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Abstract. Good soccer players must keep their eyes on their opponents
in order to make the right plays and moves. The same holds for soccer
robots, too. In this paper, we apply probabilistic multiple object track-
ing to the continual estimation of the positions of opponent players in
autonomous robot soccer. We extend MHT [3], an existing tracking al-
gorithm, to handle multiple mobile sensors with uncertain positions, dis-
cuss the specification of probabilistic models needed by the algorithm,
and describe the required vision-interpretation algorithms. The track-
ing algorithm enables robots to estimate the positions and motions of
fast moving robots both accurately and robustly. We have applied the
multiple object tracking algorithm throughout the RoboCup 2001 world
championship. Empirical results show the applicability of multiple hy-
potheses tracking to vision-based opponent tracking and demonstrates
the advantages for crowded environments.

1 Introduction

Good soccer players must keep their eyes on their opponents in order to make
the right plays and moves. The same holds for soccer robots, too [2]. Unfortu-
nately, object tracking systems are difficult to realize. Observations of the robots
are inaccurate and incomplete. Sometimes the sensors hallucinate objects. Of-
ten the robots cannot perceptually distinguish the individual objects in their
environments. To reliably estimate the positions and motions of the objects de-
spite these perturbations, researchers have proposed object tracking algorithms
that are capable of tracking multiple objects. Tracking algorithms use motion
models of the objects and sequences of observation to distinguish real object
observations from clutter and can thereby keep track of object positions both
more reliably and more accurately.

Multiple object tracking is particular difficult for autonomous robot soccer,
where the state is to be estimated by multiple mobile sensors with uncertain
positions, the soccer field is only partly visible for each sensor, occlusion of
robots is a problem, the robots change their direction and speed very abruptly,
and the models of the dynamic states of the robots of the other team are very
crude and uncertain.
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Many robots employ probabilistic state estimation algorithms for keeping
track of the moving objects in their environments [12], such as Multiple Hy-
pothesis Tracking (MHT) [RJ3] and Joint Probabilistic Data Association Filter
(JPDAF) [T/TT]. Using probabilistic motion and sensing models these algorithms
maintain probabilistic estimates of the objects’ positions and update these esti-
mates with each new observation. Probabilistic tracking algorithms are attractive
because they are concise, elegant, well understood, and remarkably robust.

In this paper we show how the MHT algorithm can be applied to opponent
tracking in autonomous robot soccer. This application requires programmers
to equip the robots with sophisticated mechanisms for observing the required
information, and to provide probabilistic domain descriptions that the algorithm
needs for successful operation. These probabilistic descriptions include motion
models and sensing models, such as the probability of the robot detecting an
object within sensor range. We show that such mechanisms enable the MHT to
reliably and accurately estimate the positions of opponent robots using passive
vision-based perception where the cameras have a very restricted field of view. In
addition, we will show that the cooperation between robots provides the robots
with a more complete estimate of the world state, a substantial speed up in the
detection of motions, and more accurate position estimates.

In the remainder of the paper we proceed as follows. The next section de-
scribes the MHT algorithm. In the subsequent section we provide a detailed
account of how to apply the MHT to autonomous robot soccer. We conclude
with empirical results and a discussion of related work.

2 Multiple Hypothesis Tracking

Multiple hypothesis tracking considers the following state estimation problem.
The world is populated with a set of stationary and moving objects. The number
of objects may vary and they might be occluded and out of sensor range. Robots
are equipped with sensing routines that are capable of detecting objects within
sensor range, of estimating the positions of the detected objects, and of assessing
the accuracy of their estimate.

The objective of the MHT algorithm is to keep a set of object hypotheses,
each describing a unique real object and its position, to maintain the set of
hypotheses over time, and to estimate the likelihood of the individual hypotheses.

The basic data structure used by the MHT algorithm is the object hypoth-
esis. An object hypothesis consists of an estimated position, orientation, and
velocity of an object, a measure of uncertainty associated with the estimation,
and a second measure that represents the degree of belief that this hypothesis
accurately reflects an existing object. Because the number of objects might vary
new hypotheses might have to be added and old ones might have to be deleted.

