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Abstract

We investigate variants of the well studied problem of scheduling tasks on uni-

formly related machines to minimize the makespan. In the k-splittable scheduling

problem each task can be broken into at most k� 2 pieces each of which has to be

assigned to a different machine. In the slightly more general SAC problem each

task j comes with its own splittability parameter k j, where we assume k j � 2.

These problems are known to be NP-hard and, hence, previous research mainly

focuses on approximation algorithms.

Our motivation to study these scheduling problems is traffic allocation for

server farms based on a variant of the Internet Domain Name Service (DNS)

that uses a stochastic splitting of request streams. Optimal solutions for the k-

splittable scheduling problem yield optimal solutions for this traffic allocation

problem. Approximation ratios, however, do not translate from one problem to

the other because of non-linear latency functions. In fact, we can prove that the

traffic allocation problem with standard latency functions from Queueing Theory

cannot be approximated in polynomial time within any finite factor because of the

extreme behavior of these functions.

Because of the inapproximability, we turn our attention to fixed-parameter

tractable algorithms. Our main result is a polynomial time algorithm comput-

ing an exact solution for the k-splittable scheduling problem as well as the SAC

problem for any fixed number of machines. The running time of our algorithm

increases exponentially with the number of machines but is only linear in the

number of tasks. This result is the first proof that bounded splittability reduces the

complexity of scheduling as the unsplittable scheduling is known to be NP-hard

already for two machines. Furthermore, since our algorithm solves the scheduling

problem exactly, it also solves the traffic allocation problem that motivated our

study.
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1 Introduction

A server farm is a collection of servers delivering data to a set of clients. Some large scale server

farms are distributed all over the Internet and deliver various types of site content including

graphics, streaming media, downloadable files, and HTML on behalf of other content providers

who pay for an efficient and reliable delivery of their site data. To satisfy these requirements,

one needs an advanced traffic management that takes care for the assignment of traffic streams to

individual servers. Such streams can be formed, e.g., by traffic directed to the same page, traffic

directed to pages of the same content provider, or by the traffic requested from clients in the

same geographical region or domain, or also by combinations of these criteria. The objective is

to distribute these streams as evenly as possible over all servers in order to ensure site availability

and optimal performance.

For each traffic stream there is a corresponding stream of requests sent from the clients to the

server farm. Current implementations of commercial Web server farms use the Internet Domain

Name Service (DNS) to direct the requests immediately to the server that is responsible for

delivering the data of the corresponding traffic stream. The DNS can answer a query such as

“What is www.uni-dortmund.de?” with a short list of IP addresses rather than only a

single IP address. The original idea behind returning this list is that, in case of failures, clients

can redirect their requests to alternative servers. Nowadays, slightly deviating from this original

idea, these lists are also used for the purpose of load balancing among replicated servers (cf.,

e.g., [12]). When clients make a DNS query for a name mapped to a list of addresses, the server

responds with the entire list of IP addresses, but rotates the ordering of addresses within each

reply. In this way, as clients typically send their HTTP requests to the IP address listed first,

DNS rotation distributes the requests more or less evenly among all the replicated servers in the

list.

Suppose the request streams are formed by a sufficiently large number of clients such that it

is reasonably well described by a Poisson process. Let λ j denote the rate of stream j, i.e., the

expected number of requests in some specified time interval. Under this assumption, rotating a

list of ` servers corresponds to splitting stream j into ` substreams each of which having rate

λ j=`. We propose a slightly more sophisticated stochastic splitting policy that allows for a better

load balancing and additionally preserves the Poisson property of the request streams. Suppose,

the DNS attaches a vector p
j
1; : : : ; p

j
`

with ∑i p
j
i = 1 to the list of each stream j. In this way, every

individual request in stream j can be directed to the ith server on this list with probability p
j
i .

This policy breaks Poisson stream j into ` Poisson streams of rate p
j
1λ j; : : : ; p

j
`

λ j, respectively.

