
A Rescue Robot Control Architecture
Ensuring Safe Semi-autonomous Operation

Andreas Birk and Holger Kenn

International University Bremen (IUB)
School of Engineering and Science
{a.birk,h.kenn}@iu-bremen.de

Abstract. The rescue robots developed at the International University
Bremen (IUB) are semi-autonomous mobile robots providing streams of
video and other essential data via wireless connections to human oper-
ated basestations, supplemented by various basic and optional behaviors
on board of the robots. Due to the limitations of wireless connections
and the complexity of rescue operations, the full operation of a robot
can not be constantly supervised by a human operator, i.e., the robots
have to be semi-autonomous. This paper describes how the main chal-
lenge of safe operation under semi-autonomous control can in general
be solved. The key elements are a special software architecture and a
scheduling framework that ensure Quality of Service (QoS) and Fail-Safe
Guarantees (FSG) despite the unpredictable performance of standard
Internet/Intranet-technologies, especially when wireless components are
involved.

1 Introduction

Rescue robots have a large potential as demonstrated for the first time on a larger
scale in the efforts with helping in the World Trade Center disaster [Sny01]. For
an overview of potential tasks of rescue robots and the related research in general
see for example [RMH01].

One of the main challenges in using robots in search and rescue missions is
to find a good tradeoff between completely remotely operated devices and full
autonomy. The complexity of search and rescue operations makes it difficult if
not impossible to use fully autonomous devices. On the other hand, the amount
of data and the drawbacks of limited communication possibilities make it unde-
sirable if not unfeasible to put the full control of the robot into the hands of a
human operator. This paper introduces a control architecture that allows safe
semi-autonomous operation. The major challenges in this are to ensure Qual-
ity of Service (QoS) and Fail-Safe Guarantees (FSG) despite the unpredictable
performance of standard Internet/Intranet-technologies, especially when wireless
components are involved.

The rest of this paper is structured as follows. In section two, the software
architecture of the IUB rescue robots is described. In doing so, there is a special
emphasis on the main challenges from the telematics viewpoint, namely, how

G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, pp. 254–262, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A Rescue Robot Control Architecture 255

cockpit
down−link

up−link
mobile robot

RF−connection

Internet
(Intranet)

Fig. 1. The IUB rescue robots are teleoperated from a so-called cockpit by a human
operator. Despite the human in the loop, they need quite some autonomous functional-
ity ensuring FSG and QoS as the network performance is unknown and can even break
completely down, especially as wireless components are involved.

Quality of Service (QoS) and Fail-Safe Guarantees (FSG) can be ensured when
an unreliable wireless network connection is a major part of the control loop.
The third section presents the hardware and the low-level software environment
with which the system is implemented. Section four concludes the paper.

2 The Software Architecture

The IUB rescue robots are teleoperated by humans via standard network tech-
nologies (figure 1). The human in the loop ideally feels like being in full control
of the system. But the unpredictable performance of networks, in terms of band-
width, latency, and even reliability, makes it necessary to implement quite some
autonomy on the mobile devices. In doing so, there are two major issues, namely
ensuring FSG and QoS. FSG must never be violated at any cost. For a mobile
robot, this means for example that major obstacles and gaps in the ground must
be avoided or that the base must be stopped to avoid serious damages. QoS
in contrast defines constraints which maximize utility as long as they are not
violated. A timely response to requests from the operator for example ensures
that the mobile robot moves along its path as desired. If these constraints are
occasionally violated, they should at most cause some slight inconveniences to
the operator, but they never must put the whole device or mission at risk.

The main challenge is to find a software architecture which supports these
different types of processes. For our rescue robots, we use following approach
(figure 2). The run-time system consists of three cyclic master threads T0, T1,
and T2 running in timeslots in a 125 Hz major cycle. T0 includes everything
dealing with FSQ. It establishes a hard realtime control-system. It is run to
completion and its components are scheduled offline. T0 covers the motor- and
basic motion-control as well as odometry and positioning.

The sub-threads of the master-thread T1 are so-called behaviors. Follow-
ing the field of behavior-oriented robotics (see e.g. [Bro86,Ste91,Ste94] for an
overview), reactive control schemes are used to establish close, dynamic cou-
plings between sensors and motors (see [Bro86,Ste91]) which are computed in



256 Andreas Birk and Holger Kenn

thread T0: autonomous, hard realtime control thread T1: semi-autonomous, soft realtime control thread T2: non-uniform processing

- runs to completion (< 1 msec)

- consists of sub-threads T0.x

* scheduled offline

- runs with preemption

* online scheduling of sub-threads T1.x

* implementing a rich set of behaviors

* one sub-thread services the operator

- runs with preemption

- services spare-time activities

* building up environment maps

* etc.

