
Adaptive Methods to Improve Self-localization
in Robot Soccer

Ingo Dahm1 and Jens Ziegler2

1 Computer Engineering Institute
University of Dortmund, D-44227 Dortmund, Germany

ingo.dahm@uni-dortmund.de
2 Dept. of Computer Science

University of Dortmund, D-44227 Dortmund, Germany
jens.ziegler@uni-dortmund.de

Abstract. This paper shows adaptive strategies to improve the relia-
bility and performance of self-localization in robot soccer with legged
robots. Adaptiveness is the common feature of the presented algorithms
and has proved essential to enhance the quality of localization by a new
classification technique, essential to increase the confidence level of inter-
nal information about the environment by extracting reliability informa-
tion and by communicating them via parameterizable acoustic commu-
nication, and essential to circumvent manual implementations of walking
patterns by evolving them automatically.

1 Introduction

The autonomous mobile robot teams in the different leagues of RoboCup face
very special requirements. One of the most important problems that these teams
have to solve are navigation and self-localization. Therefore, algorithms are
needed that in fast changing, dynamical environments give reliable informa-
tion about the actual state. Cooperation in teams of robots is a topic of recent
research, indicating that reliable and fast communication is crucial for successful
control.

In order to improve the quality of navigation, it is necessary to increase the
performance of the process that extracts information from the sensory input.
Here, an approach is presented that adds a meta level of information to the sensor
data: a reliability factor is calculated from visual information that represents the
accuracy of the data. The internal representation of the actual state of the game
– called world model – of each robot is then communicated to other team robots
via acoustic communication in order to enhance the local reliability information.

If the robots’ localization module depends on odometry data, which is the
fact with the robots of our part of the German United Team, it is crucial for
them to have robust locomotion modules. Robustness is used here in terms of
returning reliable information about the effective covered distance during a given
time with a given walking pattern. Robustness, speed and reliability are all facets
of the overall quality of a walking pattern and are used within an Evolutionary

G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, pp. 393–408, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

394 Ingo Dahm and Jens Ziegler

Algorithm to automatically develop well performing walking programs in the
above mentioned sense.

The rest of the paper is organized as follows. In Section 2, we describe how
reliability information can be extracted during classification. The principle of
improving accuracy and speed of the robots’ walking patterns is illustrated in
Section 3. Thereafter, we briefly present a robust method of acoustical commu-
nication. This is followed by a discussion, how the suggested methods improve
the accuracy of self-localization.

2 Vision-Based Navigation

Each legged robot is equipped with a camera. The hardware-based vision pro-
cessor provides a robust eight-color differentiation [29]. Since main objects are
characterized by color [26], a basic object classification can be done by using that
module. Nevertheless, observed objects have more properties that can be used
for classification. Some of them (e.g. shape, size) can be estimated efficiently or
are extracted during image processing anyway [6,23]. Thus, additional features
can be included in the classification process with negligible increase of processing
time.

Robots’ actions are mainly affected by the observed dynamic environment.
Accidentally false classified objects can impair the robots’ behavior dramati-
cally. Thus, enhancements in classification can improve the overall robots’ per-
formance. To improve the accuracy of object detection under the aspects of the
real-time limits, we suggest a technique that classifies objects with M properties
and assigns a reliability information to every decision. This reliability informa-
tion can be used for further optimizations in navigation as shown in Section 5.

2.1 Object Classification by Signal Space Detection (SSD)

For that, all extracted M properties of an object are used to determine the
classifiers output. Without noisy components, these properties can be viewed
as coordinates of fixed points in a M -dimensional signal space (Fig. 1 for M =
2). Each of these so-called admissible signal points is associated with a fixed
classification. In Fig. 1, an admissible signal point ci is associated with the class
i. Given this constellation, the signal space can be partitioned so that decision
regions are formed which are bounded by hyperplanes (so-called decision planes).

In typical implementations, the properties of objects cannot be identified
ideally. A set of inexactly estimated properties can also be represented as a
point in signal space. The classification is determined by the position of this so-
called observed signal point rj relative to the bounding hyperplanes. In Fig. 1,
r0 is associated with class 2 and r1 is associated with class 1.

If inexact property estimation can be modeled as exact values disturbed by
average white gaussian noise, then the decision planes are easy to estimate. For
that, the signal space must be partitioned into Voronoi Regions to get classifi-
cations of highest accuracy [28].