The possibility to split streams into smaller substreams can obviously reduce the maximum

latency. It is not obvious, however, whether it is easier or more difficult to find an optimal as-

signment if one allows that every stream is allowed to be broken into a bounded number of

substreams. Observe that the allocation problem above is a variant of machine scheduling in

which streams correspond to jobs and servers to machines. In the context of machine schedul-

ing, bounded splittability has been investigated before with the motivation to speed up the exe-

cution of parallel programs. Let us begin our study by introducing the relevant background in

scheduling.
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Scheduling on uniformly related machines. Suppose a set of jobs [n℄ = f1; : : : ;ng need to

be scheduled on a set of machines [m℄ = f1; : : : ;mg. Jobs are described by sizes λ1; : : : ;λn 2

Q

>0, and machines are described by their speeds s1; : : : ;sn 2 Q>0. In the classical, unsplittable

scheduling problem for uniformly related machines, every job must be assigned to exactly one

machine. This mapping can be described by an assignment matrix (xi j)i2[m℄; j2[n℄, where xi j is an

indicator variable with xi j = 1 if job j is assigned to machine i and 0 otherwise. The objective is

to minimize the makespan z = maxi2[m℄

∑ j2[n℄λ jxi j=si.

It is well known that this problem is strongly NP-hard. Hochbaum and Shmoys [8, 9] gave

the first polynomial time approximation schemes (PTAS) for this problem. If the number of

machines is fixed, then the problem is only weakly NP-hard and it admits a fully polynomial

time approximation scheme (FPTAS) [10].

A fractional relaxation of the problem leads to splittable scheduling. In the fully splittable

scheduling problem the variables xi j can take arbitrary real values from [0;1℄ subject to the con-

straints ∑i2[m℄

xi j � 1, for every j 2 [n℄. This problem is trivially solvable, e.g., by assigning a

piece of each job to each machine whose size is proportional to the speed of the machine.

k-splittable machine scheduling and the SAC problem. In the k-splittable machine schedul-

ing problem each job can be broken into at most k � 2 pieces that might be placed on different

machines, that is, at most k of the variables xi j 2 [0;1℄, for every job j, are allowed to have

positive values. Recently, Shachnai and Tamir [18] introduced a generalization of this problem,

called scheduling with machine allotment constraints (SAC). In this problem, each job j comes

with its own splittability parameter k j � 1. In our study, we will mostly assume k j � 2, for every

j 2 [n℄.

Shachnai and Tamir [18] prove that, in contrast to the fully splittable scheduling problem,

the k-splittable machine scheduling problem is strongly NP-hard even on identical machines.

As a positive result, they can give a PTAS for the SAC problem, whose running time, however,

does not render practical as the splittability appears double exponentially in the running time.

As a more practically relevant result, they present a very fast max j(1+ 1=k j)-approximation

algorithm. This result suggests that, in fact, approximation should get easier when the splittability

is increased.

We should mention here, that there is a related scheduling problem in which preemption is

allowed, that is, jobs can be split arbitrarily but pieces of the same job cannot be processed at

the same time on different machines. Shachnai and Tamir study also combinations of SAC and

scheduling with preemption in which jobs can be broken into a bounded number of pieces and

additionally there are bounds on the number of pieces that can be executed at the same time.

Further variants of scheduling with different notions of splittability with various motivations

from parallel computing and production planning can be found in [18] and [19].

Scheduling for non-linear latency functions. The only difference between the k-splittable

scheduling problem and the traffic allocation problem described above is that the latency occur-

ring at servers cannot be assumed to be linear. A typical example for a set of functions that
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describes the latency at a server of speed s with an incoming Poisson stream at rate λ is

fs(λ) =

λ
s(s�minfs;λg)

:

This family of functions can be derived from the formula for the waiting time on an M/M/1

queueing system. Of course, M/M/1 waiting time is only one out of many examples for latency

functions that can be obtained from Queueing Theory. In fact, a typical property of such functions

is that the latency goes to infinity when the injection rate approaches the service rate.

Instead of focusing on particular latency functions, let us set up a more general framework

in which we can analyze the effects of non-linearity. The k-splittable traffic allocation problem

is a variant of the k-splittable scheduling problem. Streams are described by rates λ1; : : : ;λn,

and servers are described by bandwidths or service rates s1; : : : ;sm. In this way, traffic streams

can be identified with jobs and servers with machines. The latencies occurring at the servers

are described by a family of latency functions F = f fs : Q
�0 ! Q

�0[f∞gjs 2 Q
>0g where fs

denotes the latency function for a server with service rate s. These functions are assumed to be

non-decreasing.