* operator changes of mission parameters

- invokes a dedicated scheduler (B-scheduling)

* T0.x ensure 

* T1.x ensure 

FSG

QoS

Fig. 2. All threads running on a rescue robot are classified into three types. For each
type, a respective master-tread handles the invocation of its related sub-thread. This
scheme allows the combined usage of hard realtime, soft realtime, and non-uniform
processing.

125 Hz IRQ

emergency control

MC68332 onboard TPU

M M

Channels: A B C D E F

Q
D
E
C
 
1

Q
D
E
C
 
1

Q
D
E
C
 
2

Q
D
E
C
 
2

P
W
M

P
W
M

update position
and orientation

update motion
errors

motion control

compute 
target speeds

compute 
correction values

set new
pulsewidth

read quadrature
decoders

update PID
errors

motor control

update sensor
values

sanity
check

active breaking
if necessary

Fig. 3. The tasks for realtime control are cyclic processes running at a fixed frequency.
Their target-values are asynchronously set by higher level behaviors.

pseudo-parallel. Behaviors can be used to keep the robot on a trajectory, to
avoid obstacles, to approach a target, to autonomously scan for victims, and so
on. The steering commands from the operator are serviced in a dedicated be-
havior. They are transformed to motion commands and fused with the motion
commands from all other behaviors.

For the behaviors, soft realtime constraints are the only possible way to go.
The “ideal” deadline until when a behaviors has to be handled is in most cases
not known as it depends on unpredictable or simply too many conditions. The
behaviors are scheduled online by a special so-called B-scheduler (see [BK00])
which is invoked by T1. Note that this scheduler as well as the behaviors are



A Rescue Robot Control Architecture 257

pre-empted by the master-scheduler. The B-scheduler guarantees a idle-free, op-
timally balanced execution of the behaviors, thus optimizing QoS.

Spare time activities, i.e., processes which neither contribute to the FSG nor
the QoS, are handled in the master-thread T2. They can include the occasional
change of mission parameters by the operator, the construction of environment
maps, and so on.

2.1 The Hard Realtime Control

The T0 layer interacts with the higher layers via a shared memory buffer that
is written by a thread from a higher layer and is read by the lower-layer T0
thread. The write operation is made atomic by delaying the execution of the T0
thread during write operations. So, target-values in the motion-controller can be
asynchronously set by higher level behaviors.

The motion-controller so-to-say transforms the target-values on basis of odo-
metric data to appropriate target-values for the motor-control. The motion- and
motor-control layers are based on generic software modules for differential drive
robots, featuring

– PID-control of wheel speed
– odometric position- and orientation-tracking
– rotational and translational trajectory control
– emergency breaking

As mentioned before, all of the involved subthreads T0.x are scheduled off-
line to achieve a hard real-time control. This allows especially to include an
emergency-module which ensures that the robot is stopped if it is for example
extremely close to a gap in the ground. This subthread uses active breaking to
get the base to a fast, but uncontrolled stop. Hence, the base will be protected
in such circumstances from damage, but valuable positioning and trajectory
information will be necessarily lost as this harsh breaking will include slipping
motions.

The option of this subthread is hence explicitly for guaranteeing failure-safety,
which only kicks in on extremely rare occasions. Normal obstacle avoidance,
including controlled stops which are autonomously activated by the base, are
handled on the layer of T1.

2.2 The Soft Realtime Control via Behaviors

The hard realtime is needed to ensure FSG. But for tele-operated devices in
general, network performance, especially for wireless solutions, can usually not
be predicted. Hence, hard realtime conditions are not an option for complete
control of the device. Furthermore, hard realtime software is difficult to maintain
and to extent.

The major trick in our software architecture is that a soft realtime scheduler
for behaviors is run as part of the hard realtime schedule. In behavior-oriented



258 Andreas Birk and Holger Kenn

Cockpit
PC

Application

Transport

Internet

Network

Data Link

Physical

Internet
transmission

Ethernet
Wireless
Ethernet

Wireless
Bridge

Onboard
PC

RoboCube

Serial Port
Data

Serial Port
Inband Handshake

Fig. 4. The flow of the control data from the cockpit to a mobile robot. For certain
parts, the time can not be predicted.

robotics, the control of a system is distributed over various processes or behav-
iors running in virtual parallel. The different behaviors, like controlled obstacle
avoidance, ensure a smooth performance of the base.

