gram model [10], [25]. This model blends the global n-gram model with a local
model:

Pwelw ") = patobal We Wi 1) + Proca(we Wi ) (23)
Plocal (W, W™ 1) is usually estimated using a cache of the last K words. In the simplest
form, dynamic cache models blend a locally estimated unigram model with the globally
estimated n-gram (typically trigram). Such models have been reported to lower perplex-
ity by around 10% [10], [25], but to have minimal effects on the word error rate in large
vocabulary speech recognition (e.g., [47]).

4.2 Variable Word Rates

A variant of the dynamic cache model incorporates recency into the cache by using an
exponential decaying weight on the contribution of words in the cache. However, rather
than relying on such ad hoc devices to model variable word occurrences, it is possible
to use an explicit probabilistic model of word rate, such as a Poisson mixture. Church
and Gale [9] have demonstrated that a continuous mixture of Poisson distributions can
produce accurate estimates of variable word rate. In related work Lowe [26] applied a
beta-binomial mixture model to topic tracking and detection.

If we consider that occurrences of each word are the result of an underlying Poisson
process, then the word rate is no longer uniform. Consider a set of documents’ and
a word w. We assume that each document produces w independently according to a
Poisson process with a single parameter A > 0:

—Ayx
6ol =P (X = ) = S 24)

x!

where X is a discrete, non-negative random variable representing the number of occur-
rences of w, with expected value E[X] = A and variance V[X] = A.

7 Recall our loose definition of a document; basically it is a unit of spoken (or written) data of a
certain length that contains some topic(s), or content(s).
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A less constrained model of variable word rate is offered by a mixture of Poissons.
Suppose the parameter A of the pdf (24) is distributed according to some function ¢(A),
then we define a continuous mixture of Poisson distributions by

0(x) = /0 ” glpoiss (xX)o(R)dA . (25)

A

7»0‘_1 B
In particular, if ¢(A) is a gamma distribution, i.e., ®(A) = G(A; o,B) = [30‘1"7(?0() ,
for oo > 0 and B > 0, then the integral (25) is reduced to a discrete distribution for
x=0,1,... such that

[mb] () — - _(oa+x—1\ B
Gb()_NB(X_,oc,B)_( " )(HB)W' (26)

This 61?1 (x) is a negative binomial distribution® and its expected value and variance are
given by E[X] = off and V[X] = o (B + 1), respectively.

The histograms in figure 4 show the number of word (unigram) and bigram occur-
rences in news broadcast. ‘for’ and ‘you’ appeared approximately the same number of
times across all the transcripts. Using the constant word rate assumption, they would
have been assigned a probability of around 0.0086. However their occurrence rates var-
ied between documents; about 11% and 33% of all documents did not contain ‘for’ and
‘you’ (respectively), while 1% and 3% contained these words more than 30 times. This
seems to indicate that occurrences of ‘for’ is less dependent on the content (or the style)
of a document. A negative binomial distribution was used to model the variable word
rate in each case.

The negative binomial seems to model word occurrence rate relatively well for
most vocabulary items, regardless of frequency. Figure 4 illustrates this for one of the
most frequent words ‘of” (probability of 0.023 according to the constant word rate as-
sumption) and the less frequently occurring ‘church’ (Iess than 0.00029). In particular,
‘church’ appeared only in 93 out of 2583 documents, but 28 of them contained more
than 10 instances, suggesting strong correlation with the document content. We also col-
lected statistics of bigrams. They are very sparse; for example, ‘for you’ and ‘of church’
appeared in 127 and 6 documents. The negative binomial model fits bigrams as well,
indicating that variable bigram rate can also be modelled using a continuous mixture of
Poissons.

4.3 Variable Word Rate Language Models

Taking word occurrence rate into account changes a probabilistic language model from
a situation akin to playing a lottery, to something closer to betting on a horse race:
8 Let (L) = G(A; o, B). Integration (25) is straightforward using the definition of the gamma
function, T'(ot) = / 1*~1e™"dr, and the recursion, T'(ot4 1) = ol'(cr). The resultant pdf (26)

0
has a slightly unconventional form in comparison to that in most of standard textbooks

1
(e.g., [12]), but is identical by setting a new parameter Yy = —— with 0 <y < 1.

