An Interactive Software Environment
for Gait Generation and Control Design
of Sony Legged Robots

Dragos Golubovic and Huosheng Hu

Department of Computer Science
University of Essex, Colchester C04 35Q, UK
{dgolub,hhu}@essex.ac.uk

Abstract. This paper presents a modular approach to the development
of an interactive software environment for gait generation and control
design of Sony legged robots. A number of modules have been devel-
oped for monitoring robot states, gait generation, control design and
image processing. A dynamic model of the leg and wheel-like motion
are proposed to combine both wheeled and legged properties to produce
smooth quadruped motion and high flexibility. Experimental results are
presented to show the feasibility of the system

1 Introduction

Increased complexity and sophistication of advanced walking robots has led to
continuing progress in building software environments to aid in the development
of robust functionality. This is true not only because the physical construction
of these robots is time consuming and expensive, but also because the evaluation
and control of their gaits often requires prolonged training and frequent recon-
figuration. To speed up the development cycle and decrease the design cost and
time required for gaits generation, many software environments have been devel-
oped [2], [3]. The benefit of developing a suitable software environment includes
the ability to record precise and voluminous data. Indeed, a flexible software
environment plays an important role in many aspects of robotics research.

The main focus of this paper is the development of an interactive software
environment for the design of a real-time control algorithm of AIBO football
playing robots [4]. To make design and development of gaits easier, an interactive
software environment has been developed at Essex. The software environment
consists of three modules (state reflector, gait generation and vision) and gives
a variety of useful features for the gait generation and development. By using
a mouse or keyboard commands, an operator is able to record a sequence of
movements that can be replayed in a sequence. It is also a very useful tool for
debugging and evaluating quadruped gaits [5].

The rest of this paper is organized as follows. Section [2 describes the con-
struction of an interactive software environment for the control design and gait
generation of Sony AIBO robots. In section Bl the control design of Sony Legged

G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, pp. 279-287 2003.
© Springer-Verlag Berlin Heidelberg 2003

280 Dragos Golubovic and Huosheng Hu

robots is presented, which includes the control system structure, a dynamic
model of the leg and wheel-like motion. The experiment results are given in Sec-
tion Hlto show the feasibility of the system. Finally, a brief conclusion and future
work are presented in Section

2 Building a Software Environment

The software architecture is a crucial aspect of Sony walking robots. The control
software is ultimately responsible for managing the safe operation of the robot.
In other words, the control software for a Sony walking robot must be carefully
planned and constructed so that the derived gaits, however complex, conform to
safety and efficiency specifications.

2.1 Modular Implementation

Since Sony AIBO robots have a large number of input and output parameters,
their control design is complex. Therefore a modular approach is adopted here [T].
As shown in Figure [[] high-level control is conducted in a desktop PC (Pentium
IT 266) that is connected to the robot through a serial port (19200 baud). There
are three main modules in it: a state reflector, a gait generator and an image
interpreter. On the robot side a debug box has been mounted on the robot’s back
and connected to the PC via a cable. The next section describes these modules
in more detail. Changes in any of these modules don’t affect other modules,
enabling users to split application development on several parts that can be
carried out independently.

2.2 Module Description

Modular architecture gives provision for reconfiguration and extension, allowing
the system to evolve with time, this is described in this section.

O State reflector — An internal state reflector has been incorporated to mirror
the robot’s state on the host computer, which is an abstract view of the
actual robot’s internal state, such as sensor information from the robot and
control commands from the host computer. The state reflector is a set of
data structures which allow the client to examine sensor information and
control the robot by setting its values. In Table 1, CSensor holds basic sensor
information sent from the robot and CPastReadings holds information about
current and past sonar returns. The control commands for robot motions are
listed in Table 2.

O Communication routines — The designed controller communicates with
the robot using a handshake mechanism, and sends an appropriate command
to the robot. The program executed on the robot waits for the command (Ta-
ble[2)) and executes it when the command has been received. After execution,
the robot returns the result along with confirmation that data has been sent.

An Interactive Software Environment for Gait Generation 281

Graphical interface

T
| |
Sensor interpreter Motion control
routines Routines

1 ! ‘

State reflector [magein Ferpreter Gait generator
Routines

{ i !