Before we dive into the details of the MHT algorithm let us first get an
intuition of how it works. The MHT algorithm maintains a forest of object hy-
potheses, that is a set of trees. The nodes in the forest are object hypotheses
and represent the association of an observed object with an existing object hy-



428 Thorsten Schmitt et al.

algorithm MULTIPLEH YPOTHESISTRACKING()

1 fiff:[’“ =i {3’1‘, st ,fﬁ,";‘k} % predicted hyps.

2 Z(k) ={z1(k),..., 2, (k)} % observed features
3 H"={h’f,...,h§k} % new hyps.

4 X*N ' world state at time step k-N.

5 dofork+ 1igoo

6 do Z(k) + INTERPRETSENSORDATA{GETSENSORDATA());
7 H* « APPLYMOTIONMODEL(H*"!, M);

8 fori « 1_ton,,

9 doforj« 1tomy

10 do hY; « associaTe(h, z:(k));

11 COMPUTE(P(hE|Z(k)))

12 forj « 1 tonk

13 do H* « H* U {GENERATENEWHYP(z; (k))};
14 PRUNEHYPOTHESES(H*);

15 XE=N {a:’f'N,...,:r:ﬁ;_A;,

Fig. 1. The multiple hypothesis tracking algorithm.

pothesis. Each hypothesis has an association probability, which indicates the
likelihood that observed object and object hypothesis refer to the same object.
In order to determine this probability the motion model is applied to the object
hypothesis of the previous iteration, in order to predict where the object will
be now. Then the association probability is computed by weighing the distance
between the predicted and the observed object position. Thus in every itera-
tion of the algorithm each observation is associated with each existing object
hypothesis.

Our MHT algorithm is an extension of Reid’s algorithm [8]. It extends Reid’s
version in that it can handle multiple mobile sensors with uncertain positions.
The computational structure of the algorithm is shown in Fig. 1. An iteration
begins with the set of hypotheses of object states H* = {h¥,... hE} from the
previous iteration k. Each hf is a random variable ranging over the state space of
a single object and represents a different assignment of measurements to objects,
which was performed in the past. The algorithm maintains a Kalman filter for
each hypothesis.

With the arrival of new sensor data (6), Z(k+1) = {z1(k+1),..., 25, ,(k+
1)}, the motion model (7) is applied to each hypothesis and intermediate hy-
potheses ﬁf“ are predicted. Assignments of measurements to objects (10) are
accomplished on the basis of a statistical distance measurement, such as the
Mahalanobis distance. Each subsequent child hypothesis represents one possible
interpretation of the set of observed objects and, together with its parent hypoth-
esis, represents one possible interpretation of all past observations. With every
iteration of the MHT probabilities (11) describing the validity of an hypothesis
are calculated. Furthermore for every observed object an new hypothesis with
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associated probability is created (13). The equations used for the computation
of these probabilities can be found in [9].

In order to constrain the growth of the hypothesis trees the algorithm prunes
improbable branches (14). Pruning is based on a combination of ratio pruning,
i.e. a simple lower limit on the ratio of the probabilities of the current and best
hypotheses, and the N-scan-back algorithm [8]. This algorithm assumes that
any ambiguity at time k is resolved by time k + N. Consequently if at time k
hypothesis hf ~! has m children, the sum of the probabilities of the leaf notes of
each branch is calculated. The branch with the greatest probability is retained
and the others are discarded. After pruning the world state of X*~V can be
extracted (15). Please note that this world state is always N steps delayed behind
the latest observations. However, this delay can be overcome by N observers
performing observations in parallel.

3 Applying MHT to Autonomous Robot Soccer

Autonomous robot soccer confronts object tracking mechanisms with challenging
research problems. The camera system with an opening angle of 90° and pointed
to the front gives an individual robot only a very restricted view of the game
situation. Therefore, the robot needs to cooperate to get a more complete picture
of the game situation. Vibrations of the camera, spot light effects, and poor
lighting conditions cause substantial inaccuracies. Even small vibrations that
cause jumps of only a few pixel lines cause deviations of more than half a meter
in the depth estimation, if the objects are several meters away. The opponent
robots change their speed and moving directions very quickly and therefore an
iteration of the tracking algorithm has to be very fast such that the inaccuracies
of the motion model does not have such a huge effect.