1+B
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Fig. 4. Word and bigram occurrences vary between documents. Histograms show the number of
occurrences taken from transcripts of the Hub—4 Broadcast News acoustic training data (1996-97
— not free, but available from http: //www.1dc.upenn.edu/). These transcripts were separated
into documents according to section markers and those with less than 100 words were removed,
resulting 2583 documents containing slightly less than 1.3 million words in total. The number of
occurrences were then normalized to 1000-word length documents. A negative binomial distri-
bution (solid line) was used to approximate each histogram.

the odds for a certain word improve if it has come up in the past. We eliminate the
constant word rate assumption and present a variable word rate n-gram language model.
Discounting and smoothing schemes are also considered.

Relative Frequencies with Prior Word Occurrences. An expected value for arandom
variable X, given a condition X > a for a certain value a, is calculated by replacing the
pdf 6(X = x) with the conditional pdf (X = x; X > a):

E[X;XZa]:/wxe(X:x;XZa)dxii (27)

(e.g., see page 105 of [33]). Now in discrete space, let ¢(w) imply the frequency of word
w in the training data. We denote by f(w; c¢(w) > r,,) a conditional relative frequency
after observing r,, occurrences of word w, which is given by
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N
2 Jew(J)
lj:rw
N N
Y 6u())

J=rw

JFws e(w) 2 ry) = %E w; c(w) > ry] = (28)

N is a document length (e.g., for histograms in figure 4, N is normalized to 1000) and

function (28) is defined for r,, = 0,1,...,N. 8,,(j) is the occurrence rate for word w in
N
an N-length document (e.g., Poisson, negative binomial), satisfying Z 0,(j) =1.
j=0

The conditional relative frequency formula satisfies our intuition as well; the value
of (28) increases monotonically as the number of observation r,, accumulates (easy to
verify), and it reaches ‘1’ when r,, = N. To the other end,

1
Nj

M=

flw; e(w) > 0) = J-0w(J) (29)

0

and this corresponds to the case with no prior information of word occurrence. For the
conventional approach with the constant word rate assumption, this f(w; c¢(w) > 0) is
used regardless of any word occurrences.

Figure 5 illustrates how conditional expected values change after observing word
occurrences. Figure 6 demonstrates conditional relative frequencies derived by func-
tion (28). The graph on the right indicates that the first few instances do not increase the
relative frequency very much for frequent words (e.g., ‘of’), but have a substantial effect
for the less common word (e.g., ‘church’). As the number of observations increases, the
former is caught up by the latter.

Variable bigram rate relative frequencies can be calculated in a similar fashion. In
the following we use short hand notations f(r,) and f(r,,,) for indicating f(w; c¢(w) >
ry) and f(w [ v; ¢(v,w) > r,,),), respectively. The same notations are used for p(ry,) and
p(rypy)s i-e., probabilities by variable rate models.

Discounting and Smoothing Techniques. Recall that, for any practical application,
smoothing of the probability estimates is essential to avoid zero probabilities for events
that were not observed in the training data. As before, let E (v,w) denote a bigram entry
in the model. A bigram probability p(rw‘v) can be smoothed with a unigram probability
p(ry) using the interpolation [14]:

p(rw\v) = fA(rw\v) + {1 - OL(V)} ’ p(rw)
where o(v)= f(rw\v , (30)

weE (vw)

where f (rjy) implies a ‘discounted’ relative frequency of variable bigram rate (de-
scribed later) and ou(v) is a non-zero probability estimate as introduced in section 2.
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Fig. 5. These graphs illustrates the modelled occurrence rates typically observed for frequent
function words (top three, e.g., ‘of’) and for words that bear strong content information (bottom
three, e.g., ‘church’). Conditional expected values E(r,) = E[w; c¢(w) > ry] are calculated from
the shaded areas and shown together. Two graphs in the most left indicate the cases with no prior
knowledge of word occurrence (constant word rate assumption). Once a word is observed, the
expected value changes very little for a function word, but increases dramatically for a content
words (graphs in the middle). Graphs in the right show the cases when each word has occurred
four times; now we expect to see this content word more often than some function words.
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Fig. 6. The left graph shows word occurrence rates for a function word, ‘of’, and a content word,
‘church’, observed in documents of 1000-word length (normalized), modelled by negative bino-
mial distributions (identical to those in figure 4). The right graph indicates conditional relative
frequencies after a certain number of word occurrences. Circles (‘0’) correspond to relative fre-
quencies under the constant word rate assumption (0.023 for ‘of’ and 0.00029 for ‘church’).
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The alternative is to apply a back-off smoothing [23]. Let B(v) denote a back-off
factor, then

