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Abstract. This paper describes a modified potential fields method for
robot navigation, especially suited for unicycle-type non-holonomic mo-
bile robots. The potential field is modified so as to enhance the relevance
of obstacles in the direction of the robot motion. The relative weight
assigned to front and side obstacles can be modified by the adjustment
of one physically interpretable parameter. The resulting angular speed
and linear acceleration of the robot can be expressed as functions of the
linear speed, distance and relative orientation to the obstacles. For soc-
cer robots, moving to a desired posture with and without the ball are
relevant issues. To enable a soccer robot to dribble a ball, i.e., to move
while avoiding obstacles and pushing the ball without losing it, under se-
vere restrictions to ball holding capabilities, a further constraint among
the angular speed, linear speed and linear acceleration is introduced.
This dribbling behavior has been used successfully in the robots of the
RoboCup Middle-Size League ISocRob team.

1 Introduction

The navigation problem for a mobile robot in an environment cluttered with
obstacles is a traditional problem in Robotics. Some variations, such as dynamics
vs. static obstacles or non-holonomic vs. holonomic robots make it harder to
solve [5]. Other issues such as a car with a trailer moving backwards or pushing
an object can also be of practical interest. In the latter case, constraints must
be imposed on the robot linear and angular velocities so as to ensure that the
pushed object is not lost.

An algorithm (Freezone) to solve the navigation problem for a mobile robot
endowed with omni-directional vision, sonars and odometry, with a particular-
ization for soccer robots, has been introduced in previous work [6]. The algorithm
was designed to move the robot towards a desired posture while avoiding obsta-
cles, using omni-directional vision-based self-localization to reset the odometry
after some relevant events, and a sonar ring to detect the obstacles. The applica-
tion of this algorithm to robotic soccer was mainly focused on moving the robot,
without the ball, towards a desired posture. However, nothing is said on how
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to move the robot with the ball and simultaneously avoiding other robots (e.g.,
dribbling). Only a few teams of the RoboCup Middle-Size league are capable
of dribbling the ball. Dribbling is accomplished either by a suitable mechanical
design of the robot [2] or by path planning [7]. In the latter work, problems may
be experienced in the presence of fast moving robots. Furthermore, it is not clear
how the constraints on angular and linear speeds are specified.

Some of the design features of the Freezone algorithm were conceived to avoid
problems displayed by other navigation methods available in the literature (see
[6] and the references therein). Among those is the well-known potential fields
algorithm [3]. The original potential fields algorithm was designed to drive holo-
nomic vehicles. Nevertheless, it can be modified in different ways to handle non-
holonomic constraints such as by projecting the resulting field on the possible
acceleration vectors, as in the generalized potential fields method [4].

This paper introduces an alternative approach where the generalized poten-
tial field is modified so as to enhance the relevance of obstacles in the direction of
the robot motion. The relative weight assigned to front and side obstacles can be
modified by the adjustment of one physically interpretable parameter. Further-
more, the resulting angular speed and linear acceleration of the robot, obtained
under the modified potential field method, can be expressed as functions of the
linear speed, distance and relative orientation to the obstacles. This formulation
enables the assignment of angular and linear velocities for the robot in a natural
fashion, physically interpretable. Moreover, it leads to an elegant formulation of
the constraints on angular speed, linear speed and acceleration that enable a
soccer robot to dribble a ball, i.e., to move while avoiding obstacles and pushing
the ball without losing it, under severe restrictions to ball holding capabilities. It
is shown that, under reasonable physical considerations, the angular speed must
be less than a non-linear function of the linear speed and acceleration, which
reduces to an affine function of the acceleration/speed ratio when a simplified
model of the friction forces on the ball is used and the curvature of the robot
trajectory is small. This dribbling behavior has been used successfully in the
robots of the RoboCup Middle-Size League ISocRob team.

This paper is organized as follows: in Section 2, the generalized potential
fields method, its virtues and shortcomings, are revisited. Section 3 describes
the modified potential fields method introduced in this paper. The application
of the method to dribbling a ball in robotic soccer is introduced in Section 4,
by determining physical constraints on the expressions for angular and linear
acceleration obtained in the previous section. In Section 5 some experimental
results are presented and Section 6 concludes the paper.

2 Generalized Potential Fields Method

The traditional potential fields method of avoiding obstacles consists of evalu-
ating a repulsive force for each obstacle. That evaluation is made taking into
account the distance to the obstacle and the relative velocity between the robot
and the obstacle(s). An attractive force that tends to drive the robot to its target
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is also calculated. Each of these forces has the direction of the object that gave
rise to it. The attractive force accelerates the robot towards its target while the
repulsive forces accelerate in the opposite direction of the obstacles.

