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Abstract. To obtain an expressively complete linear-time temporal logic
(LTL) over Mazurkiewicz traces that is computationally tractable, we
need to intepret formulas locally, at individual events in a trace, rather
than globally, at configurations. Such local logics necessarily require past
modalities, in contrast to the classical setting of LTL over sequences.
Earlier attempts at defining expressively complete local logics have used
very general past modalities as well as filters (side-conditions) that “look
sideways” and talk of concurrent events. In this paper, we show that it
is possible to use unfiltered future modalities in conjunction with past
constants and still obtain a logic that is expressively complete over traces.
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1 Introduction

Linear-time temporal logic (LTL) [17] has established itself as a useful formalism
for specifying the interleaved behaviour of reactive systems. To combat the com-
binatorial blow-up involved in describing computations of concurrent systems in
terms of interleavings, there has been a lot of interest in using temporal logic
more directly on labelled partial orders.

Mazurkiewicz traces [13] are labelled partial orders generated by dependence
alphabets of the form (Σ,D), where D is a dependence relation over Σ. If (a, b) /∈
D, a and b are deemed to be independent actions that may occur concurrently.
Traces are a natural formalism for describing the behaviour of static networks
of communicating finite-state agents [24].

LTL over Σ-labelled sequences is equivalent to FOΣ(<), the first-order logic
over Σ-labelled linear orders [12] and thus defines the class of aperiodic languages
over Σ. Though FOΣ(<) permits assertions about both the past and the future,
future modalities suffice for establishing the expressive completeness of LTL with
respect to FOΣ(<) [8]. From a practical point of view, a finite-state program
may be checked against an LTL specification relatively efficiently.

? Partial support of CEFIPRA-IFCPAR Project 2102-1 (ACSMV) is gratefully ac-
knowledged.
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The first expressively complete temporal logic over traces was described in
[6] for finite traces and in [19] for infinite traces. The result was refined in [4] to
show expressive completeness without past modalities, using an extension of the
proof technique developed for LTL in [23]. Formulas in both these logics are de-
fined at global configurations (maximal antichains). Unfortunately, reasoning at
the level of global configurations makes the complexity of deciding satisfiability
non-elementary [21]. Computational tractability seems to require interpreting
formulas at local states—effectively at individual events.

Recently, in [10], a local temporal logic has been defined over traces and
shown to be expressively complete and tractable (the satisfiability problem is in
Pspace). This logic uses both future and past modalities (similar to the until and
since operators of LTL) which are further equipped with filters (side-conditions).
It was also shown that for finite traces, a restricted form of past modalities
suffices, but only in conjunction with filtered future modalities. Another proposal
is presented in [1] and this logic also uses the since operator.

LTL without any past operators is expressively complete over words but this
cannot be the case for traces: there exist two first-order inequivalent traces that
cannot be distinguished using only future modalities [22].

In this paper, we show that a very limited ability to talk about the past is
sufficient to obtain expressive completeness over traces. Our logic uses unfiltered
future modalities and a finite number of past constants. (In particular, there is
no nesting of past operators and for that matter even future formulas cannot
be nested into past formulas.) As in [3, 4, 10], we show expressive completeness
using an extension to traces of the proof technique introduced in [23] for LTL
over sequences. From the recent general result proved in [9], it follows that the
satisfiability problem for this new logic is also in Pspace.

The paper is organized as follows. We begin with some preliminaries about
traces. In Section 3 we define our new temporal logic. Section 4 describes a
syntactic partition of traces that is used in Section 5 to establish expressive
completeness. Many proofs have had to be omitted in this extended abstract. A
full version of the paper is available in [11].

2 Preliminaries

We briefly recall some notions about Mazurkiewicz traces (see [5] for back-
ground). A dependence alphabet is a pair (Σ,D) where the alphabet Σ is a finite
set of actions and the dependence relation D ⊆ Σ×Σ is reflexive and symmetric.
The independence relation I is the complement ofD. For A ⊆ Σ, the set of letters
independent of A is denoted by I(A) = {b ∈ Σ | (a, b) ∈ I for all a ∈ A} and the
set of letters depending on (some action in) A is denoted by D(A) = Σ \ I(A).