Communication routines

=Set Speed

=Store Sequence
*Execute Sequence
*Read Sensor& Data
*Read Image

Communication routines - —
I S = P

Executor «—>| Timer -"L'"StalIe Reader .-‘“- “ Image Reader

l_1' I R UniLock o
Image

- Image
Touchll Optical || Gravit Ilnfra-red 3

Actuators r e
Sensor || Encoders || Sensor || Sensor

dhee —

Camera

Fig. 1. Configuration of the proposed software environment

The amount of data transferred from the user’s application to the robot and
the other way around varies from one command to the other. A 19200-baud
channel has been used.

O Gait generator — The gait generator communicates with the robot by
passing a sequence of arrays that are transformed into a sequence of robot
movements. It creates different gaits in a form of a sequence of arrays. In this
software environment, users can move all robots’ joints at the same time and
record its movements in an array sequence, which can then be repeated and
tested. Therefore users can create gaits and test various motions necessary
for robot’s mobility.

O Image reader — Gathering image snapshots and processing images can be
done completely independently from the rest of the application. The size of
a captured image is 144 x 76 pixels and each pixel has three bytes for colour
information. Since transferring whole image through a 19200baud connection
takes 45 second, an adjustable scale factor is added to reduce transfer time
if necessary. A locking mechanism has been adopted to allow the transfer of
the current image to be safely completed before the new snapshot image can
be grabbed.

282 Dragos Golubovic and Huosheng Hu

Table 1. State reflector data structure

CSensor CPastReadings

struct Leg FRLeg struct Leg * FRLeg

struct Leg FLLeg struct Leg * FLLeg

struct Leg BRLeg struct Leg * BRLeg

struct Leg BLLeg struct Leg * BLLeg

struct Head |head struct Head™ head

struct Leg tail struct Leg* tail

struct Gravity|gravity struct Gravity *|gravity
Struct Leg Struct Head Struct Tail Struct Gravity

Thetal [degrees Pan [degrees| Pan X

Theta2 [degrees Tilt [degrees| Tilt Y

Theta3 [degrees Roll [degrees| [degrees] Z

TouchSen Mouth [degrees] [degrees]

[true/false]

Table 2. Control commands

Command Communication time Size of transferred data

Motor on 10ms 1 byte

Read Data 100ms 74 byte

Send motion sequence Sequence length x 100ms |Sequence length x 74 byte

Execute 10ms 1 byte

Set speed 50ms 8 byte

Read image 45sec/{scale factor} 76x 144 (byte/{scale fac-
tor}

3 Control Design

The key concept in this paper is based on movements of a four-wheeled car. Each
leg tip is moving in a rectangle trajectory. Front and rear legs from the opposite
sides are in the same phase and the other two legs are opposite. Projection of the
mass of the robot to the ground is on the line that connects to legs, which are in
touch with the ground. The centre of paw rotation is initially at the same inverse
kinematic coordinate for both front legs and both rear legs. This prevents the
robot from falling to the side and stabilizes the camera. Gravity sensors have
been used to obtain information on body position.

3.1 Control System Structure

The control system structure consists of both kinematics and dynamics levels
(Figure B). The kinematics level involves two sub-levels: a pattern generator and
a leg trajectory generator. Each leg has its own trajectory generator that deter-
mines the course of the leg endpoint. When a timing signal has been received,
the leg must begin its swing/stance cycles. In order to emulate the accurate
foot placement the trajectory generator plans a trajectory in foot position co-
ordinates and then converts them to joint positions using inverse kinematics.

An Interactive Software Environment for Gait Generation 283

]— o
v
Pattern Kinematics planning
m, 1 * generator
| X,V
: Trajectory
£, ity Suspens Ko, Vo.# -
Gravity Suspension 0,70 generator
sensor regulator
i, Qz,
Sensor
readings
k3
Dynamics compensation

Fig. 2. Gait generation mechanism

The pattern generator provides repetitive motion of a leg and synchronization
of movements with the other three legs. Gait planning depends on the velocity
and heading of the robot. The time and space coordination of the motion in-
volves a decision regarding which leg should be lifted or placed. It must be made
in terms of the condition of terrain, stability requirements, speed requirements,
mobility requirements and power consumption.

