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On the Length of the Minimum Solution of Word Equations in One

Variable∗

Kensuke Baba† Satoshi Tsuruta Ayumi Shinohara Masayuki Takeda

Abstract

We show the tight upperbound of the length of the min-
imum solution of a word equation L = R in one vari-
able, in terms of the differences between the positions
of corresponding variable occurrences in L and R. By
introducing the notion of difference, the proof is ob-
tained from Fine and Wilf’s theorem. As a corollary,
it implies that the length of the minimum solution is
less than N = |L|+ |R|.

1 Introduction

Word equations can be used to describe several fea-
tures of strings, for example, they generalize pattern
matching problem [3, 4] with variables. The following
is an example of word equations. Let a, b be characters
and x be a variable. The word equation

xxbaababa = ababaxabx

has a solution

x = ababaababa.

The fundamental work in word equations is Makanin’s
algorithm [10] which decides whether a word equa-
tion has a solution (see for a survey on this topic [9]).
Plandowski [11] introduced a PSPACE algorithm
which gives the best upperbound so far known. On
the other hand, the problem is known to be NP-
hard [1]. An approach to the problem is to ana-
lyze word equations with a restricted number of vari-
ables. Charatonik and Pacholski [2], and Ilie and
Plandowski [7] introduced a polynomial time algo-
rithm for word equations in two variables. As to word
equations in one variable, there is an efficient algo-
rithm by Obono et al. [6] which solves a word equation
L = R in O(N log N) time in terms of N = |L|+ |R|.
Da̧browski and Plandowski [5] presented an algorithm
of O(N + ]x log N) time complexity for the number ]x

of occurrences of the variable x.
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However, the upperbound of the length of the min-
imum solution of word equations is not exactly un-
derstood even for one-variable version. Let χ be the
upperbound, that is, a word equation has a solution if
and only if there exists a solution A of length |A| ≤ χ.
For any word equation in one variable, we can choose a
single candidate for the solution of a length, therefore
we have only to check for the χ candidates at most
to decide whether a word equation has a solution. In-
deed no χ leads a better result for the complexity as
long as it is proportional to N , but from a practical
viewpoint, χ is quite important. In [6], χ is taken to
be equal to 4N without precise proof. Hence, we need
to reduce χ as small as possible and prove it formally.

In this paper, we show the tight upperbound of the
minimum solution for one variable word equations, by
introducing a new measure in terms of the positions
of variable occurrences. The bound reveals that χ is
less than N .

We now explain the basic idea briefly. A word equa-
tion in one variable is non-trivial only if both side of
the equation have the same number of occurrences of
the variable: Otherwise, the length of a possible solu-
tion is exactly determined by an integer equation on
both the length of instance and the number of variable
occurrences. Let m be the number of occurrences. We
focus on the fact that, for a word equation L = R, the
“gap” between the k-th occurrence of the variable x
in L and the k-th occurrence in R is preserved for any
substitution of a string A, as the gap between the cor-
responding occurrences of A in L[A/x] and R[A/x].
We denote the gaps by dk (1 ≤ k ≤ m). In the exam-
ple in Fig. ??, d1 = 5 and d2 = 7. By utilizing this
notion, the proof of the upperbound is essentially re-
ducible to one for a word equation which has only one
occurrence of x in both side respectively. If A is a solu-
tion and is longer than dk, then the k-th pair of occur-
rences of A overlap each other, that is, dk is a period
of A. Therefore, by Fine and Wilf’s theorem [9], the
upperbound is max1≤k≤m{dk + p− gcd(dk, p)}− 1 for
a period p of A. Since the minimum length of p is not
larger than min1≤k≤m,dk 6=0 dk, the tight upperbound
will be given as max1≤k≤m dk +min1≤k≤m,dk 6=0 dk−2.
Obviously, min1≤k≤m,dk 6=0 dk ≤ max1≤k≤m dk < |L|.
Thus χ is less than N = 2|L|.
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2 Preliminaries

Let Σ be an alphabet and x /∈ Σ be a variable. The
empty word is denoted by ε. The length of a word w
is denoted by |w|, where |ε| = 0 and |x| = 1. The i-th
element of a word w is denoted by w[i] for 1 ≤ i ≤ |w|.
The word w[i]w[i+1] · · ·w[j] is called a subword of w,
and denoted by w[i : j]. In particular, it is called a
prefix if i = 1 and a suffix if j = |w|. For convenience,
let w[i : j] = ε for j < i.