The information needed for object tracking is provided by the perception
system and includes the following kinds of information: (1) partial state estimates
broadcasted by other robots, (2) feature maps extracted from captured images,
and (3) odometric information. The estimates broadcasted by the team mates
comprise the respective robot’s location and the locations of the opponents.
From the captured camera images the feature detectors extract problem-specific
feature maps that correspond to (1) static objects in the environment including
the goal, the borders of the field, and the lines on the field, (2) a color blob
corresponding to the ball, and (3) the visual features of the opponents.

The working horse of the perception component are a color classification and
segmentation algorithm that is used to segment a captured image into colored
regions and blobs (see Fig. [@b). The color segmented image is then processed
by a feature extraction algorithm (see Fig. [B]) that estimates the 2D positions
and the covariances of the objects of interest. At present it is assumed that the
objects are colored black and have approximately circular shape. Object detec-
tion is performed on the basis of blob analysis. The position of an object is
estimated on the basis of a pinhole camera model. Due to rotations and radial
distortions of the lenses this model is highly non-linear. The uncertainty estima-
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Fig. 2. An AGILO soccer robot (a) and an image captured by the robot and the feature
map that is computed for self, ball, and opponent localization (b).

algorithm INTERPRETSENSORDATA(®, Cy)

1 @&3 % robot pose
I % image data
R={r1,...,rn,} % set of regions
w % augmented mean
C. % augmented covariance
Z(k) = {z1(k),...,zn, (k)} % observed feat.
do I + GETSENSORDATA();
R + EXTRACTBLACKREGIONS(I);
R + CHECKCONSTRAINTS(R);
R + EXTRACTCASCADEDROBOTS(R);
11 fori+ 1to|R|
12 do (row, col, width) < EXTRACTFEATURES(r;);

S\DWQO\U‘IPMN

~ 2
13 W [fl',row, col, width] ;
C, 0 0 0
0 grow 0 O i
14 C. « 0 0 ow 0 :
0 0 0 ocwidanr
15 zi(k) +~ UNSCENTEDTRANSFORM(w, C.,, opp);

Fig. 3. The Algorithm used for feature extraction and uncertainty estimation.

tion process is based on the unscented transformation [7]. This allows the use of
non-linear measurement equations, the incorporation of parameters describing
the measurement uncertainty of the sensor at hand as well as an efficient way of
propagating the uncertainty of the observing robots pose. A detailed description

of the feature extraction algorithm and uncertainty estimation process can be
found in [10].
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4 Empirical Investigation

The multiple object tracking algorithm described in this paper has been em-
ployed by our AGILO robot soccer team in the fifth robot soccer world cham-
pionship in Seattle (2001). Our RoboCup team consists of four Pioneer I robots
(see Fig. 2a). The robot is equipped with a single on board linux computer (2), a
wireless Ethernet (1) for communication, and several sonar sensors (4) for colli-
sion avoidance. A color CCD camera with an opening angle of 90° (3) is mounted
fix on the robot. The robot also has a dribbling (5) and a kicking device (6) that
enable the robot to dribble and shoot the ball. In Seattle the team has played
six games for a total of about 120 minutes and advanced to the quarter finals.

Unfortunately, in midsize robot soccer there is no external sensing device
which records a global view of the game and can be used as the ground truth for
experiments. Thus for the experimental results in this section we can only use
the subjective information of our robots and argue for the plausibility of their
behavior and belief states. To do so, we have written log files and recorded the
games using video cameras in order to evaluate our algorithm. The analysis of
the log files from RoboCup 2001, revealed that an average MHT update takes
between 6 to 7 msecs. This allows our implementation to process all observations
of all robots (max. frame rate: 25Hz) in real time. The minimum and maximum
iteration times were measured to be 1.1 msecs and 86 msecs respectively. On
average the MHT tracked 3.2 opponents. This is a reasonable number since
there are maximal 4 opponent players and players can be send off or have to be
rebooted off field. In breaks of the games (when people get on to the field) or
when there are crowds of robots the MHT successfully tracked up to 11 objects.