3.2 Dynamic Model of the Leg

Figure [shows the single robot’s joint with its three motorized rotational axes.
Forces applied to the leg differ whether the leg is on the ground or not. The
set of 3 generalized coordinates ¢[ql, ¢2, ¢3] is used to determine the mechanism
position.

Each coordinate corresponds to one degree of freedom (DOF). There are two
rotational segments upper limb (S1) and lower limb (S2). Angle i is the relative
rotation of the i —th segment with respect to the (i — 1) —th segment around the
axis. The dynamics equations are derived on the basis of D’Ambler’s principle

[6]. For the k — th segment, we assume that (?k is its gravity force vector; FZE is
the resultant of other external forces acting on it;]\4_;: g is the resultant of other
external moments acting on it; le is the resultant of the internal forces on it;
]\Zm is the resultant of the internal moments on it; E is the vector of the drive

2
in the joint Si— 1; ?Z—j:SiCj. In contrast, C'j is the centre of gravity of the j-th
segment; if D’Ambler’s principal of inertial forces is applied, we have

284 Dragos Golubovic and Huosheng Hu

Fig. 3. Dynamic model of a front-right leg on the ground (left) and in the air (right)

3

— — — — —

FSj+P¢+Z(Gk+Fk1+FkE):0 (1)
k=1

If D’Ambler’s principal is applied to the inertial moment relative to the Si — 1,
then

— — 3. o = — — - —
Msj + Pj +Z {Mm + ric1k X (Gk + Fr1 +FkE) +MkE} =0 (2)
k=1

The system equations (I) and () can be transformed into the matrix form (3
W(q)i=P+U(gq) 3)

P presents the column vector of driving forces and torques in the mechanism
joints. The matrix W depends on the generalized coordinates ¢, and U depends
on ¢ and generalized velocity. The algorithm for computing W and U is de-
rived from general theorems of dynamics and these matrices also depend on the
configuration.

3.3 Generation of Wheel-Like Motion

A trajectory refers to both the path of the tip’s movement of a limb (paw), and
the velocity along the path. Thus, a trajectory has both spatial and temporal
aspects. The spatial aspect is the sequence of the locations of the endpoint from
the start of the movement to the goal, and the temporal aspect is the time
dependence along the path.

Six posture parameters used for designing the gait, m, n, Xo, Yo, Zo and «,
are common parameters for each leg; but they can differ between front and rear
legs. If posture parameters for the front and rear legs are not identical, the top
plane of the body will make § angle with the ground. X, Y and Z coordinates of
the paw are determined by the angular targets of a leg.

An Interactive Software Environment for Gait Generation 285

Fig. 4. Pawn trajectory

O, = arcsin (Z/\/:r2 +y2+ ZQ) (4)
O3 = 2arccos (\/332 +y2 + Z2/2l cos @2) (5)

01 = arctg(y/r) — arccos (\/x2 +y2 + Z2 /2l cos 92) (6)

The body velocity depends upon the width of the elliptical paw trajectory (m),
the duty factor y and the cycle period.

V =m/zT (7)

An ideal duty factor can reach the value of 0.5 (when only two legs are on the
ground at the same time). The maximum value of duty factor is 1. Equation
shows that the increase of the body velocity can be achieved by either increasing
m or decreasing 1. However, the excessive increase of m factor can lead to the
increase of y, because the duty factor depends on many parameters, which lead
to poor performance.

A new suspension mechanism is adopted to adjust the height of a foot to
terrain with vertical elevation. Suspension mechanism can prevent a leg’s up
and down motion during walking. That is, when a leg is up for swing forward, a
suspension mechanism should stretch to its limit, and make the vertical stroke
of a leg shorter.

4 Experimental Results

To evaluate gaits with different parameters (m, n, X0, Y0, Z0, o) and useful-
ness of the developed software environment, we tested a Sony AIBO robot on
both a rough and a flat terrain. During its walk the robot has been connected to
the PC running applications through a debug box via a PC’s serial port. After
several test runs, the following values of gait parameters achieved the best sta-
bility and the fastest speed: M = 4; n = 3; a = 15; Xy = 0; Yy = 110, Zy = 20.
Each walking gait is tested separately to check the validity of parameters used.