)= f(”w\v) if E (v, w) exists
P { B(v)-p(ry) otherwise

_ Lo
1— Z f(rw)

weE (vw)

where B(v) = (1)

A variable rate unigram probability p(r,) can be obtained in a similar fashion by
smoothing with some constant value.

Finally, discounting functions for variable word rate models, analogous to those
described in section 2, may be

fgt(rw\v) - dr'f(rw\v) (32)
for the Good-Turing discounting and
A e
fabs(rw\v) = f(rw\v) N (33)

for the absolute discounting. We note that zero prior information case (i.e., f(0)’s) may
be used to calculate discounting factors, d, and e.

Table 4 shows the improvement achieved by variable word rate modelling. The
document size was set to 1000 words for the unigram case, however, in order to ob-
tain substantial improvement using bigram models, we need to handle the larger size
of document (say, over 10 000 words). It is predictable because bigrams are orders of
magnitude more sparse than unigrams.

Table 4. This table shows unigram perplexities using the constant (baseline) and the variable word
rate models, using conditions described in figure 4. Perplexities were calculated for the reference
transcription of the 1997 Hub—4 evaluation data, containing three hours of speech (approximately
32 000 words). For the variable word rate model, parameters were adjusted ‘on-line’ — for each
occurrence of a word in the evaluation data, a histogram of the past 1000 words was collected
and relative frequencies were calculated using the Poisson estimates. Appropriate normalization,
discounting and smoothing techniques were applied.

model perplexity
constant word rate model 936.5
variable word rate model 845.8

5 Information Extraction

Simple statistical models underlie many successful applications of speech and language
processing. The language model component of state-of-the-art large vocabulary speech
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recognition systems uses the n-gram approaches described in this chapter. The most
accurate document retrieval systems are typically based on unigram statistics. Although
these models are limited representationally, they are trainable and can be scaled to large
corpora containing 10? words or more.

More recently, similar statistical finite state models have been developed for spoken
language processing applications beyond direct transcription to enable, for example, a
production of structured transcriptions [4], [17], [24], [31], [43]. This section discusses
the development of trainable statistical models for information extraction from spoken
language. In particular we concentrate on statistical finite state models for identifying
proper names and other named entities (NE) in television and radio broadcast news.

Named Entities. Proper names account for around 9% of broadcast news output, and
their successful identification would be useful for structuring the output of a speech
recognizer (through punctuation, capitalization and tokenization), and as an aid to other
spoken language processing tasks, such as summarization and database creation. The
task of NE identification involves identifying and classifying those words or word se-
quences that may be classified as proper names, or as certain other classes such as
monetary expressions, dates and times. This is not a straightforward problem. While
‘Wednesday 1 September’ is clearly a date, and ‘Alan Turing’ is a personal name,
other strings, such as ‘the day after tomorrow’, ‘Sheffield Linux Users’ Group’ and
‘Nobel Prize’ are more ambiguous. Here we consider seven classes of named entity
(<location>, <person>>, <organization>, <date>, <time>, <money> and <percentage>>)
which were defined for a recent Hub—4 broadcast news evaluation [7]. According to this
definition the following NE tags would be correct:

<date>Wednesday 1 September</date>

<person>Alan Turing</person>

the day after tomorrow

<organization>Sheffield Linux Users’ Group </organization>
Nobel Prize

In this case ‘The day after tomorrow’ is not tagged as a date, since only ‘absolute’ time
or date expressions are recognized; ‘Nobel’ is not tagged as a personal name, since it is
part of a larger construct that refers to the prize. Similarly, ‘Sheffield” is not tagged as a
location since it is part of a larger construct tagged as an organization.