Scheduling under non-linear latency functions has been considered before as well. Alon

et al. [1] give a PTAS for the problem of makespan minimization on identical machines with

certain well-behaved latency functions. Their results were further generalized and extended into

a PTAS for the makespan minimization on uniformly related machines by Epstein and Sgall

[5]. In both studies, the latency functions are assumed to fulfill certain analytical properties

like convexity and uniform continuity under a logarithmic scale. Unfortunately, the uniform

continuity condition excludes the typical functions from Queueing Theory.

1.1 Our results

The main result of this paper is a fixed-parameter tractable algorithm for the k-splittable schedul-

ing and the more general SAC problem with splittability at least two for every job. Our algorithm

has polynomial running time for every fixed number of machines. This result is remarkable as

unsplittable scheduling is known to be NP-hard already on two machines. In fact, our result is

the first proof that bounded splittability reduces the complexity of scheduling.

In more detail, given any upper bound T on the makespan of an optimal assignment, our

algorithm computes a feasible assignment with makespan at most T in time O(n+mm+m=(k0�1)
)

with k0 = minfk1;k2; : : : ;kng. Furthermore, despite the possibility to split the jobs into pieces of

non-rational size, we can prove that the optimal makespan can be represented by a rational num-

ber with only a polynomial number of bits. Thus the optimal makespan can be found efficiently

by using binary search techniques over the rational numbers. This yields an exact algorithm for

SAC on a fixed number of machines with polynomial running time.

In addition, we study the effects due to the non-linearity of latency functions. The algo-

rithm above can be adopted to work efficiently for a wide class of latency functions containing

even such extreme functions as M/M/1 waiting time. In particular, we are also able to use this

algorithm for latency functions describing an M/G/1 queue waiting time under heterogeneous
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traffic. On the negative side, we prove that latency functions like M/M/1 do not admit polyno-

mial time approximation algorithms with finite approximation ratio if the number of machines

is unbounded. The latter result is an ultimate rationale for our approach to devise efficient algo-

rithms for a fixed number of machines.

2 An exact algorithm for SAC with given makespan

In this section, we present an exact algorithm for SAC with splittability at least two for every

job. Our algorithm has polynomial running time for any fixed number of machines. We assume

that an upper bound on the optimal makespan is given. This upper bound defines a capacity for

each machine. The capacity of machine i is denoted by ci. The computed schedule has to satisfy

∑ j2[n℄λ jxi j � ci, for every i 2 [m℄.

A difficult subproblem that has to be solved is to decide into which pieces of which size

the jobs should be cut. In principle, the number of possible cuts is unbounded. Our analysis,

however, will show that it suffices to consider only those cuts that “saturate” a machine. Let

πi j = λ jxi j denote the size of the piece of job j that is allocated to machine i. Then machine i is

saturated by job j if πi j = ci.

Our algorithm, called Algorithm 1, schedules the bulkiest job j first where the bulkiness of j

is defined as λ j=(k j � 1). Using a backtracking approach it tries all ways to cut one piece from

job j such that a machine is saturated. The saturated machine is removed from the problem; the

splittablity and size of j is reduced accordingly. The remaining problem is solved recursively.

Two special cases have to be considered. Let I being the set of remaining machines. If j satisfies

λ j=(k j�1)�minfci : i 2 Ig then j and all other remaining jobs can be scheduled using a simple

greedy approach known as McNaughton’s rule [15]. Since the splittability k j of a job is decreased

whenever a piece is cut off, a remaining piece can eventually become unsplittable. Since this

remaining piece will be infinitely bulky, it will be scheduled in the next iteration. In this case, all

machines that can accommodate the piece are tried. A formal description of the algorithm can

be found in Figure 1.

Theorem 1. Algorithm 1 finds a feasible solution for SAC with a given possible makespan, pro-

vided that the splittability of each job is at least two. It can be implemented to run in time

O

�

n+mm+m=(k0�1)
�

, where k0 = minfk j : j = 1;2; : : : ;ng.