Adaptive Methods to Improve Self-localization in Robot Soccer 395

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 1. Illustrated concept of object classification using the Signal Space Detection
approach for M = 2.

For colored noise, the euklidic distance is not a good measure to estimate
the correct class of an observed object. In some cases, the signal space can be
transformed into a white-noise domain [14,13]. Besides, the hyperplanes can be
set using a neural network approach. In the next section, we show how relia-
bility information can be extracted using conventional networks like multilayer
perceptrons (MLP) [1,16].

2.2 Extracting Reliability Information

In [24], a method to extract reliability information using a special SSD detec-
tor was introduced. An observed signal point, which is positioned close to an
admissible signal point, represents a very confident decision (e.g. r0 in Fig. 1).
On the other hand, an observed signal point which lies close to a decision plane
marks an unreliable decision (e.g. r1 in Fig. 1). That is, the distance from an
observed signal point to the admissible signal points and to the decision planes
is a measure for the reliability of the classification. The consideration of these
distances allows the calculation of the individual probabilities for the possible
detector outputs: to be member of a certain class (r ∈ C) or not (r /∈ C).

Assuming that the observed signal point is r, the soft-output for the classifi-
cation i, which is called L(i), can be calculated with the so-called log-likelihood
ratio after [15]:

L(i) = ln
P (i = C|r)
P (i �= C|r) (1)

Note, that a positive value L(i) indicates r is classified to belong to C, a negative
value means r is classified not to belong to C. The absolute value of L(i) is the

396 Ingo Dahm and Jens Ziegler

reliability of the decision. In [24], the exact procedure for the calculation of this
reliability information using the SSD approach is presented in detail for practical
implementations.

Unfortunately, that approach uses predefined admissible signal points. Thus,
decision planes can be precalculated and implemented easily. For typical ob-
ject classifications, neither properties nor noise are known exactly. Therefore,
classification is often done by neural networks, typically by multi-layer percep-
trons [1,16].

A single perceptron multiplies the input vector with its weight vector. The
dot-product is weighted by the activation function A(x) afterwards as done in
Eq. (2) [1].

A ((w1, w2, . . . wM+1) · (r, 1)) (2)

If A(x) is chosen to be A(x) = x, the perceptron represents a hyperplane H as
illustrated in Eq. (3). By setting the length of the normal vector of the hyperplane
(resp. the weight vector w of the perceptron) to 2b/σ2, the reliability information
of r is implicitly given by the perceptrons output H(r) [24]. For that, b is the
distance from the admissible signal point to the plane and σ2 represents the
noise variance [24].

H :




w1
w2
· · ·
wM


 r + wM+1 = 0. (3)

Since the variance typically changes for different sensor data, it must be measured
at run-time or approximated by an estimate of typical channel characteristics.
The admissible signal point can be approximated by the center of all observed
signal points that are classified to be a member of the same class. This can be
done efficiently after the training phase.

Unfortunately, due to simplified learning rules, typically a sigmoid activation
function (see Eq. (4)) is used in common neural networks [16]. Thus, the distance
from H to r cannot be calculated directly using conventional perceptrons. To
extract the reliability information, the inverse function A−1(x) after Eq. (5) must
be applied.

A : x → 1
1 + ec(t−x) (4)

A−1 : x → t − 1
c

· ln

(
1
x

− 1
)

(5)

2.3 Implementation Issues

In the signal space, the decision regions are typically bounded by a set of several
hyperplanes. Not all planes contribute to the determination of the reliability
information. Thus, we have to choose the appropriate bounding hyperplane for
calculating the soft information. In Fig. 1 for example, the hyperplane, which
is visualized by the dash-dot line, is obviously not decisive for r0. Therefore,

Adaptive Methods to Improve Self-localization in Robot Soccer 397

we have to define a set of decisive hyperplanes for each output vector. That
k-dimensional vector gives the position of the observed signal point relatively
to all decision planes. The classification can be done by assigning a class to
every possible output vector. This can be implemented using the MLP network
approach. On the other hand, the algebraic sign of the extracted reliability can
be used with a boolean algebra for classification. This approach is very efficient,
especially under run-time constraints.