A typical result of the AGILO game state estimator is shown in Fig. 3.
The upper picture shows the positions of the AGILO players of the own team,
computed through vision-based self localization [T0/5]. The middle picture shows
the individual observations of the opponent robots. The opponent observations
performed by the AGILO robots are indicated with circles, crosses, diamonds,
and triangles. In the lower picture the tracks as they were resolved by the MHT
are displayed. They are divided into subsections. The number of the robot that
contributed the most observations to this part of the track is denoted next to
the track.

Qualitatively, we can estimate the accuracy of the game state estimation by
looking for the jumps in the tracked lines. The tracks of the opponents look very
reasonable. They are less accurate and sometimes only partial. This is due to the
high inaccuracy and incompleteness of the sensory data. However, it is observable
that several tracks resulted from merging the observations of different robots. In
addition, the merging of the different observations results in fewer hallucinated
obstacles and therefore allows for more efficient navigation paths. Several wrong
opponent observations made by the goal keeper (1) were correctly omitted by the
MHT and not assigned to a track. We have cross checked the tracks computed
by the algorithm using video sequences recorded during the matches. The tracks
are qualitatively correct and seem to be accurate. A more thorough evaluation
is only possibly based on the ground truth for the situations. We are currently
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implementing tracking software for a camera mounted above the field that allows
us to compute the ground truth for the next RoboCup championship.

The cooperation of the different robots increases both, the completeness and
the accuracy of state estimation. Accuracy can be substantially increased by fus-
ing the observations of different robots because the depth estimate of positions
are much more inaccurate than the lateral positions in the image. This can be
accomplished through the Kalman filter’s property to optimally fuse observa-
tions from different robots into global hypotheses with smaller covariances. The
completeness of state estimation can be increased because all the robots can see
only parts of the field and can be complemented with observations of the team
mates. The other effect we observed was that cooperation allowed to maintain
the identity of opponent players over an extended period of time, even though
the field of view of the observing robots is limited. This point is well illustrated
in Fig. 3. The three opponent field players were tracked successfully over a period
of 30 seconds.

5 Related Work

Related work comprises work done on object tracking in the robot soccer domain
and probabilistic and vision-based tracking of moving targets. To the best of
our knowledge no probabilistic state estimation method has been proposed for
tracking the opponent robots in robot soccer or similar application domains.
Dietl et al. [4] estimate the positions of the opponents and store them in the
team world model but they solve the correspondence problem on a rather coarse
level. Probabilistic tracking of multiple moving objects has been proposed by
Schulz et al. [11]. They apply sample-based JPDAF estimation to the tracking
of moving people with a moving robot using laser range data. The required
computational power for the particle filters is opposed by the heuristic based
pruning strategies of the MHT algorithm. Hue et al.[6] are also tracking multiple
objects with particle filters. In their work data association is performed on the
basis of the Gibbs sampler. Our approach to multiple hypothesis tracking is most
closely related to the one proposed by Cox and Miller [3]. We extend their work
on multiple hypothesis tracking in that we apply the method to a much more
challenging application domain where we have multiple moving observers with
uncertain positions. In addition, we perform object tracking at an object rather
than on a feature level.

6 Conclusions

In this paper, we have extended and analyzed a probabilistic object tracking
algorithm for a team of vision-based autonomously moving robots. Our results
suggest that purely image-based probabilistic estimation of complex game states
is feasible in real time even in complex and fast changing environments. We have
also seen that maintaining trees of possible tracks is particularly useful for esti-
mating a global state based on multiple mobile sensors with position uncertainty.
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track [ track 2

Fig. 4. Opponent observations and resolved tracks.
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Finally, we have seen how the state estimation modules of individual robots
can cooperate in order to produce more accurate and reliable state estimation.
Besides an empirical analysis of the parameter settings and learning accurate
sensing models, we intend to compare in future work the MHT algorithm with
the JPDAF implementation of [I1].
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