Proof. All the necessary data structures can be initialized in time O(m+n) if we use a repre-

sentation of the piece size matrix (πi j) that only stores nonzero entries. There can be at most m

recursive calls that saturate a machine and at most m=(k0� 1) recursive calls made for unsplit-

table pieces that remain after a job j was split k j�1 times. All in all, the backtrack tree considers

no more than m!mm=(k0�1) possibilities. The selection of the bulkiest job can be implemented to

run in time O(logm) independent of n: Only the m largest jobs can ever be a candidate. Hence it

suffices to select these jobs initially using an O(n) time algorithm [2] and keep them in a priority

queue data structure. Greedy scheduling using McNaughton’s rule takes time O(n+m). Overall,

we get an execution time of O

�

n+m+m!mm=(k0�1) logm
�

= O

�

n+mm+m=(k0�1)
�

.
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I := [m℄ –– machines that are not saturated

J := [n℄ –– jobs still to be scheduled

if ∑ j2J λ j > ∑i2I ci_:solve() then output “no solution possible”

else output nonzero πi j values

Function solve() : Boolean

if J =

/0 then return true

find a j 2 J that maximizes λ j=(k j�1)

if k j = 1 then –– Unsplittable remaining piece

forall i 2 I with ci � λ j do

πi j := λ j; ci := ci�λ j; J := J nf jg –– (*)

if solve() then return true

undo changes made in line (*)

else –– Job j is splittable

if λ j=(k j�1)� minfci : i 2 Ig then McNaughton(); return true

forall i 2 I with ci < λ j do

πi j := ci; λ j := λ j� ci; k j := k j�1; I := I nfig –– (**)

if solve() then return true

undo changes made in line (**)

return false

Procedure McNaughton() –– Schedule greedily

pick any i 2 I

foreach j 2 J do

while ci � λ j do πi j := ci; λ j := λ j� ci; I := I nfig; pick any new i 2 I

πi j := λ j; ci := ci�λ j

Figure 1: Algorithm 1: Find a schedule of n jobs with splittabilities k j to m machines.

The algorithm also produces only correct schedules. In particular, when λ j=(k j � 1) �

minfci : i 2 Ig McNaughton’s rule can complete the schedule because no remaining job is large

enough to saturate more than k j � 1 of the remaining machines. In particular, solve() main-

tains the invariant ∑ j2J λ j � ∑i2I ci and when McNaughton’s rule is called, it can complete the

schedule:

Lemma 2. McNaughton’s rule computes a correct schedule if ∑ j2J λ j � ∑i2I ci and 8i 2 I; j 2

J : λ j=(k j�1)� ci.

Proof. The only thing that can go wrong is that a job j is split more than k j � 1 times, i.e., into

at least k j +1 pieces. But then, it completely fills at least k j �1 machines with capacity at least

mini2I ci. But this contradicts the assumption that λ j=(k j�1)� ci.

Now we come to the interesting part of the proof. We have to show that the search succeeds
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Figure 2: Manipulating schedules. (a): The move from Lemma 4; (b): The swap from Lemma 5;

(c): Saturation using Lemma 6; (d): The rotation from Lemma 7; (e): Moving j away from r.

if a feasible schedule exists. We show the stronger claim that the algorithm is correct even if

unsplittable jobs are present. (In this case only the above running time analysis would fail.) The

proof is by induction on m. For m = 1 this is trivial since no splits are necessary.

Now consider the case m > 1. If there are unsplittable jobs, they are infinitely bulky and

hence are scheduled first. Since all possible placements for them are tried, nothing can be missed

for them. When a splittable job is bulkiest, only those splits are considered that saturate one

machine. But Lemma 3 below shows that if there is a feasible schedule at all, there must also be

one with this property. The recursive call leaves a problem with one machine less and hence the

induction hypothesis can be applied.

Lemma 3. If a feasible schedule exists and the bulkiest job is large enough to saturate a machine

then there is a feasible schedule where the bulkiest job saturates a machine.

Our approach to proving Lemma 3 is to show that any feasible schedule can be transformed

into a feasible schedule where the bulkiest job saturates a machine. To simplify this task, we first

establish a toolbox of simpler transformations. We begin with two very simple transformations

that affect only two jobs and obviously maintain feasibility. Fig. 2-(a) and 2-(b) illustrate these

transformations.