An implementation of the supposed methodology is very similar to conven-
tional neural networks: M property extraction units (e.g. sensors) are connected
with k perceptrons. These perceptrons represent the decision planes. After the
training phase, the weights must normalized so that |(w1, w2, . . . wM)| = 2b/σ2.
To calculate the reliability (resp. the distance of r to the closest decision plane),
the outputs of the perceptrons must be weighted by A−1.

This calculated additional information leads to a significantly increased ac-
curacy of self-localization. The way how reliability information improves the
localization process is presented in Section 5. Nevertheless, the performance of
this approach crucially depends on the accuracy of sensory information.

3 Movement

A reliable estimation of the actual robot position even with insufficient sensor
data can be done only with high-quality odometry data. Therefore, the devel-
opment of robust walking is necessary, with robustness describing not only fast
and stable walking but also less slipping for precise self-localization based on
dead reckoning.

3.1 Evolution of Walking

The progress in the development of faster, more robust and computationally
more powerful robots is mirrored in the Sony Legged League: this young league
of the RoboCup federation has now reached the second generation of four-legged
robots and the challenging edutainment robot market is expanding with increas-
ing speed which will have a great influence on the future development of the
Legged League robots. A major drawback of this tendency is that with almost
every new robot architecture a re-implementation of the walking program is nec-
essary, leading to complete new design whenever the robot platform is changed.
Programming and control of walking robots is difficult, because of the high di-
mensionality of the movements and the complex sensory and motor limitations,
let alone the various uncertainties that arise during the operation. Even if the
original walking program proves satisfactory, parameter changes of the hardware
(e.g. a slight change of the position of the center of mass of the robot, changes in
maximum acceleration or speed of joints, or changes in weight or length of limbs)
may cause unwanted defects in terms of stability, robustness against slackness or
speed. In order to avoid this effects and to circumvent additional and expensive
work, adaptive methods should be used that automatically generate programs
for walking.

398 Ingo Dahm and Jens Ziegler

The evolution of robot control programs has been the topic of recent publica-
tions [20,2,3,12,22,21,27] and especially the field of walking robots becomes more
and more important [17,7]. Gait patterns of stick insects have been analyzed to
gain more detailed information on natural gait coordination algorithms [10].
Many researchers have often been inspired by biology to build legged robots. An
overview can be found in [19]. Nevertheless, the above-mentioned approaches
deal with a special instance of an autonomous robot (or walking agent), on
which the architecture of the developed control system heavily depends.

It was one of the main goals of this work to make the evolution of robot
controllers as independent as possible from morphology specific information.
So morphology-related information, although available, will not be used. If, for
example, a joint looses the ability to reach certain positions, the outcome of
an inverse transformation, which depends on the correct working joint, will be
useless. Additionally, the algorithm for the inverse transformation is correct only
for a single robot. A machine-learning algorithm, however, should be able to cope
with changing hardware and environmental conditions.

A first step towards control of movements of a legged robot is to move the
single legs according to a desired trajectory. This trajectory depends on the
desired behavior and requires very well coordinated synchronous movements of
all joints involved. Thus, describing a movement of a robot requires to give
the time dependent values of the acting forces for each involved joint during
the motion. The next sections shall now explain the experimental setup and
preliminary results from the evolution of walking with Genetic Programming.

3.2 The Evolutionary Algorithm

A first step toward control of movements of a legged robot is to move single
joints according to a desired movement of more complex parts of the robot, e.g.
a limb. Coordinating the movement results in the necessity to give a time series
of motive forces or nominal angles for each joint of the robot, which sums up
to 3 joints for a single leg and an overall of 12 joints for the whole four-legged
robot at each discrete time step t during the motion. This sequence has to be
coordinated in time to achieve the desired movement in sufficient quality. The
Evolutionary Algorithm now has to fulfill certain requirements:

– The structure of the individual has to be interpreted as a robot control
program.

– Therefore it is necessary to have operations in the global operator set that
allow to control motors.

– The quality of the executed individual has to be measured and fed back into
the algorithm.

– Better individuals must have a higher probability to spread their genetic
information into the next generation.

– The genetic information must be varied to get an evolutionary drift towards
better and better walking programs.

Adaptive Methods to Improve Self-localization in Robot Soccer 399

Table 1. Koza tableau with parameter settings for the Evolutionary Algorithm.