In the generalized potential fields method [4] the absolute value of each re-
pulsive vector is obtained using

|a| =
αv

2dα − v2 , (1)

where α is the maximum acceleration available to the robot and v and d are
respectively the velocity component in the obstacle direction and the distance
to that obstacle. Expression (1) arises when the repulsive potential is defined as
the inverse of the critical time interval until a collision happens. This potential
is infinite when the estimated time until a collision takes place equals the time
needed to stop the robot using full backward acceleration.

This method has some serious drawbacks: it is not always possible for non-
holonomic vehicles to accelerate in the direction given by the resulting force
vector, and so the potential fields concept is not fully applicable; also, when an
obstacle is close enough, the singularity of (1) is reached due to errors caused
by the sensors sampling time and the unavoidable noise contained in the sensors
measures, leading the robot to an undesirably unstable behavior.

Despite not being well suited for non-holonomic vehicles, the potential fields
method is very appealing, since it allows the use of other several navigation
methods within the framework of a behavior-based architecture [1], using an
independent potential fields module for obstacles avoidance and other modules
such as path planning or pose stabilization to drive the robot to its target. In fact,
the potential fields method implicitly defines such a behavior-based architecture,
where the evaluation of the sum of repulsive forces acts as one module and the
evaluation of the attractive vector acts as another module, the robot actuations
being simply a result of the vectorial sum of the output of each module.

Therefore, a solution more suitable than just replacing, in the navigation
system, the potential fields method by a different method, is to modify it for
non-holonomic vehicles in such a way that the method modularity is preserved.

3 Modified Potential Fields Method – The Unicycle Case

The kinematic model of the unicycle vehicle represented in Fig. 1 is given by
[

v
w

]
=

[
r/2 r/2

r/2L −r/2L

] [
wR

wL

]
(2)

where v is the speed of the robot, w = θ̇ is the angular velocity of the robot,
wR and wL are the rotating speeds of the right and left wheels, r is the wheels
radius and L is half of the distance between the contact points of each wheel.

The non-holonomic nature of a unicycle vehicle does not allow movements in
arbitrary directions. The instantaneous velocity of the robot has always the same
direction as the robot heading (the vehicle body frame is depicted in Fig. 1). So
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Fig. 1. Kinematics model

it is much more natural to state the repulsion acceleration in two independent
components: the first component is the normal acceleration (along the y-axis)
and is given by ay = vw; the second component, the tangential acceleration of the
robot (along its direction of motion, the x-axis), is equal to the time derivative
of the instant velocity. The key point here is that the vectorial sum of these two
acceleration components does not necessarily need to have the direction of the
fictitious line that connects the obstacle and the robot, as was the case when
using the generalized method. In fact it can be a better approach to design the
robot behavior separately in terms of its angular and linear speed in the presence
of obstacles.

3.1 Potential Fields

The idea behind the potential fields method is the analogy with the movement
of electrically charged particles in free space: each one is repelled by the particles
with equal signs and attracted to the particles with opposite signs. The force
exerted by one particle on another has always the direction of that particle, with
an orientation opposite to the particle if the particles have the same sign and the
opposite orientation when the particles have different signs. The intensity of the
electrostatic force does not depend on the velocity of the particles: since the field
is radial it is sufficient to know the distances between them to completely define
the potential function. This is a natural consequence of the absence of restrictions
on the movement. Nevertheless it is not much useful to act regarding a repulsive
force generated by an obstacle whose position can hardly be reached due to
the robot kinematics restrictions. Instead of using a Euclidean distance, one
can “shape” the potential field to the non-holonomic nature of the robot. In the
unicycle case, in the absence of slippage, there is a restriction of movement along
the y-axis: vy is necessarily equal to zero for all times, and so it is convenient
to increase the repulsive force along the x-axis since the velocity has only a
component along that axis. There are many different possible potential field
shapes: the triangular potential field and the elliptic potential field are only two
examples. The former is described by the equation
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|y| = −|x|
m

+ d (3)

while the latter is given by

y2

d2 +
x2

(md)2
= 1 . (4)

In both cases x and y are the obstacle coordinates in the vehicle referential,
d is the potential value for that particular obstacle and m is a constant that
defines the potential field “stretch” along the feasible direction of movement
(the x-axis in the unicycle case). The constant m usually has a value greater
than 1, meaning that the potential value of an obstacle placed along the y-axis
equals the potential value of the same obstacle placed at a distance m times
larger along the x-axis. If the potential value is expressed in terms of x and y,
then

d =
|x|
m

+ |y| (5)

and

d =

√
y2 +

x2

m2 (6)

for the triangular and elliptic potential fields, respectively. It can also be useful
to express these potential fields in polar coordinates, respectively,

d = r

(
1
m

| cos ϕ| + | sin ϕ|
)