A Mazurkiewicz trace is a labelled partial order t = [V,≤, λ] where V is a set
of vertices labelled by λ : V → Σ and ≤ is a partial order over V satisfying the
following conditions: For all x ∈ V , the downward set ↓x = {y ∈ V | y ≤ x} is
finite, (λ(x), λ(y)) ∈ D implies x ≤ y or y ≤ x, and xly implies (λ(x), λ(y)) ∈ D,
where l = < \ <2 is the immediate successor relation in t.
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The alphabet of a trace t is the set alph(t) = λ(V ) ⊆ Σ and its alphabet at
infinity, alphinf(t), is the set of letters occurring infinitely often in t. The set of
all traces is denoted by R(Σ,D) or simply by R. A trace t is called finite if V
is finite. For t = [V,≤, λ] ∈ R, we define min(t) ⊆ V as the set of all minimal
vertices of t. We can also read min(t) ⊆ Σ as the set of labels of the minimal
vertices of t. It will be clear from the context what we actually mean.

Let t1 = [V1,≤1, λ1] and t2 = [V2,≤2, λ2] be a pair of traces such that
alphinf(t1)× alph(t2) ⊆ I. We then define the concatenation of t1 and t2 to be
t1 ·t2 = [V,≤, λ] where V = V1∪V2 (assuming wlog that V1∩V2 = ∅), λ = λ1∪λ2

and ≤ is the transitive closure of the relation ≤1 ∪ ≤2 ∪ (V1 × V2 ∩ λ−1(D)).
The set of finite traces is then a monoid, denoted M(Σ,D) or simply M, with
the empty trace 1 = (∅, ∅, ∅) as unit.

Here is some useful notation for subclasses of traces. For C ⊆ Σ, let RC =
{t ∈ R | alph(x) ⊆ C} and MC = M ∩ RC . Also, (alph = C) = {t ∈ R |
alph(t) = C}, (alphinf = C) = {t ∈ R | alphinf(t) = C} and (min = C) = {t ∈
R | min(t) = C}. For A,C ⊆ Σ, we set RA

C = RC ∩ (alphinf = A). Observe that
MC = R∅

C .
The first order theory of traces FOΣ(<) is given by the syntax:

ϕ ::= Pa(x) | x < y | ¬ϕ | ϕ ∨ ϕ | ∃xϕ,

where a ∈ Σ and x, y ∈ Var are first order variables. Given a trace t = [V,≤, λ]
and a valuation σ : Var → V , t, σ |= ϕ denotes that t satisfies ϕ under σ. We
interpret each predicate Pa by the set {x ∈ V | λ(x) = a} and the relation < as
the strict partial order relation of t. The semantics then lifts to all formulas as
usual. Since the meaning of a closed formula (sentence) ϕ is independent of the
valuation σ, we can associate with each sentence ϕ the language L(ϕ) = {t ∈ R |
t |= ϕ}. We say that a trace language L ⊆ R is expressible in FOΣ(<) if there
exists a sentence ϕ ∈ FOΣ(<) such that L = L(ϕ). We denote by FO(Σ,D)(<)
the set of trace languages L ⊆ R(Σ,D) that are expressible in FOΣ(<). For
n > 0, FOn

Σ(<) denotes the set of formulas with at most n distinct variables
(note that each variable may be bound and reused several times).

We use the algebraic notion of recognizability. Let h : M → S be a morphism
to a finite monoid S. For t, u ∈ R, we say that t and u are h-similar, denoted
t ∼h u, if either t, u ∈ M and h(t) = h(u) or t and u have infinite factorizations
in non-empty finite traces t = t1t2 · · ·, u = u1u2 · · · with h(ti) = h(ui) for all
i. The transitive closure ≈h of ∼h is an equivalence relation. Since S is finite,
this equivalence relation is of finite index with at most |S|2 + |S| equivalence
classes. A trace language L ⊆ R is recognized by h if it is saturated by ≈h (or
equivalently by ∼h), i.e., t ∈ L implies [t]≈h

⊆ L for all t ∈ R.
Let L ⊆ R be recognized by a morphism h : M → S. For B ⊆ Σ, L ∩ MB

and L∩RB are recognized by h�MB
the restriction of h to MB . A finite monoid

S is aperiodic if there is an n ≥ 0 such that sn = sn+1 for all s ∈ S. A trace
language L ⊆ R is aperiodic if it is recognized by some morphism to a finite and
aperiodic monoid. First-order definability coincides with aperiodicity for traces.
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Theorem 1 ([6, 7]). A language L ⊆ R(Σ,D) is expressible in FOΣ(<) if and
only if it is aperiodic.