Parameters Values

Objective: Evolve parameter set that makes the robot walk
Terminal set Real numbers
Selection scheme Roulette wheel selection
Population size 20
Crossover probability 0.3
Mutation probability 0.1
Random replacement probability 0.09
Termination criterion No. of generations
Maximum size of individual 4 14-dimensional vectors
Initialization method Random

Representation. An individual in the current setting is a set of vectors

I = {i1, i2, i3, i4} (6)

with each ik being a vector.

ik = (x1, x2, . . . , x12, b, t). (7)

The values x1, . . . , x12 represent motor angles for all 12 motors of the legs of the
robot, the value b is a boolean variable indicating whether the movement of the
joints to the nominal values xk shall be a linear movement or a free point-to-point
movement. The value t gives the time after which all motors mk, k ∈ {1, . . . , 12}
have to have reached the desired position xk. Walking is a cyclic movement and
here one loop is separated into different phases. The robot is supposed to be
in the first phase i1 at the beginning of the walking. After a certain time given
by t1, the next phase starts and the motors move to the positions given in i2.
After time t2, the desired positions are reached and the next phase starts. After
reaching the positions in phase i4, the next phase is again phase i1, so that the
walking is divided into four phases. This rotation scheme continues as long as
the robot walks. The evolutionary algorithm now has 4 × 14 = 56 degrees of
freedom and several additional parameters which are given in Table 1.

In other experiments a different representation was implemented. To avoid
possible erratic movements, a variable walking pattern was used that could be
adjusted with a set of ten parameters which are variables for a mathemati-
cal model of a set of superimposed oscillations that are used to calculate the
leg movements. Preliminary experiments used this representation with reduced
complexity (see Section 1).

Measuring Fitness. There are two ways of measuring the fitness of an individual
in the current algorithm. The first one is an realization of an interactive evolu-
tionary process: two individuals are executed on a robot and a human observer
has to manually decide which of both individuals has a higher quality. This

400 Ingo Dahm and Jens Ziegler

approach circumvents numerical values as the fitness criterion, and the experi-
menter is relieved of implementing a fitness function that includes ’soft’ criteria
such as smoothness, grip, and elegance of movements, criteria which can easily
be observed and rated by any human experimenter. On the other hand, a com-
parison of individuals from different generations is difficult because of the lack
of objective numerical data. This has led to the implementation of an automatic
fitness evaluation module which uses a camera to track the robot during the mo-
tion. The distance between start and end point divided by the time used gives
the speed of the movement. This setting has some disadvantages that makes it
difficult to use, e.g. a robot falling over is probably considered as a fast forward
moving robot.

The main problem of both approaches is the time consuming evaluation of
individuals, because each individual of each generation has to be down-loaded
to the robot, executed and evaluated. Due to the fact that evolution is a ’blind
watchmaker’, movements are likely to emerge that make the robot stumble and
fall, which has the effect that a human experimenter is needed to observe the
evaluations all the time.

New approaches are currently investigated that try to learn from the user’s
decisions to develop a heuristic function that can be used instead of the time con-
suming evaluation with real robots1. Artificial Neural Networks will be trained
with pairs of individuals along with the observers decision which of them repre-
sents the better walking. Once this heuristic is established in sufficient quality,
it will be used to evaluate individuals offline. The potential effect is less long
lasting experiments and a better quality of the resulting programs.

Selection Scheme. Individuals are compared pairwise and assigned a static fitness
value. This method is known as tournament selection [3], but in this special case,
a tournament is only needed to discriminate between good and poor performing
individuals. The better individual is assigned a better—and static—fitness value
that in turn is used in subsequent steps. After all individuals are evaluated, a fit-
ness proportional selection takes place (called roulette-wheel-selection). Selected
individuals are either mutated, recombined with other individuals or replaced
by randomly initialized new individuals.

Mutation. One of the 56 parameters of an individual is randomly selected and
mutated by adding a standard (0,1)-Gaussian distributed random variable.

Crossover. Two individuals are recombined by randomly exchanging single pa-
rameters or sequences of parameters. The special parameters b, t are recombined
separately due to their different domains.

1 The execution of evolved walking programs during long lasting experiments is a
strenuous process for both experimenter and robot hardware. It is thus desirable to
increase the speed of the evolutionary process (and therewith to decrease the total
number of evaluations) in order to minimize the wear-out of expensive hardware.