(7)

and

d = r

√
1

m2 cos2 ϕ + sin2 ϕ , (8)

where ϕ, the orientation of the obstacle relative to the robot, and r, the ob-
stacle distance, are obtained by the usual transformations, r =

√
x2 + y2 and

ϕ = arctan(y/x). The contour lines for both potential fields can be seen in
Fig. 2. Note that, in the generalized potential fields method [4], the potential
fields are described by d = r/ cos ϕ, since only the velocity component in the
obstacle direction is taken into account. Note that generally the potential value
corresponds to a distance to the robot using a different, non-Euclidian metric.
The generalized potential fields method also leads to a “stretch” of the potential
field in the direction of movement (see Fig. 3), as is the case of the triangular
and elliptic potential fields when m > 1 . Also note that if we set m = 1 in the
elliptic case a circular potential field is obtained and the distance in terms of
potential becomes an Euclidean distance.

Up to now nothing has been said about the navigation through the obstacles
and the repulsive forces themselves; in fact, the only purpose of this section was
to conceive the idea of a non-Euclidean distance that can prove itself more useful
when taking into consideration the non-holonomic restrictions of the robot. The
navigation algorithms will be presented in the next sub-sections.
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(b) Elliptic field

Fig. 2. Field countour lines, with m = 2
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Fig. 3. Potential fields used in (1)

3.2 Normal Repulsive Acceleration

The total applied acceleration in the direction perpendicular to the movement
is simply equal to the sum of individual normal accelerations, ay = ay1 + ay2 +
ay3 + · · · . Since ay = vw, where v is the robot linear speed, the last expression
can be written as

w = w1 + w2 + w3 + · · · . (9)

This means that the total normal acceleration of the robot is given by the sum
of individual angular velocities applied to that robot, apart a scale factor.

Should the robot generate the same path independently of its linear speed,
given an obstacle configuration and the initial conditions, one must ensure that
its curvature function C for those obstacles is independent of the linear speed.
Noting that C = w/v, if, for each obstacle i,

wi = c(di) · v , (10)
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where c(di) is a function of the distance di to the obstacle (measured using
the chosen potential field), then C = c(di) and the curvature function becomes
dependent only on the position of that obstacle. Generally that function is as-
sumed to decrease with distance: once again there are several candidates for the
curvature function. c(d) could be any of the following:

|c(d)| =
G

d − D
, (11)

|c(d)| =
G

(d − D)2
, (12)

|c(d)| =
{

G(1 − d/D) if d < D
0 otherwise . (13)

G is an overall gain and D is a parameter that controls the derivative of the
curvature function with respect to d, the distance of the target to the center
of the robot. D has distance units and in the case of (11) and (12) must be
dimensioned in order to guarantee that D < R, where R is the robot radius (if
it were not so the curvature function could reach a singularity). A careful choice
of values of D and G is critical in what concerns to the robot performance.

The signal of the curvature function is given by

c(d)
|c(d)| =

{
1 −π

2 ≤ ϕ < 0
−1 0 < ϕ ≤ π

2
. (14)

For ϕ = 0 the signal is undefined: it can be randomly assigned, but when multiple
obstacles exist there are other possible approaches (see Section 3.5).

3.3 Tangential Repulsive Acceleration

The total tangential acceleration is also given by the sum of the individual
tangential components, ax = ax1 + ax2 + ax3 + · · · , which can be transformed to

v̇ = v̇1 + v̇2 + v̇3 + · · · . (15)

For each obstacle, the tangential repulsive acceleration can be projected in
several ways: usually it should increase when the obstacle gets closer and should
decrease when the robot goes slower. This acceleration depends on the speed of
the robot and the distance to the target as well,

v̇ = F (d, v, . . .) , (16)

although it can also depend on the time derivatives of v and d when a dynamic
relation is used instead of a static one (e.g., a PID controller).

There is no need to use the same parameters, not even the same potential field
shapes, when modeling the normal and the tangential repulsive accelerations:
those two components are actually independent.
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3.4 Attractive Acceleration

To drive the robot to its desired final posture an attractive module is needed. This
module can consist of a path-follower or a posture stabilizer by state feedback.
For example, a simple controller one can design is

{
wc = Kw(θref − θ)
v̇c = Kv(vref − v) , (17)

where θref and vref are respectively the desired angle and velocity and Kv and
Kw are controller parameters to be tuned. θref is defined as

θref = arctan
(

yref − y

xref − x

)
, (18)

where (xref , yref ) is the robot target position and (x, y) its current position. The
control algorithm is simple and the study of its stabilization properties is out
of the scope of this work: the goal is simply to achieve the target position with
a simple controller. Nevertheless, despite its simplicity, these controllers have
proven to be quite satisfactory when conjugated with the obstacle avoidance
modules.