3 Local temporal logic

We denote by LocTLi
Σ the set of (internal) formulas over the alphabet Σ. They

are given by the following syntax:

ϕ ::= a ∈ Σ | ¬ϕ | ϕ ∨ ϕ | EXϕ | ϕ U ϕ | ¬a S b, a, b ∈ Σ

Let t = [V,≤, λ] ∈ R be a finite or infinite trace and let x ∈ V be some vertex
of t. We write t, x |= ϕ to denote that trace t at node x satisfies the formula
ϕ ∈ LocTLi

Σ . This is defined inductively as follows:

t, x |= a if λ(x) = a
t, x |= ¬ϕ if t, x 6|= ϕ
t, x |= ϕ ∨ ψ if t, x |= ϕ or t, x |= ψ
t, x |= EXϕ if ∃y. xl y and t, y |= ϕ
t, x |= ϕ U ψ if ∃z ≥ x. [t, z |= ψ and ∀y. (x ≤ y < z) ⇒ t, y |= ϕ]
t, x |= ¬a S b if ∃z ≤ x. [λ(z) = b and ∀y. (z < y ≤ x) ⇒ λ(y) 6= a]

�
�

� @
@

@
ϕ U ψ ψ

ϕ
�

�
� @

@
@

b ¬a S b

¬a

The modality U is the “universal” until operator defined in [3]. The modality
S is the corresponding since operator. Note that we only use the operator S in
the very restricted form of a fixed number of past constants.

Past modalities are essential, as indicated by the following example from
[22], where the dependence relation is a − b − c − d. These two traces are not
first-order equivalent but are bisimilar at the level of events and thus cannot be
distinguished by purely future modalities.

a→ b → c→ b→ c · · ·
↑

d→ c

d→ c → b→ c→ b · · ·
↑

a→ b

As usual, we can derive useful operators such as universal next AXϕ =
¬EX¬ϕ, eventually in the future Fϕ = > U ϕ and always in the future Gϕ =
¬F¬ϕ. The modality F∞ a = F a ∧ G(a ⇒ EXF a) expresses the existence of
infinitely many vertices labelled with a above the current vertex.

Traces as models of formulas: We now turn our attention to defining when a
trace satisfies a formula. For LTL over sequences, lifting satisfaction at positions
to satisfaction by a word is quite simple: a word models a formula if its initial
position models the formula. Since a trace, in general, does not have a unique
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initial position, we need to use initial formulas as introduced in [3]. These are
boolean combinations of formulas EMϕ, each of which asserts the existence of a
minimal vertex in a trace satisfying the internal formula ϕ. More precisely, the
set LocTLΣ of initial formulas over the alphabet Σ is defined as follows:

α ::= ⊥ | EMϕ,ϕ ∈ LocTLi
Σ | ¬α | α ∨ α

The semantics of EM is given by:

t |= EMϕ if ∃x. (x ∈ min(t) and t, x |= ϕ)

An initial formula α ∈ LocTLΣ defines the trace language L(α) = {t ∈ R |
t |= α}. We can then express various alphabetic properties using initial formulas:
L(EM a) = {t ∈ R | a ∈ min(t)}, L(EM F a) = {t ∈ R | a ∈ alph(t)}, and
L(EM F∞ a) = {t ∈ R | a ∈ alphinf(t)}. Therefore, for C ⊆ Σ, trace languages
such as (alph = C), (alphinf = C) and (min = C) are expressible in LocTLΣ .

The following result is immediate from the definition of LocTLΣ .

Proposition 2. If a trace language is expressible in LocTLΣ, then it is express-
ible in FO3

Σ(<).