A period of a non-empty word w is defined as an
integer 0 < p ≤ |w|, such that w[i] = w[i + p] for any
1 ≤ i ≤ |w| − p. Note that the |w| is always a period
of w.

Proposition 1 (Fine and Wilf) Let p, q be periods
of a word w. If |w| ≥ p + q − gcd(p, q), then gcd(p, q)
is also a period of w.

A word equation (in one variable) is a pair of words
over Σ∪{x} and is usually written by connecting two
words with “=”. A solution of a word equation L =
R is a homomorphism σ : (Σ ∪ {x})∗ → Σ∗ leaving
the letters of Σ invariant and such that σ(L) = σ(R).
Since the solution is uniquely decided by a mapping of
x into Σ∗, in this paper we define a solution as a word
A ∈ Σ∗ such that A = σ(x). Therefore, we can rewrite
the condition that σ(L) = σ(R) by L[A/x] = R[A/x],
where the result w[A/x] of the substitution of A to x
in a word w is defined inductively as:
if w = ε, w[A/x] = ε;
if w = a ∈ Σ, w[A/x] = a;
if w = x, w[A/x] = A;
if w = w1w2, w[A/x] = w1[A/x]w2[A/x].

If two words L and R have the same prefix M , the
solution of a word equation L = R is obtained by solv-
ing the word equation L′ = R′ where L = ML′ and
R = MR′. Therefore, we can assume without loss
of generality that any word equation is of the form
xL1 = BxR1 for a non-empty word B which has no
variable and words L1, R1. This form implies that any
solution A is a prefix of the word Bk for a natural num-
ber k. By a similar argument for suffix, we can assume
that either L1 or R1 ends with x. In particular, if L
and R have exactly one occurrence of x respectively,
the word equation L = R can be reduced to the form
xC = Bx for non-empty words B, C which have no
variable.

We denote by ]x(w) the number of occurrences of
the variable x in a word w. If a word equation L =
R has a solution A, the length of L[A/x] is same as
the length of R[A/x]. Hence we have |L| + ]x(L) ·
(|A| − 1) = |R|+ ]x(R) · (|A| − 1), and therefore |A| =
|L|−|R|

]x(R)−]x(L) + 1. If ]x(L) 6= ]x(R), the length of the
solution is determined uniquely to the word equation
and its upperbound is | |L|− |R| |+1 ≤ max(|L|, |R|).
If ]x(L) = ]x(R), we have |L| = |R|.

Proposition 2 ([6]) Let L = R be a word equation.
(i) If ]x(L) 6= ]x(R), the length of the solution is deter-
mined uniquely with respect to L = R and is at most
max(|L|, |R|).
(ii) If ]x(L) = ]x(R), L = R has a solution only if
|L| = |R|.

3 Solutions

We show the upperbound of the length of the mini-
mum solution of word equations in one variable. By
Proposition 2, we have only to consider the word equa-
tion L = R in the situation that ]x(L) = ]x(R) and
|L| = |R|. Let m = ]x(L) = ]x(R) and n = |L| = |R|.
We denote by `x

1 , · · · , `x
m and rx

1 , · · · , rx
m the positions

of occurrences of x in L and R, respectively in in-
creasing order. We define `A

k and rA
k for a word A and

1 ≤ k ≤ m as

`A
k = `x

k + (k − 1)(|A| − 1),
rA
k = rx

k + (k − 1)(|A| − 1).

`A
k is, intuitively, the position in L[A/x] of a occur-

rence of A substituted to the k-th occurrence of x in
L (which is not always the k-th occurrence).Therefore,
`A
k − rA

k is the difference between it and the position
of the corresponding occurrence of A in R[A/x]. The
difference does not depend on the length of A, see
Fig. 1.

Proposition 3 For any word A, any word equation
L = R, and integer 1 ≤ k ≤ m,
(i) `A

k − rA
k = `x

k − rx
k ,

(ii) L[A/x][`A
k : `A

k + |A|− 1] = R[A/x][rA
k : rA

k + |A|−
1] = A.