Adaptive Methods to Improve Self-localization in Robot Soccer 401

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

S
pe

ed
 [m

/s
]

Generations

Evolution of Walking

best of generation
standard individual

Fig. 2. Development of the speed of the fastest individual per generation. The hori-
zontal line indicates the speed of the standard walking used for soccer.

Results. Fig. 2 shows preliminary results of a preliminary experiment with re-
duced complexity and a smaller population. The representation is now a 10-
dimensional vector parameterizing a mathematical model of walking. The model
describes the trajectory (position and orientation) of the center of mass of the
whole robot and the parameters are responsible for the speed, frequency and
radius of leg movements. We used this simplified model in our first experiments
in order to increase the convergence speed of the evolution by decreasing the size
of the search space. The speed of the robot using the standard parameter setting
(describing the gait pattern that is used as the default walking by the German
United Team) is shown as the horizontal line at 0.154m

s in Fig. 2. The fitness of
the best individual of every generation is shown. It is astounding that, even with
a very small population size of four individuals, an increase of maximum speed of
nearly 30% could be observed. The only fitness criterion was linear speed of the
movement. Neither robustness nor smoothness of the walking pattern were taken
into account for fitness calculation. Deviations to both sides during the walking,
stumbling or crawling were frequently observed phenomena. This leads to the
assumption that additional criteria must be taken into account for fitness eval-
uation, resulting in a multi-objective optimization [11]. Multiple criteria can be
adopted easily in our Evolutionary Algorithm by varying the decision criterion
of the tournaments. This leads to a selection pressure on the individuals that
is proportional to the frequency of the corresponding criteria. This experiments
are promising and indicate that the objective function needs to be defined very
carefully in order to yield optimal results.

Having improved odometry data gained from robust walking and reliable
vision-based self-localization, the robot’s position can then be estimated more

402 Ingo Dahm and Jens Ziegler

exactly, and even more so, if individual information is shared with other team
members. Therefore, a communication channel is implemented and presented in
the following section.

4 Robot Agent Communication

Communication is treated as an enabling technology for efficient distributed work
in multi robot teams. A robust communication channel can be used to replace the
robots’ internal world models by a distributed global model. This can be done be
broadcasting the calculated model and to receive the other robots’ observations.
Thus, a more reliable localization can be performed.

To evaluate the impact of the given approach, we implemented a robust
acoustic communication. The main problem when dealing with that channel is
the heavy noise. Therefore, the transmission quality is mainly affected by the
audience speech, echos, and ambience noise. The bandwidth is limited due to
quality of sensors, run-time constraints and complicated channel features. As the
channel parameters vary over time due to robots’ movement, time dependency
of noise, and echos, the communication must be adapted to the actual channel
parameters.

The second complicated constraint is the run-time limited processing time.
Since world models use to age very fast and the transmitted data is very error-
sensitive, the data transmission must be effective and almost error free. There-
fore, a fast error correction code (ECC) must be established. The two most
common approaches for error correction are the use of Block Codes (e.g. so-
called Reed Solomon Codes [18,30]), and the utilization of convolutional codes
as for so-called Turbo Codes [8]. Due to the real-time constraints it is impossible
to use a complex code for error detection in robot communication. Such codes
are characterized by a time intensive decoding phase. Thus, a specialized parity
check code is used for communication by our team.

The relevant information is stored symbolically in a M × M -matrix. Every
row and every column is protected by a parity check bit [25]. We use even parity,
that means the number of ones in each row and column including the parity bit is
even. This is illustrated in Fig. 3. If one bit error inside the M ×M array occurs,
the parity check of the corresponding row and column fails. Thus, the error
position is easy to detect as the intersection of the erroneous row and column.
The error value is given implicitly, since we handle boolean information.

The situation changes, if more errors occur or if parity bits become corrupted.
To solve this problem, we use an n-dimensional parity check, for n = 3 a parity
cube. Note, that n is the dimension of a hypercube that contains Mn bits. When
all parity checks fail (for n = 3, column, row, depth), the erroneous check lines
intersect at the bit, that is most likely corrupted. If the checks of only two
parities fail, the probable error position can be estimated at the intersection
of the corresponding row and column. Nevertheless, it is not sure if this bit is
really a corrupted one or not: for example, two erroneous bits in a line cause a
successful parity check for the corrupted bits, two corrupted parity bits cause
unwanted corruption of a correct bit.