286 Dragos Golubovic and Huosheng Hu

F100 P
g a0 W 450 [l
2 - P o g \"ezrll
5 & 30007
= o =
E A0 § 5
E 92 Ee e e Y % VAR
o f
-20 gkl ’/1'-' A
.|e: & ¢
40 e & 300 y
-F0 {
Stance phase Swing phase . Stance phase Swing phase

Fig. 5. Joint angles (left) and speeds (right) during a sequence of step cycles

Joint angle accelerations (degrees/sec’)

Stance phase o Swing phase

-

Fig. 6. Joint accelerations during a sequence of step cycles

The walking motion was obtained on flat ground and the readings from the
optical encoders of the robot’s joints at each step cycle. As can been seen in
figures[5] and [B] targeted and achieved angles differ by an average value of 2.743
degrees. Difference is greater during a stance phase, which is understandable
because during this phase the joints have to cope with the body weight of the
robot and the reaction force from the ground. The average difference during
stance phase is 3.56 degrees.

The effect of the suspension control was checked under dynamic walking.
The robot runs over irregular terrain and the shoulder’s height was sampled
from gravity sensors, as shown in Fig. 7. Without the suspension mechanism the
angle of the robot’s top plane toward the ground becomes larger in accordance
with terrain irregularity and duty factor while the suspension-controlled case is
still small.

5 Conclusion and Future Work

A modular approach is adopted for the development of a useful software tool
for gait generation and control design of Sony AIBO quadruped robots, which
makes future improvement easy. A model of quadruped robot’s gait is presented.
Implementing wheel-like motions for legs reduces the mechanical complexity

An Interactive Software Environment for Gait Generation 287

- Linitied - wiilk Tocks2001 Jﬂlﬂ L Litied - Wk Tonk0001
e Diog: Commumcdion dommands Sew b Fl DibE Communcstn Conmads Ve Hep
T TEECEE]] LET IR
B 1 E

Fig. 7. Variations in shoulder’s height without (left) and with (right) suspension re-
spectively

intrinsic legged systems whist maintaining attractive performance. The designed
gaits showed good results in speed, maneuverability and stability. Special care
was given to maintaining stability. This allows the successful implementation of
behaviours that rely on camera readings and is therefore important.

Current efforts are focused on the replacement of the analytical part of the
suspension mechanism with neural networks. This allows shoulder height for each
leg to be modified via trained neural networks in order to make AIBO robots
more adaptive to ground roughness and improve the robot’s stability.

Acknowledgements

Thanks to Prof. Pierre Blazevic and his L.R.P research team for providing the
code of the earlier version of their software environment application.

References

1. P. Israel Doerchuk, W. Simon, V. Nguyen, “A Modular Approach to Intelligent
Control of Simulated Joint Leg”, IEEE Robotics & Automation Magazine, June
1998, pp. 12-20.

2. J. Reichler, F. Delcomyn, “Dynamics Simulation and Controller Interfacing for
Legged Robots?”, Int. J. of Robotics Research, Vol. 19, No. 1, 2000, page 42-58.

3. M. Maza, J. Fontaine, M. Armada, P. Gonzalez, “Wheel+Legs- A New Solution For
Traction Enhancement Without Additive Soil Compaction”, IEEE Robotics and
Automation Magazine, June 1998, pages 26-32.

4. M. Fujita and K. Kageyama, “Development of an Autonomous Quadruped Robot
for Robot Entertainment”, Journal of Autonomous Robots, Vol. 5, pages 1-14, 1999.

5. R. Reeve and J. Hallam, “Control of Walking by Central Pattern Generators”,
Journal of Intelligent Autonomous Systems, 1995, pages 695-701.

6. M. Vukobratovic and V. Potkonjak, “Dynamics of Manipulation Robots. Theory
and Applicaton”, Communication and Control Engineering Series, Springer-Verlag,
1982.

	1 Introduction
	2 Building a Software Environment
	2.1 Modular Implementation
	2.2 Module Description

	3 Control Design
	3.1 Control System Structure
	3.2 Dynamic Model of the Leg
	3.3 Generation of Wheel-Like Motion

	4 Experimental Results
	5 Conclusion and Future Work
	References