Lemma 4. For any feasible schedule, consider two jobs p and q sharing machine i0, i.e., πi0p > 0

and πi0q > 0. For any machine i such that πi0q < πip there is a feasible schedule where the over-

lapping piece of q is moved to machine i, i.e., (πi0p;πip;πi0q;πiq) := (πi0p+πi0q;πip�πi0q;0;πiq+

πi0q).

Lemma 5. For any feasible schedule, consider two jobs p and q sharing machine i, i.e., πip > 0

and πiq > 0. Furthermore, consider two other pieces πip p and πiqq of p and q. If πip p � πiq+πiqq

and πiqq � πip+πip p then there is a feasible schedule where the pieces πip p and πiqq are swapped

as follows:

( πip p; πip; πiq p; πipq; πiq; πiqq ) :=

( 0; πip +πip p�πiqq; πiq p +πiqq; πipq +πip p; πiq +πiqq�πip p; 0 )
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As a first application of Lemma 4 we now explain how a large job j allocated to at most

k j�1 machines can “take over” a small machine.

Lemma 6. Consider a job j and machine i such that λ j=(k j � 1) � ci. If there is a feasible

schedule where j is scheduled to at most (k j � 1) machines, then there is a feasible schedule

where j saturates machine i.

Proof. Let i0 denote a machine index that maximizes πi0 j and note that πi j � λ j=(k j � 1) � ci.

We can now apply Lemma 4 to subsequently move all the pieces on machine i to machine i0.

Lemma 4 remains applicable because πi j is large enough to saturate machine i. Figure 2-(c)

illustrates this transformation.

After the above local transformations, we come to a global transformation that greatly sim-

plifies the kind of schedules we have to consider.

Definition 1. Job j is called split if
�

�

�

i : πi j > 0
	

�

�

> 1. The split graph corresponding to a sched-

ule is an undirected hypergraph G = ([m℄;E) where each split job j corresponds to a hyperedge
�

i : πi j > 0
	

2 E.

Lemma 7. If a feasible schedule exists, then there is a feasible schedule whose split graph is a

forest.

Proof. It suffices to show that for a feasible schedule whose split graph G contains a cycle there

is also a feasible schedule whose corresponding split graph has a smaller value of ∑e2E jej. Then

it follows that a feasible schedule that minimizes ∑e2E jej is a forest.

So suppose G contains a cycle involving ` edges. Let succ( j) stand for ( j+1) mod `+1. By

appropriately renumbering machines and jobs we can assume without loss of generality that this

cycle is made up of jobs 1 to ` and machines 1 to ` such that for j 2 [`℄, π j j > 0, πsucc( j) j > 0,

and δ = π11 = min j2[`℄min
�

π j j;πsucc( j) j

	

. Figure 2-(d) depicts this normalized situation.

Now we rotate the pieces in the cycle by increasing π j j by δ and decreasing πsucc( j) j by the

same amount. The schedule remains feasible since the load of the machines in the cycle remains

unchanged. Since the first job is now split in one piece less, ∑e2E jej decreases.

Now we have all the necessary tools to establish Lemma 3.

Proof. Consider any feasible schedule, let j denote the bulkiest job and assume that there is a

machine i0 with λ j=(k j�1)� ci0 . We transform this schedule in several steps.

We first apply Lemma 7 to obtain a schedule whose split graph is a forest. We now concen-

trate on the tree T where j is allocated.

If job j is allocated to at most k j�1 machines, we can saturate i0 using Lemma 6 and we are

done.

If one piece of j is allocated to a leaf i of T then all other jobs mapped to machine i are

allocated there entirely. Let i0 denote another machine j is mapped to. We apply Lemma 4 to

move small jobs from i to i0. When this is no longer possible, either job j saturates machine i and

we are done or there is a job j0 with λ j0 = πi j0 > πi0 j. Now we can apply Lemma 5 to pieces πi j,

7



πi0 j, πi j0, and a zero size piece of job j0. This transformation reduces the number of pieces of job

j so that we can saturate machine i0 using Lemma 6.