Adaptive Methods to Improve Self-localization in Robot Soccer 403

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

1 1

1 1

1

1 1 1

1

1

11

0 0 0

0

0 0 0

0 0 0

00

1 1

1 1

1

1 1 1

1

1

11

0 0 0

0

0 0 0

0 0 0

0 1

Fig. 3. Parity check code using a two-dimensional concept. Received parities (gray
regions) are compared with calculated information. Intersection of defect line and row
points to erroneous position (black).

0 1 1 1 1 1 0 00 00

-0.3 +4.1 +7.9 +8.5 +5.0-10.4 -15.9 +6.7 -9.1 -5.8 -8.1

Fig. 4. Enhanced parity check code using soft information to estimate possible error
position by examining single bit reliabilities. The parity bit is shaded gray, the erroneous
bit is marked black.

To improve the error correction capability, the soft information about ev-
ery bit is very useful. To extract the reliability of a bit, we perform a discrete
Fast Fourier Transform (FFT) [9,5]. The FFT data is then classified using the
method given in Section 2. If the reliability of a possible erroneous bit is low,
then it becomes inverted. This idea is illustrated in Fig. 4. There, 10 bits are
parity checked. The error position cannot be calculated. Since reliability infor-
mation about every bit is calculated, the symbol with the lowest soft information
becomes corrected. The calculation of soft information leads to enhancements in
error correction capability. Furthermore, we use soft information as a measure
of overall channel quality. So we are able to trade code rate resp. bandwidth
against error correction capability. The code rate can be adjusted to the actual
channel capacity.

The suggested method is very fast, because it uses bitwise operations. This
can be done parallel on the robots, because multi-bit operations are possible with
our architecture. With that ECC, the code rate c(n) for an n-dimensional hyper-
cube that contains Mn bits is given in Eq. (8). The code rate can be increased
by larger side length M , error correction capability rises with dimensionality n.

404 Ingo Dahm and Jens Ziegler

c(n) =
Mn

Mn + nM (n−1) = 1 − 1
1
nM + 1

(8)

5 Bayesian Based Probabilistic Localization

The additional information about the decision reliability leads to an improved
localization and navigation concept. The playing field is separated into discrete
grid locations. We create a state-space with these positions. A position in this
state space is called si. Observations O of landmarks, goals, and walls are com-
bined with a priori information of the actual state and of the robots’ movement.
To do this, we use Bayes’ Theorem [4]

P (si|O) =
P (si)P (O|si)

ΣjP (sj)P (O|sj)
(9)

where P (si) is the a priori probability that the robot is in state si. P (si|O) is the
posterior probability that the robot is in state si given that it has just observed
O and P (O|si) is the probability of observing O in state si.

Since P (si) is the probability to be in state si (without knowledge gained
from visual input), a more accurate walking leads to a better a priori estimation
of the actual position. Thus, the probability distribution P (si) can be estimated
more exactly. Providing reliability information of classified objects leads to en-
hanced observations O. Therefore, the variance of P (O|si) can be estimated more
exactly. Consequently, P (si|O) provides more information with higher reliability.

The impact of the suggested approach is illustrated in Fig. 5. There, a typical
scene is shown: The keeper stands inside the opponents goal. Since it hides the
right border of the goal, the width of the goal dx is estimated incorrectly at t0. As
distance is calculated by applying intercept theorems, this leads to an incorrect
self localization st0

i based on the observed situation (bold line in Fig. 5, At0).
At t1, both robots have moved. The observation O now shows the goal in its
full width. With the conventional approach, the a priori probability of being
in one of the states st1

i (bold line in Fig. 5, At1) is relatively high. A move to
the posterior correct position (marked by a cross in Fig. 5, At1) seems rather
unlikely due to odometry data.

Using reliability information, the observation at t0 and thus a calculated
possible position st0

i is marked as low reliable2 (grey area in Fig. 5, Bt0). In
contrast, the reliable observation O at t1 gives a posterior position st1

i (grey
circle in Fig. 5, Bt1) with high reliability. Reliable odometry data supports this
calculated decision.