Proof. (i) Trivial by the definition.
(ii) We prove for L. By the definition of substitution,
L[A/x] is represented as

L[A/x] = L[1 : `x
1 − 1]AL[`x

1 + 1 : `x
2 − 1] · · ·

L[`x
k−1 + 1 : `x

k − 1]AL[`x
k + 1 : `x

k+1 − 1] · · ·
L[`x

m−1 + 1 : `x
m − 1]AL[`x

m + 1 : n]. (1)

The length of the prefix of L[A/x] which ends L[`x
k−1+

1 : `x
k − 1] equals to (`x

1 − 1)+
∑k

i=2{(`x
i − 1)− (`x

i−1 +
1)+1}+(k−1)|A| = `x

k−k+(k−1)|A| = `A
k −1 for any

1 ≤ k ≤ m. Thus `A
k is the position of the occurrence

of A which is the next to L[`x
k−1 + 1 : `x

k − 1] in the
right side of Eq. (1). 2

We denote by dk the absolute value of the difference,
that is,

dk = |`x
k − rx

k |
for 1 ≤ k ≤ m. Then we have the following lemma.
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L[A/x]:

R[A/x]:
-¾ -¾

AA
`A
1

A
rA
1

A
`A
2

A
rA
2

L:
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Ax
`x
1

x
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1

x
`x
2

x
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2

Figure 1: The difference `x
k − rx

k is equal to the difference `A
k − rA

k for any A.

Lemma 1 Let A be a solution of a word equation L =
R. For 1 ≤ k ≤ m and dk 6= 0, if |A| ≥ dk then A has
a period dk.

Proof. We can assume rx
k < `x

k without loss of gener-
ality. If |A| = dk, by the definition, dk is a period of A.
If |A| > dk, by Proposition 3 (i), `A

k = rA
k + `x

k − rx
k =

rA
k + dk < rA

k + |A|. Since A is a solution of L = R,
we consider subwords of L[A/x] and R[A/x], then
L[A/x][`A

k : rA
k + |A| − 1] = R[A/x][`A

k : rA
k + |A| − 1].

By Proposition 3 (ii), L[A/x][`A
k : rA

k + |A| − 1] =
A[1 : |A| − (`A

k − rA
k )] and R[A/x][`A

k : rA
k + |A| − 1] =

A[1 + (`A
k − rA

k ) : |A|]. Thus, by Proposition 3 (i),
A[1 : |A| − (`x

k − rx
k)] = A[1 + (`x

k − rx
k) : |A|] which

implies that `x
k − rx

k is a period of A. 2

Lemma 2 Let A be a solution of a word equation L =
R and p be a period of A. If

|A| ≥ max
1≤k≤m

dk + p− 1,

then the prefix A[1 : |A| − p] of A is also a solution of
L = R.

Proof. We prove by induction on the number m =
]x(L) = ]x(R).
(Base step) By the argument in Section 2, we can as-
sume L = xC and R = Bx with B, C ∈ Σ+. By
Lemma 1, d1 = |B| is a period of A. By Proposi-
tion 1, gcd(d1, p) is a period of A, moreover it is also a
period of AC and BA. Since A[1 + gcd(d1, p) : |A|] =
A[1 : |A| − gcd(d1, p)], we have

A[1 : |A| − k gcd(d1, p)]C
= (AC)[1 + k gcd(d1, p) : |A|]
= (BA)[1 + k gcd(d1, p) : |A|]
= BA[1 : |A| − k gcd(d1, p)]

for a natural number k such that k gcd(d1, p) ≤ |A|.
(Induction step) We can assume L = L′xC and R =
R′xBx with L′, R′ ∈ (Σ∪{x})+ and B, C ∈ Σ+. Then

we have dm = |C| and L′[A/x]AC = R′[A/x]ABA.
If |C| ≤ |B|, the result is obviously obtained by in-
duction for two equations L′ = R′xB[1 : |B| − |C|]
and xC = B[|B| − |C| + 1 : |B|]x. If |C| > |B|,
we have |ABA| > |AC| > |BA| by the assumption
|A| ≥ max1≤k≤m dk + p − 1. Hence the occurrence of
A starting at `A