Finally, j could be allocated to machines that are all interior nodes of T . We focus on the two

largest pieces πi j and πi0 j so that πi j +πi0 j � 2λ j=k j. Now fix a leaf r that is connected to i via

a path that does not involve j as an edge. This is possible since j is connected to interior nodes

only. Now we intend to move job j away from r, i.e., we transform the schedule such that the

path between node r and job j becomes longer. (The path between a node v and a job e in a tree

starts at v and uses edges e0 6= e until a node is reached that has e as an incident edge.) We do

this iteratively until j is incident to a leaf in T . Then we can apply the transformations described

above and we are done.

We first apply Lemma 4 to move small pieces of jobs allocated to machine i0 to machine

i. Although this changes the shape of T , it leaves the distance between jobs j and r invariant

unless j ends up in machine i0 completely so that we can apply Lemma 6 and we are done. When

Lemma 4 is no longer applicable, either j saturates machine i0 and we are done or there is a job

q with πi0q > πi j. In that case we consider the smallest other piece πiqq of job q. More precisely,

if q is split into at most kq � 1 nonzero pieces we pick some iq with πiqq = 0. Otherwise we

pick iq = min
�

` 6= i0 : π
`q > 0

	

. In either case πiqq � λq=(kq�1). Recall that πi j +πi0 j � 2λ j=k j

since this sum is invariant under the move operations we have performed. Furthermore, j is the

bulkiest job so that

πiqq �
λq

kq�1
�

λ j

k j�1
=

2λ j

(k j�1)+(k j�1)
�

2λ j

(k j�1)+1
=

2λ j

k j
� πi j +πi0 j :

Hence, we can apply Lemma 5 to pieces i and i0 of job j and to pieces i0 and iq of job q. This

transformation increases the distance from job j to machine r as desired. Figure 2-(e) gives an

example where we apply Lemma 4 once and then Lemma 5.

3 Finding the optimal makespan

In the previous section, we assumed that an upper bound on the optimal makespan is known.

The obvious idea now is to find the optimal makespan using binary search. In order to show that

this search terminates one needs to prove that the optimal makespan is a rational number. This

is not completely obvious as in principle jobs might be broken into pieces of non-rational size.

The following lemma, however, shows that the optimal makespan can be represented by rational

numbers of polynomial length. Let Q
`

denote the set of non-negative rational numbers that can

be represented by an `-bit nominator and an `-bit denominator and the symbol ∞.

Lemma 8. There is a constant κ > 0 such that the value of an optimum solution to the SAC

problem with splittability at least two is in QNκ , with N denoting the problem size.

Proof. Let the task weights λ1; : : : ;λn and the machine speeds s1; : : : ;sm be rational from QN .

The problem of finding k-splittable assignments can be characterized as follows. Let M j �

[m℄ be a set of machines with jM jj � k j and such that task j can be assigned only to machines of

8



set M j (i.e. xi j = 0 for all i 62 M j). Having fixed the sets M1; : : : ;Mn, we can write our problem

using the standard LP formulation with the additional constraint xi j = 0, for i 2 [m℄nM j.

min z

s.t. ∑m
i=1 xi j = 1 8 j 2 [n℄

∑n
j=1 λ jxi j � zsi 8i 2 [m℄

xi j = 0 8 j 2 [n℄ 8i 2 [m℄nM j

xi j 2 [0;1℄ 8i; j:

Thus for a fixed vector of sets M1; : : : ;Mn, our problem is a polynomial-size linear program (LP).

Consequently, an optimum solution to our problem is attained as the value of this LP for one of

the choices of the sets M1; : : : ;Mn. The value of an optimum solution to this LP (and thus also

for our problem) belongs to QNκ , for some suitable constant κ.

The lemma implies that the optimal makespan can be calculated by using binary search meth-

ods over the rationals (see, e.g., [13, 16]) with Algorithm 1 as a decision oracle. Thus, we obtain:

Corollary 9. For every fixed number of machines, there exists an exact polynomial time opti-

mization algorithm for the SAC problem with splittability at least two.