The acoustic communication can be used to further increase the precision of
the robots’ world model. Therefore, every robot broadcasts its observed data, es-
pecially the estimated positions of ball and robots. For each robot, the received
2 As shape is used to classify objects, the non-rectangular shape of the goal at t0

indicates a low reliability.

Adaptive Methods to Improve Self-localization in Robot Soccer 405

�
���

��

�
���

��

�
��

�

�
��

�

�
��

��
��

�

�� � �� ���

��

��

��

Fig. 5. A robots observation of a keeper standing inside the goal. Object borders
are partially hidden. The estimated position of the observer using the conventional
approach is shown in the middle. The position calculated with our method is illustrated
right.

�������

�
������

�

�������
�

�������

Fig. 6. Observations of two cooperative robots. The left illustration presents the ob-
servation of robot 1, that leads to a accurate self localization. The sketch in the middle
shows the observation of robot 2. Due to its awkward viewpoint, robot 2 is unable to
localize itself accurately. On the right, the combination of both observations leads to
an improved localization of robot 2.

data is synchronized with its internal world model. This approach is demon-
strated in Fig. 6: Since its disadvantageous position, robot 2 cannot localize
itself exactly (bold line in Fig. 6). Robot 1 observes the second robot under
a certain angle (gray area in Fig. 6). The observations of both robots are com-

406 Ingo Dahm and Jens Ziegler

bined. Thus, the position of robot 2 can be estimated with significantly improved
accuracy.

6 Conclusion

In this paper, we presented a method for increasing the quality of self-localization
based on three main improvements: (i) reliability information is extracted from
visual sensor input by using an enhanced object classification. This leads to
a more reliable observation-based navigation. (ii) the development of robust
walking patterns with an Evolutionary Algorithm leads to increasing accuracy
and speed of the movements. (iii) the individual knowledge of the world model
is shared among team members. This is done by establishing a stable acoustic
communication channel. Thus, the advantages of both approaches are combined
to diminish uncertainty in special situations.

The RoboCup tournament will show if the presented theoretical improve-
ments in self-localization do positively affect the overall performance of soccer
playing robot teams.

Acknowledgements

This work has been done in cooperation with the members of the German United
Team: Humboldt Universität Berlin, Technische Universität Darmstadt and Uni-
versität Bremen. Thanks to the team Ruhrpott Hellhounds: Arthur Cesarz, Simon
Fischer, Oliver Giese, Matthias Hebbel, Holger Hennings, Marc Malik, Patrick
Matters, Markus Meier, Ingo Mierswa, Christian Neumann, Denis Piepenstock,
Lars Schley, and Jens Rentmeister. Jens Ziegler has been supported by the
Deutsche Forschungsgemeinschaft (DFG) under grant Ba 1042/6-2.

References

1. James A. Anderson. An Introduction to Neural Networks. Number ISBN 0-262-
01144-1. MIT Press. Boston, 1995.

2. P. J. Angeline. Genetic programming and emergent intelligence. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages 75–98.
MIT Press, 1994.

3. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, dpunkt.verlag, 1998.

4. G. Larry Bretthorst. An introduction to model selection using probability theory
as logic. Maximum Entropy and Bayesian Methods, 1993.

5. E. Oren Brigham. The Fast Fourier Transform and Its Applications. Prentice Hall,
1st edition, October 1997.

6. J. Bruce, Tucker Balch, and Maria Manuela Veloso. Fast and inexpensive color
image segmentation for interactive robots. In Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS ’00), volume 3,
pages 2061 – 2066, October 2000.

Adaptive Methods to Improve Self-localization in Robot Soccer 407

7. J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, and Wolfgang Banzhaf. Au-
tomatic generation of control programs for walking robots using genetic program-
ming. In J. A. Foster, E. Lutton, J. Miller, C. Ryan, and A. G. B. Tettamanzi,
editors, Proceedings of the 5th European Conference on Genetic Programming, vol-
ume 2278 of Lecture Notes in Computer Science, pages 258–268. Springer, New
York, 2002.

8. C.Berrou, A.Glavieux, and P.Thitimajshima. Near shannon limit error correcting
coding and decoding: Turbo-codes (1). In International Conference on on Com-
munications, pages 1064–1070, Geneva, Switzerland, 1993.