We now show that the “filtered” modalities EXb and Fb from [10], with the
following semantics, are both expressible in LocTLi

Σ .

t, x |= EXb ϕ if ∃y. [xl y and t, y |= ϕ and ∀z. (z ≤ y ∧ λ(z) = b) ⇒ z ≤ x]
t, x |= Fb ϕ if ∃y. [x ≤ y and t, y |= ϕ and ∀z. (z ≤ y ∧ λ(z) = b) ⇒ z ≤ x]

Proposition 3. For any trace t over some alphabet Σ, any position x in t and
any formula ϕ of LocTLi

Σ

t, x |= EXb ϕ ⇐⇒ t, x |= (b ∧ EX(ϕ ∧ ¬b)) ∨
∨
a6=b

(a ∧ EX(ϕ ∧ ¬(¬a S b)))

Let the formula Safeb = (b ∧ AX¬b) ∨
∨

a6=b(a ∧ AX¬(¬a S b)). Further, let
F0

b ϕ = Safeb U ϕ and Fk+1
b ϕ = Safeb U EXb(Fk

b ϕ).

Proposition 4. For any trace t ∈ R(Σ,D), any position x in t and any formula
ϕ of LocTLi

Σ

t, x |= Fb ϕ ⇐⇒ t, x |=
∨

k≤|Σ|

Fk
b ϕ

Now we establish some important lemmas that are critical in proving the
expressive completeness of LocTLΣ .

Lemma 5. Let A ⊆ Σ and b ∈ Σ with b /∈ A. For all ϕ ∈ LocTLi
A, there

is a formula ϕ̃ ∈ LocTLi
A∪{b} such that for all t = t1bt2t3 ∈ R with t1 ∈ R,

t2 ∈ RA, min(t2) ⊆ D(b) and min(t3) ⊆ {b} and for all x ∈ bt2 we have
bt2, x |= ϕ iff t, x |= ϕ̃.

t1

b
�
�
�
�

t2

b
�
��

t3
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Proof Sketch. We have ã = a, ¬̃ϕ = ¬ϕ̃, ϕ̃ ∨ ψ = ϕ̃ ∨ ψ̃, ẼXϕ = EXb ϕ̃, ϕ̃ U ψ =∨
d∈A∪{b}((ϕ̃ U (d ∧ ψ̃)) ∧ Fb(d ∧ ψ̃)) and ¬̃c S d = (¬c S d) ∧ ¬(¬d S b). ut

Lemma 6. Let A ⊆ Σ and b ∈ Σ with b /∈ A. For all α ∈ LocTLA, there
exists a formula α ∈ LocTLi

A∪{b} such that for all t = t1bt2t3 ∈ R with t1 ∈ R,
t2 ∈ RA, min(t2) ⊆ D(b) and min(t3) ⊆ {b}, we have t2 |= α if and only if
t,min(bt2t3) |= α.

Proof Sketch. We have ¬α = ¬α, α ∨ β = α ∨ β and EMϕ = EX(ϕ̃ ∧ ¬b) where
ϕ̃ is the formula given by Lemma 5. ut

Lemma 7. Let A ⊆ Σ and b ∈ Σ with b /∈ A. For all α ∈ LocTLA, there
exists a formula α̃ ∈ LocTLA∪{b} such that for all t = t1t2 with t1 ∈ RA and
min(t2) ⊆ {b}, we have t1 |= α if and only if t |= α̃.

Proof Sketch. Let ϕ̃ ∨ ψ = ϕ̃ ∨ ψ̃, ¬̃ϕ = ¬ϕ̃, ẼXϕ = EX(ϕ̃ ∧ ¬(¬b S b)), ϕ̃ U ψ =
ϕ̃ U (ψ̃ ∧ ¬(¬b S b)) and ¬̃c S d = ¬c S d. Then, for all t = t1t2 with t1 ∈ RA,
min(t2) ⊆ {b} and for all x ∈ t1, we have t1, x |= ϕ if and only if t, x |= ϕ̃.
Finally, let ẼMϕ = EM(ϕ̃ ∧ ¬b). ut

4 Decomposition of traces

The proof of our main result is a case analysis based on partitioning the set
of traces according to the structure of the trace. Fix a letter b ∈ Σ and set
B = Σ \ {b}. Using the notation introduced in Section 2, let ΓA = {t ∈ RA

B |
min(t) ⊆ D(b)}, Γ = Γ ∅, and ΩA = {t ∈ RI(A) | min(t) ⊆ {b}}.