A core behavior, especially from the viewpoint of a teleoperated device, is op-
erator communication, i.e., the transmission of control states from the operator’s
console or so-called cockpit to the control hardware (figure 4). To ensure a low-
latency operation over the Internet link, a protocol based on UDP packets has
been implemented. The protocol is completely stateless. The packets are formed
at the cockpit by synchronous evaluation of the control state and transmission to
the onboard PC of the mobile platform via Internet. Here, they are received and
transmitted to the RoboCube via the serial port. The communication behavior
parses the packets and makes its content available to other behaviors via shared
memory. Operator command-data for motion is simply fused with the data of
other autonomous behaviors.

To ensure low-latency-operation, there is no retransmission on lost packets
although UDP does not guarantee successful delivery of packets. However, since
packets are transmitted synchronously and are only containing state information,
there is no need to resend a lost packet since the following packet will contain
updated state information. By exploiting this property of the protocol, low-
latency operation can be assumed.

The communication between the RoboCube and the onboard PC uses in-
band handshaking to prevent buffer overruns in the RoboCube software. The
communication layer software in the RoboCube confirms every packet with a
0x40 control code. Only if this control code has been received, the onboard PC
communication layer software transmits the next packet. If the RoboCube com-
munication layer software did not yet confirm a packet when a new packet arrives
from the Internet transport layer, this packet is discarded so that the control
layer software only receives recent packets, again ensuring low-latency operation.

Moreover, the communication layer measures the time between two packets.
Whenever it becomes too large, the command information in the last packet is
discarded and the base is transfered into a safe state depending on sensor infor-
mation, i.e. stopped with the motor controller actively holding the last position.



A Rescue Robot Control Architecture 259

sensor
moduls

base
mobile

mobile PC

CubeSystem

cameras

Battery− and Powermanagement
Motorcontrol
Motioncontrol
Odometry and Positioning

5x Ultrasound Sonar

optional (Pyro, Temp., Smoke)
6x Active Infrared

4x USB−cameras
video compression
WaveLAN RF−ethernet

Fig. 5. A schematic overview of the different components of a rescue robot.

Plausibility checks on the same layer can be used to discard packets or to
modify the implications of the information they contain. This is done in a rule-
based module. This functionality is optional and allows a convenient incorpora-
tion of background knowledge about particular application domains.

2.3 The OS Support

The control software relies on the RoboCube controller platform, which is shortly
described below, and on it’s CubeOS operating system to implement the con-
trol application. The CubeOS nanokernel contains real-time multi-threading,
abstract communication interfaces and thread control primitives. On top of the
nanocore, a set of software drivers provides an application programming interface
to the RoboCube’s hardware.

3 The Hardware Implementation of the System

The implementation of the rescue robots is based on the so-called CubeSystem,
a kind of construction kit for robotic systems. The center of the CubeSystem is
the so-called RoboCube controller hardware (figure 6) based on the MC68332
processor. The compact physical shape of RoboCube is achieved through several
techniques. First, board-area is minimized by using SMD-components. Second,
three boards are stacked on each other leading to cubic design, hence its name
RoboCube.

RoboCube has a open bus architecture which allows to add “infinitely” many
sensor/motor-interfaces (at the price of bandwidth). But for most applications
the standard set of interfaces should be more than enough. RoboCube’s basic
set of ports consists of

– 24 analog/digital (A/D) converter,
– 6 digital/analog (D/A) converter,
– 16 binary Input/Output (binI/O),



260 Andreas Birk and Holger Kenn

Fig. 6. Left: The RoboCube, an extremely compact embedded computer for robot
control. Right: The prototype mobile base of the IUB rescue robots. It is completely
constructed from CubeSystem components including the RoboCube as controller, the
motor- and sensor-modules, as well as the battery-management hardware.

Fig. 7. The new mobile base with six actively driven wheels.

– 5 binary Inputs,
– 7 timer channels (TPC), and
– 3 DC-motor controller with quadrature-encoding (QDEC).