m in L[A/x] and the occurrence of A
starting at rA

m−1 in R[A/x] have a non-trivial overlap-
ping Q. (This situation is illustrated in Fig. 2.) Now
we consider two equations L′Q = R′x and xC = QBx.
The assumption L′[A/x]AC = R′[A/x]ABA implies
L′[A/x]Q = R′[A/x]A and AC = QBA, that is,
A is a solution of the equations. Then, by induc-
tion hypothesis, we have L′[A′/x]Q = R′[A′/x]A′ and
A′C = QBA′ where A′ = A[1 : |A| − p]. Thus,
we have L[A′/x] = L′[A′/x]A′C = L′[A′/x]QBA′ =
R′[A′/x]A′BA′ = R[A′/x]. 2

Theorem 1 (Tight upperbound) For any word
equation L = R such that ]x(L) = ]x(R), the length of
the minimum solution is at most

max
1≤k≤m

dk + min
1≤k≤m,dk 6=0

dk − 2.

The bound is tight.

Proof. Assume a word equation has a solution A such
that |A| ≥ max1≤k≤m dk + min1≤k≤m,dk 6=0 dk − 1. By
Lemma 1, A has a period p ≤ min1≤k≤m,dk 6=0 dk.
Hence, by Lemma 2, A[1 : |A| − p] is also a solution of
the word equation. Therefore A is not the minimum
solution.

To see that the bound is tight, let us consider the
following word equation:

xxbaababa = ababaxabx.

We can verify that the solution of length 10

x = ababaababa.
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L[A/x]: L′[A/x] C

R[A/x]: R′[A/x] B

A
`A
m

A
rA
m−1

A
rA
m

Q

Q

L: L′ C

R: R′ B

x
`x
m

x
rx
m−1

x
rx
m

Figure 2: If |C| > |B| and |A| ≥ dm = |C|, then |ABA| > |AC| > |BA| and two occurrences of A starting at
`A
m and rA

m−1 have a overlap Q.

is in fact the minimum solution. Since d1 = 5 and
d2 = 7, we have max1≤k≤2 dk = 7 and min1≤k≤2 dk =
5. Thus max1≤k≤2 dk + min1≤k≤2 dk − 2 = 10, which
shows the bound is tight. 2

In case of binary alphabet, the minimum solution
which length is the upper bound is central which is
defined as:
A word is central if and only if it is in the set

0∗ ∪ 1∗ ∪ (P ∩ P10P )

where P is the set of palindrome words.
It is obtained by the proof of Lemma 2 and the fact
that: a word w is central if and only if it has two
periods p and q such that gcd(p, q) = 1 and |w| =
p + q − 2 [9, pp. 69–70].

We also have the following relaxed upperbound,
since min1≤k≤m,dk 6=0 dk ≤ max1≤k≤m dk < |L|.

Corollary 1 For any word equation L = R such that
]x(L) = ]x(R), the length of the minimum solution is
at most N − 4 = |L|+ |R| − 4.

Consequently, we have the following upperbound by
Proposition 2.

Corollary 2 For any word equation L = R, the
length of the minimum solution is at most N − 1.

4 String Statistics Problem

We are developing a system whose aim is to ex-
perimentally analyze the combinatorial property and
structures of word equations. As a first step, we are
recording all solvable word equations (up to a mod-
erate length) in one variable together with their min-
imum solutions. By the fact that: for any word w,
there exists a binary word w′ which has the same set
of periods as w [9, pp. 275–279], we have only to

consider a binary alphabet to find out the relation
between the length of an equation and the length of
its solutions. For a fixed alphabet Σ = {a, b} and
a specified length n, we enumerate the set E of all
word equations L = R such that (1) both a and b
appear either L or R, (2) |L| = |R| = n, (3) L and
R contains the same number of variables, and (4) the
pairs (L[1], R[1]) and (L[n], R[n]) must be taken from
{(x, a), (x, b), (a, x), (b, x)}.

Then for each word equation in E , we try to find
the minimum solution by checking each prefix of Bk

(where B is a constant prefix of either L or R) in in-
creasing order up to 2n − 4. If a solution is found,
we logged it and turn to the next equation. Other-
wise, we can conclude that the word equation has no
solution, thanks to the upperbound we have shown
(Corollary 1).