Each trace t ∈ R has a unique finite or infinite factorization t = t0bt1bt2 · · ·
with t0 ∈ RB and ti ∈ RB ∩ (min ⊆ D(b)) for all i > 0. In particular, we have

(min = {b}) = (bΓ )+ ] (bΓ )ω ]
⋃

∅6=A⊆B

(bΓ )∗bΓAΩA

The following two results will allow us to use this decomposition effectively
in proving the expressive completeness of our logic. For this, we use F∞b a =
Fb a ∧ ¬Fb(a ∧ ¬EXb Fb a).

Lemma 8. Let t = t0t
′ with t0, t′ ∈ R and min(t′) = {b}. Then,

1. t′ ∈ (bΓ )∞ \ {1} if and only if t,min(t′) |= β with

β =
∨
C

(∧
c∈C

F∞ c ∧
∧
c/∈C

¬F∞ c

)

where C ranges over connected subsets of Σ such that b ∈ C if C 6= ∅.
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2. t′ ∈ (bΓ )∗bΓAΩA if and only if t,min(t′) |= γ with

γ =
∨

C⊆Σ

(∧
c/∈C

¬F∞ c

)
∧ F

(
b ∧

∧
c∈C

F∞ c ∧
∧
a∈A

F∞b a ∧
∧
a/∈A

¬F∞b a

)
.

Note that “the” b in bΓAΩA is characterized by the formula b∧F∞b a, where
a is any letter in A.

Lemma 9. Let A ⊆ Σ and let L ⊆ R be a trace language recognized by a
morphism h from M into a finite monoid S. Then,

L ∩ (bΓ )∗bΓAΩA =
⋃

finite
(L1 ∩ (bΓ )∗)b(L2 ∩ ΓA)(L3 ∩ΩA)

where the trace languages Li ⊆ R are recognized by h.

5 Expressive Completeness

If T is a finite alphabet, we define the linear temporal logic LTLT (XU) by the
syntax: f ::= u ∈ T | f XU f | ¬f | f ∨ f.

The length of a finite or infinite word w = w1w2 · · · ∈ T∞ is |w| ∈ N ∪ {ω}.
For a word w = w1w2 · · · ∈ T∞ the semantics of LTLT (XU) is given by

w |= u if |w| > 0 and w1 = u
w |= f XU g if ∃j ∈ N with 1 < j ≤ |w|+ 1 and

wjwj+1 · · · |= g and wkwk+1 · · · |= f,∀1 < k < j.

Note that if w |= f XU g then w is nonempty. A formula f ∈ LTLT (XU) defines
the word language L(f) = {w ∈ T∞ | w |= f}. We use the following proposition
which is a consequence of several results on the equivalence between aperiodic
word languages, star-free word languages, first order word languages and word
languages expressible in LTLT (XU) [18, 12, 14, 20, 8, 15, 16, 2].

Proposition 10. Every aperiodic word language K ∈ T∞ is expressible in
LTLT (XU).

We fix T = h(bΓ ) and we define the mapping σ : (bΓ )∞ → T∞ by σ(t) =
h(bt1)h(bt2) · · · if t = bt1bt2 · · · with ti ∈ Γ for i ≥ 1. Note that the mapping σ is
well-defined since each trace t ∈ (bΓ )∞ has a unique factorization t = bt1bt2 · · ·
with ti ∈ Γ for i ≥ 1.

Lemma 11. Let L ⊆ R be recognized by h. Then,

1. L ∩ (bΓ )ω = σ−1(K) for some K expressible in LTLT (XU).
2. L ∩ (bΓ )+ = σ−1(K) for some K expressible in LTLT (XU).

Next we show show how to lift an LTLT (XU) formula for K ⊆ T∞ to a
LocTLi formula for σ−1(K) ∈ (bΓ )∞.