Equations (9) and (15) simply state that after the obstacle avoidance modules
are designed the modules responsible for getting the robot to its target posture
can be added by simply summing the respective acceleration components.

3.5 Multiple Obstacles

Although (9) and (15) are extremely attractive, suggesting a natural sum of the
tangential and normal components relative to the respective obstacles, such an
approach has serious drawbacks: two small obstacles placed side by side would
give rise to a repulsive force much more stronger than the repulsive force caused
by an obstacle with an equivalent size and placed at the same position. Moreover
in many cases an autonomous robot has access only to measurements provided
by, e.g., a sonar or infrared ring placed around it, and has no clue on whether the
reading of two contiguous sensors belongs to distinct obstacles or to the same
object. A possible solution is to consider only the most critical obstacle at each
side of the robot, determining the nearest left and right obstacles and discarding
all the others. In the tangential repulsion case it suffices to get the nearest front
obstacle, and so the repulsive accelerations become defined as

wobs = c(dLMax) · v + c(dRMax) · v (19)

and
v̇obs = F (dFMax, v, · · · ) , (20)

where dLMax, dRMax and dFMax are respectively the minimum obstacle distance
at the left side, right side and front side of the robot, and F is a suitable func-
tion. When the nearest obstacle is located precisely in front of the robot, (19)
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(a) Overview (b) Detail

Fig. 4. Forces acting on the ball

becomes undefined; it is not recommended then to choose randomly the side to
which assign that obstacle, since such an approach can be a cause of undesirable
unstability. One can calculate the second nearest obstacle and then assign the
nearest obstacle to the second nearest obstacle side, creating a kind of hysteresis
that prevents the robot “hesitation”. The robot actuations are finally given by

w = wc + wobs

v̇ = v̇c + v̇obs
, (21)

where wc and v̇c are the attractive accelerations that try to drive the robot to its
final target and wobs and v̇obs are the repulsive accelerations due to the obstacles,
defined in (19) and (20).

4 Dribbling

To keep the ball controlled near the robot while the robot moves is a crucial and
a challenging problem under the RoboCup Middle-Size League rules. ISocRob
and other teams developed a flipper mechanism in order to dribble a ball better.

It is only possible to keep the ball between the flippers while navigating
through obstacles if the inertial and the friction forces exerted on the ball are
able to balance or overcome the torque originated by the centrifugal force at the
contact point (see Fig. 4). This means that

sin(α + β)Fctrf ≤ cos(α + β)(Ffr + Fin) , (22)

where Fctrf , Ffr and Fin are respectively the centrifugal, the friction and the
inertial forces, and where the angles are given by

α = arcsin
Rb − Lf

Rb
(23)

and
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β = arctan
L

1/C
. (24)

L is the distance between the midpoint of the robot and the midpoint of the
ball, Rb is the ball radius, C is the instant curvature of the robot and Lf is the
flippers width. It is assumed that the robot is turning left, i.e., w > 0 and that
v > 0. Note that, although the ball is “attached” to the robot, its velocity is only
equal to the robot velocity if the instant curvature is null; in the most general
case, since Cbvb = Cv, the robot and the ball speeds are related by

vb =
1

cos β
v , (25)

where v and vb are the robot speed and the ball speed. Cb is the instant curvature
of the ball, which can be obtained by

1
Cb

≈
√(

1
C

)2

+ L2 . (26)

The inertial, centrifugal and friction forces can be replaced, according to their
definitions, by

Fctrf = mbCbv
2
b = mb

C

cos β
v2 , (27)

Fin = mbv̇b = mb
v̇

cos β
(28)

and
Ffr = mbafr , (29)

where mb is the mass of the ball and afr is acceleration caused by the friction
force. Expression (22) consequently becomes Cv2 ≤ cot(α + β)[cos(β)afr + v̇],
leading to

w ≤ cot(α + β)
[
cos(β)

v
afr +

v̇

v

]
. (30)

The friction between the ball, the robot and the floor is usually very hard
to model accurately, as it usually does not depend exclusively on the ball speed
and its derivatives. If, for the sake of simplicity, only the term proportional to
the ball speed is taken into account when evaluating the friction force, e.g.,

afr = µfrvb = µfr
v

cos β
, (31)

where µfr is the friction coefficient, then (30) becomes

w ≤ cot(α + β)
[
µfr +

v̇

v

]
. (32)