Both rule-based [19], [46] and statistical approaches have been used for NE identi-
fication, with some grammar-based systems employing probabilistic or trainable com-
ponents [1], [29]. Bikel ef al. introduced a trainable,. statistical system for NE identifi-
cation [4] based on an ergodic HMM, in which the hidden states corresponded to NE
classes, and the observed symbols corresponded to words.

A straightforward approach to identifying named entities in speech is to transcribe
the speech automatically using a recognizer, then to apply a text-based NE identification
method to the transcription. It is more difficult to identify NEs from automatically tran-
scribed speech compared with text, since speech recognition output is missing features
that may be exploited by ‘hard-wired’ grammar rules or by attachment to vocabulary
items, such as punctuation, capitalization and numeric characters. More importantly,
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no speech recognizer is perfect, and spoken language is rather different from written
language. Although planned, low-noise speech (such as dictation, or a news bulletin
read from a script) can be recognized with a word error rate (WER) of less than 10%,
speech which is conversational, in a noisy (or otherwise cluttered) acoustic environ-
ment or from a different domain may suffer a WER in excess of 40%. Additionally, the
natural unit seems to be the phrase, rather than the sentence, and phenomena such as
disfluencies, corrections and repetitions are common. It could thus be argued that sta-
tistical approaches, that typically operate with limited context and very little notion of
grammatical constructs, are more robust than grammar-based approaches. Spoken NE
identification was first demonstrated by Kubala et al. [24], who applied the model of [4]
to the output of a broadcast news speech recognizer. An important conclusion of that
work was that the error of an NE identifier degraded linearly with WER, with the largest
errors due to missing and spuriously tagged names.

5.1 Finite State Model

In this section we outline a statistical framework for NE identification [17], which is
closely related to that of Bikel et al. [4] and Palmer et al. [31].

Formulation. First, let V denote a vocabulary and C be a set of name classes. We
consider that V is similar to a vocabulary for conventional speech recognition systems
(i.e., typically containing tens of thousands of words, and no case information or other
characteristics). When there is no ambiguity, these named entities are referred to as
‘name(s)’. As a convention here, a class <other> is included in C for those words
not belonging to any of the specified names. Because each name may consist of one
word or a sequence of words, we also include a marker <+> in C, implying that the
corresponding word is a part of the same name as the previous word. The following
example is taken from a human-generated reference transcription for the 1997 Hub—4
evaluation data:

at the ronald reagan center in simi valley california
——

%/_/ -
<organization> <location> <location>

The corresponding class sequence is
<other> <+> <organization> <+> <+> <other> <location> <+> <location>

because ‘simi valley’ and ‘california’ are considered two different names.

Class information may be interpreted as a word attribute (the left model of figure 7).
Formally, we define a class-word token <c,w> € C x V and consider a joint probability
model

p(<e,w>q,...,<c,w>,) = H p(<e,w>; | <e,w>q,...,<c,w>;_{) (34)
i=1..m

that generates a sequence of class-word tokens {<c,w>,...,<c,w>, }. This formu-
lation is best viewed as a straightforward extension to standard n-gram language mod-
elling having implicit class transition”.

9 Denoting e = <c¢,w>, formulation (34) is identical to n-gram language models.
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Fig. 7. Topologies for NE models. The left model assumes that class information is a word at-
tribute. The right model explicitly models word-word and class-class transitions.

Unfortunately, this approach would not work as well as other statistical approaches
can do. This is an example of a data sparsity problem that is observed in almost ev-
ery aspect of spoken language processing. Although NE models cannot accommodate
a complete set of parameters, a successful recovery of name expressions is heavily de-
pendent on an existence of higher order n-grams. The implicit class transition approach
contributes adversely to the data sparsity problem because it causes the set of possible
tokens to increase in size from [V [ to |C x V|.

Alternatively, word-word and class-class transitions may be explicitly formulated
(the right model of figure 7). Then we consider a probability model

p(Cl,Wl,...,Cm,Wm): H p(ci,wi|Cl,W1,...,C,'_1,Wi_1) (35)

i=l..m

that generates a sequences of words {wy,...,w,,} and a corresponding sequence of NE
classes {ci,...,cn}. It is a state machine, but it cannot be considered as an HMM, as
the probabilities are conditioned both on the previous word and on the previous class.
It compensates for the fundamental sparseness of n-gram tokens in a vocabulary set; a
bigram level modelling of form (35) outperforms a trigram model of form (34) [17].