Lemma 12. Suppose that any aperiodic trace language over B is expressible in
LocTLB. Then, for all f ∈ LTLT (XU) there exists f̃ ∈ LocTLi

Σ such that for all
t = t1t

′ with t1 ∈ R and t′ ∈ (bΓ )∞ \ {1}, we have σ(t′) |= f iff t,min(t′) |= f̃ .
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Proof Sketch. The formula f̃ is defined by structural induction. We let f̃ ∨ g =
f̃ ∨ g̃, ¬̃f = ¬f̃ , f̃ XU g = EX

(
(¬b ∨ f̃) U (b ∧ g̃)

)
. The difficult case is when f =

s ∈ T . For all r ∈ S, the trace language h−1(r) ∩MB is aperiodic and therefore
expressible in LocTLB by the hypothesis of the lemma: we find αr ∈ LocTLB

such that for all t′′ ∈ MB , h(t′′) = r if and only if t′′ |= αr. Let αr ∈ LocTLi
Σ

be the formula obtained using Lemma 6. We let s̃ =
∨

h(b)·r=s αr. ut

Lemma 13. Suppose that any aperiodic trace language over B is expressible
in LocTLB. Let A ⊆ Σ be non-empty and let f ∈ LTLT (XU). There exists
f̃ ∈ LocTLi

Σ such that for all t = t1t2t3 with t1 ∈ R, t2 ∈ (bΓ )∗, t3 ∈ bΓAΩA,
we have σ(t2) |= f iff t,min(t2t3) |= f̃ .

Lemma 14. Suppose that for any proper subset A of Σ, any aperiodic trace
language over A is expressible in LocTLA. Let L ⊆ R be an aperiodic trace
language over Σ. Then, for all b ∈ Σ, there exists ϕ ∈ LocTLi

Σ such that for all
t = t0t

′ with t0, t′ ∈ R and min(t′) = {b}, t′ ∈ L iff t,min(t′) |= ϕ.

Proof. We prove this lemma by induction on the size of the alphabet Σ. If
Σ = ∅ then there is nothing to prove. Now, suppose that Σ 6= ∅ and let b ∈ Σ.
We assume that L is recognized by the aperiodic morphism h : M → S. Now,
L ∩ (min = {b}) can be written as

(L ∩ ((bΓ )∞ \ {1})) ]
⋃

∅6=A⊆B

(L ∩ (bΓ )∗bΓAΩA).

By Lemma 11 we get L ∩ ((bΓ )∞ \ {1}) = σ−1(L(f)) for some f ∈ LTLT (XU).
From the hypothesis, aperiodic languages over B are expressible in LocTLB .
Hence, we can apply Lemma 12 and we get f̃ such that for all t = t0t

′ with
t0 ∈ R and t′ ∈ (bΓ )∞ \ {1}, we have σ(t′) |= f iff t,min(t′) |= f̃ . We conclude
this case taking ϕ = β ∧ f̃ where β is defined in Lemma 8.

Now, we consider L ∩ (bΓ )∗bΓAΩA where ∅ 6= A ⊆ B. By Lemma 9,

L ∩ (bΓ )∗bΓAΩA =
⋃

finite
(L1 ∩ (bΓ )∗)b(L2 ∩ ΓA)(L3 ∩ΩA)

where each Li is an aperiodic language recognized by h. Thus, it suffices to show
that for aperiodic languages L1, L2 and L3 recognized by h, there is a formula ϕ
such that for all t = t0t

′ with t0, t′ ∈ R and min(t′) = {b}, we have t,min(t′) |= ϕ
if and only if t′ ∈ (L1 ∩ (bΓ )∗)b(L2 ∩ ΓA)(L3 ∩ΩA).

By Lemma 11 we get L1 ∩ (bΓ )∗ = σ−1(L(f1)) for some f1 ∈ LTLT (XU).
From the hypothesis, aperiodic languages over B are expressible in LocTLB .
Hence, we can apply Lemma 13 and we get f̃1 such that for all t = t0t1t

′′ with
t0 ∈ R and t1 ∈ (bΓ )∗, and t′′ ∈ bΓAΩA, we have t1 ∈ L1 iff t,min(t1t′′) |= f̃1.