For interested readers, Table 1 shows the num-
bers of the solvable word equations in E , classified
by the lengths of their minimum solutions. At i-
th row and column labeled n = |L| of the table T ,
we fill the number of word equations in E of length
|L| = |R| = n whose minimum solution is of length
i. Remark that some equations may be equivalent
each other, by either replacing a with b, exchang-
ing left-side with right-side, or reversing the formu-
lae. We did not exclude these duplications. For exam-
ple, T (0, 3) = 4 corresponds to the number of equa-
tions {abx = xab, bax = xba, xab = abx, xba = bax},
where the empty string is a solution to them. They
are equivalent each other. Moreover, T (1, 3) = 4 cor-
responds to {abx = xba, bax = xab, xab = bax, xba =
abx}, whose minimum solutions are of length 1. They
are essentially the same.

Let us pick up some interesting pairs of equation
and its minimum solution.

• 〈xxbaababa = ababaxabx, ababaababa〉, from
T (10, 9) = 8, which was used to prove the tight-
ness of the upperbound. This is a unique instance
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Table 1: The numbers of solvable word equations in one variable in E , classified by the lengths of their minimum
solutions.

length of L (and R)
3 4 5 6 7 8 9 10 11

0 4 32 220 1388 8364 49120 284204 1630124 9303292
1 4 20 104 548 2868 14856 76236 388212 1964612
2 0 12 56 252 1208 5844 28268 136536 657868
3 0 0 24 140 564 2488 11304 53008 250296
4 0 0 0 60 260 1148 4764 20784 95868
5 0 0 0 0 116 580 2052 8592 36076
6 0 0 0 0 8 264 1152 4368 16152
7 0 0 0 0 0 8 504 2148 7532
8 0 0 0 0 0 0 24 1084 4404
9 0 0 0 0 0 0 8 48 2120

10 0 0 0 0 0 0 8 36 136
11 0 0 0 0 0 0 0 8 24
12 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 8
14 0 0 0 0 0 0 0 0 8

in T (10, 9) = 8, since the other 7 instances are all
equivalent to it.

• 〈xxbaabababa =
abababaxabx, abababaabababa〉, from
T (14, 11) = 8, which also matches the upper-
bound. This is a unique instance in T (14, 11) = 8,
since the other 7 instances are all equivalent to it.

• 〈xabxbaaaaaa =
aaaaaabaxbx, aaaaaabaaaaaa)〉. This is a
unique instance in T (13, 11) = 8.

5 Conclusion

We showed the tight upperbound of the length of min-
imum solution of word equations in one variable. The
upperbound is easily computed from a given word
equation. Moreover, we showed concrete examples
which match the bound. As a corollary, we also have
a more relaxed upperbound which is easier applicable:
the length of the minimum solution is less than the
size of the total length of a word equation.

Khmelevskĭı [8, pp. 12] proved that if a word equa-
tion C0xC1 · · ·xCu = xB1 · · ·xBv is solvable, it has
a solution of length smaller than M2 + 3M where
M = maxi,j{u, v, |Ci|, |Bj |}. When we consider the
upperbound in terms of the length N of a given
word equation, the order of this value comes up to
N2 since M ≤ N − 1. Even for the original ex-
pression, we can show that the value M2 + 3M − 1
never be less than the upperbound of our result for
a non-trivial word equation. Let ν = u = v and

λ = maxi,j{|Ci|, |Bj |}. Then M = max{ν, λ}. By the
definition of dk, we have mink,dk 6=0 dk ≤ |C0| ≤ λ and
maxk dk ≤ max{∑k−1

i=0 |Ci|,
∑ν

i=k |Ci|} ≤ νλ. There-
fore, maxk dk + mink,dk 6=0 dk − 2 ≤ νλ + λ − 2 ≤
M2 + 2M − 2 ≤ M2 + 3M − 1.

Thanks to the bound, we could perform a compre-
hensive analysis of word equations in one variable up
to a moderate size the equations, by enumerating all
word equations and solving them one by one. We
showed some statistics of the lengths of minimum so-
lutions.
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