Formulation (35) treats class and word tokens independently. Using bigram level
constraints, it is reduced to

plet,wi,..,emwm) = [ pleiwi| cimi,wic) - (36)

i=1..m

The right side of (36) may be decomposed as
plciwi | cimt,wizt) = p(wi | ciseir,wiz1) - plei | cimt,wizt) (37

The conditioned current word probability p(w; | ¢;,ci—1,w;—1) and the current class
probability p(c; | ¢ci—1,w;—1) are in the same form as a conventional n-gram, hence can
be estimated from annotated text datal®.

10 There exists an alternative approach to decomposing the right side of (36):
p(ei,wi | cio1,wim1) = plei | wiscimr,wiz1) - p(wi | cim1,wiz1) -

Theoretically, if the ‘true’ conditional probability can be estimated, decompositions by (37)
and above should produce identical results. This ideal case does not occur, and various dis-
counting and smoothing techniques will cause further differences between two decomposi-
tions.



100 Yoshihiko Gotoh and Steve Renals

Smoothing Techniques. The amount of annotated data available is orders of magnitude
smaller than the amount of text data typically used to estimate n-gram models for large
vocabulary speech recognition. Smoothing the ML probability estimates is therefore
essential to avoid zero probabilities, in which more specific models are smoothed with
progressively less specific models. The following smoothing path can be chosen for the
first term on the right side of (37):

1
p(wi | ciyciot,wic1) — p(wi | ciycio1) — p(wi | ci) — p(wi) — W

|[W | is the size of the possible vocabulary that includes both observed and unobserved
words from the training text data (i.e., |\ | is sufficiently greater than |V |)!!. Similarly,
the smoothing path for the current class probability (the final term in (37)) may be

plei|ciot,wiot) — plei | cio1) — plei) -

This assumes that each class occurs sufficiently in training text data; otherwise, further
smoothing to some constant probability may be required.

Given the smoothing path, the current word probability may be computed using an
interpolation method described in section 2:

p(wilei,cimt,wiz1) = fwilciycit, wio1) + {1—a(ci cio1,wiz1) }-p(wilei,cio1)
where a(c;, ci—1,Wi—1) = 2 f(wi | ci,cim1,Wi-1)
wi€E (ci—1,wi1,ci,wi)

(38)

where f(wi | ¢iyci—1,wi—1) is a discounted relative frequency, ot(c;, ¢;—1,wi—1) is a non-
zero probability estimate and E (c;—1,w;_1,c;,w;) implies the event such that current
class ¢; and word w; occur after previous class ¢;— and word w;_.

Alternatively, the back-off smoothing method of [23] could be applied:

fA(W[ | Ci,Cifl,Wifl) if E(Ci,I,ijhchwi) CXiStS
w;: | cioci1. Wi — :
P( t| iy Ci—1,Wi 1) {B(Ci,cihwil)'p(wi | Cigcifl) otherwise
1 —ociycim1,wiz1)

- Y Flwi | ciyei)

wi€E (¢i—1,wi—1,¢i,w;)

where B(ci,ci1,wi—1) =

(39)

This second decomposition alone would not work as well as the initial decomposition.
Crudely speaking, it calculates the distribution over classes for each word; consequently it
would reduce accuracy for uncommon words with less reliable probability estimates. Decom-
position by (37) makes a more balanced decision because it relies on the distribution over
words for each class, and usually there are orders of magnitude fewer classes than words.

u Smoothing to p(w; | ¢;,¢;—1) would probably produce a better results than smoothing to
p(w; | ¢i,wi_1), since the former could be more accurately estimated from the annotated train-
ing data.
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where B(c;,ci—1,wi—1) is a back-off factor. Using standard discounting techniques de-
scribed in section 2, discounted relative frequencies and non-zero probability estimates
can be obtained from the training data!?.