Using again the hypothesis of the lemma, we get some formula α2 ∈ LocTLB

such that L2∩RB = L(α2). By Lemma 6 we find α2 ∈ LocTLi
Σ such that for all

t = t0t1bt2t3 with t0 ∈ R and t1 ∈ (bΓ )∗, t2 ∈ ΓA and t3 ∈ ΩA, we have t2 ∈ L2

iff t,min(bt2t3) |= α2.
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Finally, L3 is an aperiodic trace language over a smaller alphabet (since
A 6= ∅, I(A) is a proper subset of Σ) and hence by induction hypothesis there is
a formula ϕ3 such that for all t = t0t1bt2t3 with t0 ∈ R and t1 ∈ (bΓ )∗, t2 ∈ ΓA

and t3 ∈ ΩA with t3 6= 1, we have t3 ∈ L3 iff t,min(t3) |= ϕ3.
Putting these three pieces together we let

ψ = f̃1 ∧ F(b ∧ F∞b a ∧ α2 ∧ (ϕ4 ∨ Fb EX(b ∧ ϕ3)))

with ϕ4 = ⊥ if 1 /∈ L3 and ϕ4 = ¬EXF b otherwise. Then, for all t = t0t1bt2t3
with t0 ∈ R and t1 ∈ (bΓ )∗, t2 ∈ ΓA and t3 ∈ ΩA, we get from the above
discussion that t1bt2t3 ∈ L1bL2L3 if and only if t,min(t1bt2t3) |= ψ. We complete
the proof with ϕ = γ ∧ ψ where γ is the formula defined in Lemma 8. ut

Theorem 15. Any aperiodic real trace language over R(Σ,D) is expressible in
LocTLΣ.

Proof. The proof proceeds by induction on the size of Σ. When Σ = {a} is a
singleton, L is either a finite set or the union of a finite set and a set of the form
ana∗ for some n ≥ 0. In both cases, it is easy to check that L is expressible in
LocTLΣ .

For the inductive step, assume that the theorem holds for any aperiodic
language over any proper subset of Σ. Let L be recognized by an aperiodic
morphism h : M → S. Let b ∈ Σ and B = Σ \ {b} as usual. We can show as in
Lemma 9 that L can be written as follows:

L =
⋃

finite

(L1 ∩ RB)(L2 ∩ (min ⊆ {b}))

where L1 and L2 are languages recognized by the same aperiodic morphism h.
Since the decomposition of any trace t ∈ R as t1t2 with t1 ∈ RB and t2 ∈

(min ⊆ {b}) is unique, the above decomposition can be rewritten as

L =
⋃

finite

(L1 ∩ RB)(min ⊆ {b}) ∩ (RB(L2 ∩ (min ⊆ {b})))

Now, by the induction hypothesis, there is formula α1 in LocTLB such that
for t1 ∈ RB , t1 |= α1 if and only if t1 ∈ L1. Thus, by Lemma 7, there is a formula
α̃1 in LocTLΣ such that t |= α̃1 if and only if t1 |= α1 whenever t = t1t2 with
t1 ∈ RB and min(t2) ⊆ {b}. Thus, (L1 ∩ RB)(min ⊆ {b}) = L(α̃1).

Since we have assumed expressive completeness for every proper subset of Σ,
by Lemma 14 there is a formula ϕ2 such that for any t = t1t2 with min(t2) = b,
t2 ∈ L2 if and only if t,min(t2) |= ϕ2. Consider the formula α = α′ ∨ EM((b ∧
ϕ2)∨ (¬b∧ Fb EX(b∧ϕ2))) where α′ = ⊥ if 1 /∈ L2 and α′ = ¬EM F b otherwise.
Then, t |= α if and only if either t ∈ RB and 1 ∈ L2, or there is a minimal b event
x in the trace t and t, x |= ϕ2. That is t = t1t2 with t1 ∈ RB , min(t2) = {b} and
t2 ∈ L2. Thus RB(L2 ∩ (min ⊆ {b})) = L(α) is also expressible in LocTLΣ . ut
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