The RoboCube is described in more detail in [BKW00,BKW98].
In addition to its central component, the RoboCube as controller hardware,

the CubeSystem provides additional hardware, including electronics and me-
chanics, and software components. In a first prototype, a midsized differential
drive was used which is part of the standard CubeSystem componts (figure 6).
For the more challenging locomotion tasks that are needed for rescue robots, a
new base was developed that features six actively driven wheels (figure 7).



A Rescue Robot Control Architecture 261

The CubeSystem features a special operating system, the CubeOS (see
[Ken00]), which ranges from a micro-kernel over drivers to special high-level lan-
guages like the process description language PDL (see [Ste92]). The CubeSystem
is used in basic and applied research, industrial projects and academic education.
Therefore, a wide range of sensor- and motor-components exists. The CubeSys-
tem also includes dedicated RF-network components. For compatibility reasons,
radio-ethernet serviced via a mobile PC is used for our rescue robots. This PC
is also used to compute the video-compression. All control and service related
data going to and coming from the cockpit is directly relayed from the RF-
connection to the RoboCube which handles all service and control related tasks
on the rescue robot.

4 Conclusion

The paper described the IUB rescue robots. On its hardware side, the implemen-
tation of the robots is based on the CubeSystem, a kind of construction kit for
robotic systems. Its use in the design of the rescue robots is shortly presented in
this paper.

The main focus of this paper is on the general problem of ensuring secure
but convenient control of a tele-operated device. We presented a special software
architecture which incorporates Quality of Service (QoS) and Fail-Safe Guaran-
tees (FSG). The main idea of the architecture is to find a suited way to combine
hard and soft realtime scheduling.

Concretely, we use an hierarchical scheduling structure as follows. On the
highest layer, there are only three threads T0, T1, T2 running in time-slots in
a fixed frequency master cycle. T0 is run to completion and its subthreads T0.x
establish a hard realtime control, ensuring FSG. The thread T1, which can be
preempted, invokes a further soft-realtime scheduler for behaviors, which provide
QoS. The behaviors establish close, dynamic couplings between sensors and mo-
tors computed in pseudo-parallel. This includes the steering-commands from the
human in the loop, which are simply fused with the autonomous functionalities.
The third thread T2 allows optional non-uniform processing, e.g., for operator
changes of mission parameters.

References

BK00. Andreas Birk and Holger Kenn. Programming with behavior-processes. In
8th International Symposium on Intelligent Robotic Systems, SIRS’00, 2000.

BKW98. Andreas Birk, Holger Kenn, and Thomas Walle. Robocube: an “univer-
sal” “special-purpose” hardware for the robocup small robots league. In
4th International Symposium on Distributed Autonomous Robotic Systems.
Springer, 1998.

BKW00. Andreas Birk, Holger Kenn, and Thomas Walle. On-board control in the
robocup small robots league. Advanced Robotics Journal, 14(1):27 – 36,
2000.



262 Andreas Birk and Holger Kenn

Bro86. Rodney Brooks. Achieving artificial intelligence through building robots.
Technical Report AI memo 899, MIT AI-lab, 1986.

Ken00. Holger Kenn. Cubeos, the manual. Technical Report MEMO 00-04, Vrije
Universiteit Brussel, AI-Laboratory, 2000.

RMH01. M. Micire R. Murphy, J. Casper and J. Hyams. Potential tasks and research
issues for mobile robots in robocup rescue. In Tucker Balch Peter Stone and
Gerhard Kraetszchmar, editors, RoboCup-2000: Robot Soccer World Cup IV,
Lecture Notes in Artificial Intelligence 2019. Springer Verlag, 2001.

Sny01. Rosalyn Graham Snyder. Robots assist in search and rescue efforts at wtc.
IEEE Robotics and Automation Magazine, 8(4):26–28, December 2001.

Ste91. Luc Steels. Towards a theory of emergent functionality. In Jean-Arcady
Meyer and Steward W. Wilson, editors, From Animals to Animats. Proc. of
the First International Conference on Simulation of Adaptive Behavior. The
MIT Press/Bradford Books, Cambridge, 1991.

Ste92. Luc Steels. The pdl reference manual. Technical Report MEMO 92-05, Vrije
Universiteit Brussel, AI-Laboratory, 1992.

Ste94. Luc Steels. The artificial life roots of artificial intelligence. Artificial Life
Journal, 1(1), 1994.


	1 Introduction
	2 The Software Architecture
	2.1 The Hard Realtime Control
	2.2 The Soft Realtime Control via Behaviors
	2.3 The OS Support

	3 The Hardware Implementation of the System
	4 Conclusion
	References