Given a sequence of words {wy, ..., wy, }, named entities can be identified by search-
ing the Viterbi path such that

<8p...Cp>=argmaxp(ci,wi,...,Cm,Wn) - (40)
Cl...Cm

Although the smoothing scheme should handle novel words well, the introduction of
conditional probabilities for <unk> (which represents those words not included in
the vocabulary V') may be used to model unknown words directly. In practice, this
is achieved by setting a certain cutoff threshold when estimating discounting probabili-
ties. Those words that occur less than this threshold are treated as <unk> tokens. This
does not imply that smoothing is no longer needed, but that conditional probabilities
containing the <unk> token may occasionally pick up the context correctly without
smoothing with weaker models. The drawback is that some uncommon words are lost
from the vocabulary.

5.2 Experiment

NE identification systems are evaluated using an unseen set of evaluation data; the hy-
pothesized NEs are compared with human annotated NE tags in a reference transcrip-
tion'3. In this situation there are two possible types of error: rype, where an item is
tagged as the wrong kind of entity and extent, where the wrong number of word tokens
are tagged. A third error type content arises from speech recognition errors. These three
error types each contribute 1/3 to the overall error count, and precision (P) and recall
(R) can be calculated in a usual way. A weighted harmonic mean (P&R), sometimes
referred to as the F-measure [45], is often calculated as a single summary statistic:

P&R = —— .
R+P

P&R has the disadvantage of deweighting missing and spurious identification errors
compared with incorrect identification errors [27]. The slot error rate (SER) is an alter-
native measure that weights the three types of identification error equally. Analogous to
WER, SER may be obtained by:

I+M+S
CH+I+M
where C, I, M, and S denote the numbers of correct, incorrect, missing, and spurious

identifications. Using this notation, precision and recall scores may be calculated as
R=C/(C+I+M)and P=C/(C+1+S), respectively.

SER =

12 The weaker models—p(w; | ¢i,ci_1), p(wi | ¢;), and p(w;)—may be smoothed in a way anal-
ogous to that used for p(w; | ¢;,ci—1,w;—1). Approaches to discounting and combining with
different level models are similar when handling the conditioned current class probabilities,
i.e, p(ci|ci—1,wi—1), p(ci | ci—1), and p(c;).

13 Inter-annotator agreement for reference transcriptions is around 97-98% [39].
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Table 5 shows NE identification scores by the statistical finite state machine ap-
proach. The model parameters with explicit class-class and word-word transitions were
derived from the relatively small amount of training data (one million words). Like
other language modelling problems, a simple way to improve the performance is to in-
crease the amount of training data. As a final note, it should not be under-stated that
an appropriate choice and implementation of discounting/smoothing strategies is very
important, particularly because a more complex model structure is being trained with
less data, compared with conventional language models for speech recognition systems.

Table 5. The table compares NE identification scores on hand transcription (no word error) and
speech recognizer output (21% WER). A finite state model was derived from the Hub—4 train-
ing data, consisting of about one million words of transcripts having manual NE annotation. It
selected 17,560 words (from those occurring more than once in the training data) as a vocab-
ulary and the rest (those occurring exactly once — nearly 10,000 words) were replaced by the
<unk> token. The combined Good-Turing/absolute discounting scheme was applied, followed
by back-off smoothing. Further detail may be found in [17].

WER R P P&R SER

hand transcription .000 .863 .922 .892 .187
recognizer output .210 .729 .823 .773 .381

6 Summary

This chapter first outlined the basics of statistical language models (e.g., estimating
from sparse training data, encapsulating varying contents and styles of spoken lan-
guage), then discussed a more recent area for applying n-gram based approaches such
as named entity extraction.

Constraints by the Markov assumption, that enforces the local structure of (spoken)
language, achieve success only to some extent, but their fundamental brittleness may
be alleviated by incorporating richer, and more linguistically motivated models. Chelba
and Jelinek have addressed the use of probabilistic dependency grammar [6], where the
probability of each word is estimated from several other words that, unlike conventional
n-gram models, are not necessarily those immediately preceeding the word.

Another area, that is not discussed in this chapter but worth noting, is the maximum
entropy approach. It is a conceptually clean way to model information from multiple
sources. It is recently applied to areas such as parsing [34], statistical machine trans-
lation [2], [32], and the incorporation of trigger word pair constraints into an n-gram
language model [40]. Although computationally challenging, series of successful ap-
plications seem to indicate the potential of the framework.
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