9. J.W. Cooley and J.W.Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

10. H. Cruse. Coordination of leg movement in walking animals. In J.-A. Meyer
and S.W. Wilson, editors, From animals to animats. Intl. Conf. on Simulation of
Adaptive Behavior, pages 105–119. MIT Press, Cambridge, MA, 1991.

11. Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties and con-
struction of test problems. Technical Report of the Collaborative Research Center
531 Computational Intelligence CI–49/98, University of Dortmund, October 1998.

12. P. Dittrich, A. Bürgel, and W. Banzhaf. Learning to control a robot with random
morphology. In P. Husbands and J.-A. Meyer, editors, Proceedings First European
Workshop on Evolutionary Robotics, pages 165–178. Springer, Berlin, 1998.

13. G.Stromberg. Signal Space Detection with Application to Magnetic Recording. PhD
thesis, University of Dortmund, September 2000.

14. G.Stromberg, M.Hassner, and U.Schwiegelshohn. Signal Space Detection in Col-
ored Noise. IEEE Transactions on Magnetics, 36(3):604–612, May 2000.

15. J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and
convolutional codes. IT-42:429–445, March 1996.

16. Simon Haykin. Neural Networks: A Comprehensive Foundation. Number ISBN
0-02-352761-7. Macmillan College Publishing Company Inc., 1994.

17. G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. Au-
tonomous evolution of gaits with the sony quadruped robot. In Wolfgang Banzhaf,
Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela,
and Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference, volume 2, pages 1297–1304, Orlando, Florida, USA, 13-17
1999. Morgan Kaufmann.

18. I.S.Reed and G.Solomon. Polynomial Codes over certain Finite Fields. J
Soc.Indust.Appl.Math., 8(2), June 1960.

19. K. Kleiner. Look to the insect. New Scientist, No. 1951, 12 Nov. 1994, 144:27–29,
1994.

20. J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
21. M. A. Lewis, A. H. Fagg, and A. Solidum. Genetic programming approach to the

construction of a neural network control of a walking robot. In Proceedings of
the 1992 IEEE InternationalConference on Robotics and Automation, pages 2618–
2623, Nice, France, 1992. Electronica Bks.

22. M. Olmer, W. Banzhaf, and P. Nordin. Evolving real-time behavior modules for
a real robot with genetic programming. In M. Jamshidi, F. Pin, and P. Dauchez,
editors, Proceedings of the International Symposium on Robotics and Manufactur-
ing (ISRAM-96), Robotics and Manufacturing, pages 675 – 680. Asme Press, New
York, 1996.

23. Francis Quek. An algorithm for the rapid computation of boundaries of run-length
encoded regions. Pattern Recognition Journal, 33:1637–1649, 2000.

408 Ingo Dahm and Jens Ziegler

24. S. Schmermbeck and G. Stromberg. Soft-output signal space detectors (S3D). Tech-
nical Report 0102, Computer Engineering Institute (CEI), University of Dortmund,
2002.

25. F. J. MacWilliams, N. J. A. Sloane. The Theory of Error–Correcting Codes. North-
Holland, Amsterdam, 1977.

26. SONY. Sony Four Legged Robot Football League Rule Book. SONY, 2nd edition,
2000.

27. Graham F. Spencer. Automatic generation of programs for crawling and walking.
In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 15,
pages 335–353. MIT Press, 1994.

28. T.Jeon and J.Moon. A Systematic Approach to Signal Space Detection. IEEE
Transactions on Magnetics, 33(5):2737–2739, September 1997.

29. Manuela Veloso, William Uther, Masahiro Fujita, Minoru Asada, and Hiroaki Ki-
tano. Playing soccer with legged robots. In Intl. Conference on Intelligent Robots
and Systems IEEE/RSJ, pages 437–442, October 1998.

30. W.Blanz, C.E.Cox, G.Fettweis, M.Hassner, and U.Schwiegelshohn. A Key Equa-
tion Solver for variable Block Reed-Solomon Decoders. IBM Technical Bulletin,
1995.

	1 Introduction
	2 Vision-Based Navigation
	2.1 Object Classification by Signal Space Detection (SSD)
	2.2 Extracting Reliability Information
	2.3 Implementation Issues

	3 Movement
	3.1 Evolution of Walking
	3.2 The Evolutionary Algorithm

	4 Robot Agent Communication
	5 Bayesian Based Probabilistic Localization
	6 Conclusion
	References