Finally, when the curvature C of the robot is small enough, corresponding
to a large curved path, (32) simplifies to

w ≤ cot(α)
[
µfr +

v̇

v

]
. (33)

Since α is constant, (33) can be written as
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Fig. 5. Obstacle avoidance (vref = 0.5m/s)

w ≤ A + B
v̇

v
, (34)

where A = cot(α)µfr and B = cot(α).
The constant B is easily obtained since it depends only on the geometry of

the robot and the size of the ball. Constant A must be determined empirically.
Note that (34) is only a valid expression when the curvature is small enough; in
the most general case one should use (32). This model assumes that the robot
is always turning to the same side. When this is not the case and the robot
curvature function changes the ball goes from one flipper to another. Usually
that leads to some bouncing, which can actually be a serious problem. Note also
that a more sophisticated friction model may be needed to get better results.

Expression (34) states the dribbling fundamental restriction on the robot
movement. Usually the angular velocity is bounded in order to meet condi-
tion (34), although other more complex schemes may be found, restricting both
w and v̇, that meet that condition.

5 Experimental Results

The attractive acceleration components were obtained using very simple con-
trollers, namely those referred on (17), with Kw = 3 and Kv = 0.4. The re-
pulsive normal acceleration was based on (13), while the tangential acceleration
was based on a PD controller whose error is a function of distance also given
by (13). Both normal and tangential repulsions use an elliptic field with m ≈ 2.
All the experiments were performed using the robots of the ISocRob team. The
start point was (−3.5, 0) — left side of the camp — and the target position was
(3.0, 0) — in the right side of the camp.

Note that, as pointed out in Section 3.2, theoretically (10) makes the cur-
vature function independent of the robot speed. However the robot dynamics
effectively contribute to a degradation of the robot performance, especially at
high speeds. To take that effect into account, the parameter D of equation (13)
is a linear function of v, providing the robot with a faster response to obstacles
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Fig. 6. Obstacle avoidance with dribbling restrictions (vref = 0.5m/s)
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Fig. 7. Obstacle avoidance in a highly cluttered environment (vref = 1.0m/s)

at high speeds. Fig. 5 presents the robot path in the presence of obstacles and
the correspondent speed profile. Fig. 6 shows how the behaviour of the robot
changes when the dribbling restriction is active, with A = 0.3 and B′ = 0.19.
The value B′ = B/T , where T is the sampling time, is referred because a discrete
time version of equation (34) was used.

In Fig. 6(a), after the mid-field obstacle, the robot follows a wider path to
keep ball. It is also visible in Fig. 6(b) that the speed never decreases, since this
would leed to a ball loss.

Finally, Fig. 7 shows the robot response in a cluttered environment. The
dribbling limitations presented in Section 4 create considerable difficulties to
the task of traversing such a cluttered environment, unless the reference speed
of equation (17) is a very low one, decreasing the normal acceleration obtained
from the obstacle avoidance module (see equation (10)).

6 Conclusions

This paper introduced a modified version of the generalized potential fields
method. The modification allows different potential field shapes “stretchable”
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by changes in one parameter. It also allows a decoupled specification of the tan-
gential and normal components of the acceleration caused by an obstacle. These
accelerations can be seen as disturbances acting on the robot efforts to go to its
target posture, based on a suitable closed loop guidance controller. This algo-
rithm, such as all the other potential field based methods, can lead to situations
where the robot becomes trapped in a local minima situation, in particular in
highly cluttered environments. This does not pose too much of a problem since
that is precisely the underlying philosophy of that kind of method: to provide a
simple and fast, although non-optimal, way of moving to a desired posture while
avoiding collisions with other objects (this method is computationally unexpen-
sive, since it only needs to perform some simple calculations for each obstacle
distance measured). The independence of the normal and tangential components
of repulsive acceleration formulated in Section 3 can nevertheless provide a bet-
ter way of avoiding those local minima if the normal acceleration is preferred over
the tangential acceleration, leading to a behavior where the robot only brakes
when it has no place to turn. The escape from local minima should be left to a
path-planner, embebbed in the attractive module.

The method enables an elegant formulation of the required constraints for a
soccer robot to keep the ball while moving towards a given posture, also known as
dribbling. The general case and a simplified version, affine on the ratio between
the linear acceleration and velocities, are presented. These results have been
successfully applied to the RoboCup Middle-Size League robots of the IsocRob
team, leading to goals after a dribble, or 180 degrees turns with the ball.
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