4 Solving the traffic allocation problem

In this section, we show how to apply the binary search approach to the traffic allocation problem,

that is, we solve the SAC problem with non-linear latency functions. We need to make some very

modest assumptions about these functions. A latency function is called monotone if it is positive

and non-decreasing. The functions need not to be continuous or strictly increasing, e.g., step

functions are covered. We define the “inverse” of such functions as follows. Given a monotone

function f :Q
�0 !Q

�0[f∞g, let the inverse of f be defined by f�1
(y) = supfλj f (λ)� yg, for

y� f (0), and f�1
(y) = 0, for y < f (0).

We say that a function f is polynomially length-bounded if for every λ 2Q
`

, f (λ) 2Qpoly(`).

(Recall that Q
`

denotes the set of non-negative rational numbers that can be represented by an

` bit nominator and an `-bit denominator and the symbol ∞.) For example, the functions in

the M/M/1 waiting time family are polynomially length-bounded although limλ!b� fs(λ) = ∞.

This is because, for λ;s 2 Q
`

with λ < s, one can show (s� λ) 2 Q2`, s(s� λ) 2 Q4` and

λ=(s(s�λ))2Q8` so that f (λ) 2Q8`. Furthermore, we say that a family of latency functions F

is efficiently computable if, for every s and λ from Q

`

, fs(λ) as well as f�1
s (λ) can be calculated

in time polynomial in `. Observe that the functions from an efficiently computable family must

also be polynomially length-bounded. It is easy to check that the M/M/1 waiting time family as

well as other typical latency functions from Queueing Theory are efficiently computable in this

sense.
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Theorem 10. Let F be any efficiently computable family of monotone functions. Consider the

SAC problem with latency functions from F and splittability at least two. Suppose the value of

the best possible maximum latency can be represented by a number from Q
`

. Then an optimal

solution can be found in time O

�

poly(`) � (n+mm+m=(k0�1)
)

�

with k0 =minfk j : j = 1;2; : : : ;ng.

Proof. We will first argue how to solve a decision version of SAC with latency functions from

F . Let z be the specified bound on the cost. The decision problem is described by the feasible

region of the following program with an additional side constraint that for any job j there are at

most k j variables xi j with positive value.

∑m
i=1 xi j = 1 8 j 2 [n℄

fsi

�

∑n
j=1 λ jxi j

�

� z 8i 2 [m℄

xi j 2 [0;1℄ 8i; j:

Here xi j is the fraction of task j assigned to server i. The feasible region of this program is

equivalent to the region described by the following linear program,

∑m
i=1 xi j = 1 8 j 2 [n℄

∑n
j=1 λ jxi j � f�1

si
(z) 8i 2 [m℄

xi j 2 [0;1℄ 8i; j:

Now observe this program describes the decision version of the SAC problem with machine

speeds f�1
si

(z) and makespan 1. As the inverse of the cost functions in F can be calculated in

polynomial time, the sizes of the two programs are polynomially equivalent. Thus, solving the

scheduling problem takes time polynomial in the size of the input to the SAC problem under F .

We run the exact algorithm Algorithm 1 from Theorem 1 on this decision version of SAC. It is

easy to see that this algorithm outputs a feasible solution to SAC if and only if there is a feasible

solution to the SAC problem under F . Let O

�

poly�(`) � (n+mm+m=(k0�1)
)

�

be a bound on the

running time of this decision algorithm for SAC under F .

The bound ` on the number of bits to represent possible values of the makespans can now be

used to perform the binary search by using the previous algorithm as an oracle. For this purpose

we use methods of searching for rationals [13, 16]. The overall running time of the algorithm is

O

�

` � poly�(`) � (n+mm+m=(k0�1)
)

�

= O

�

poly(`) � (n+mm+m=(k0�1)
)

�

.

Observe that ` is an obvious lower bound on the running time of any algorithm that computes

the exact, optimal makespan. It remains unclear whether there exists latency functions for which

` cannot be bounded polynomially in the input length. If an appropriate upper bound on ` is not

known in advance, then we can use the geometric search algorithm. This search algorithm can

be stopped any time after computing the optimal maximum latency with sufficient precision.
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5 Non-approximability for non-linear scheduling

The M/M/1 waiting time cost function family as specified in the Introduction has an infinity

pole for λ ! b�. Intuitively, this infinity pole reflects the capacity restriction on the servers

and it is typical also for other families of latency functions that can be derived from Queueing

Theory. The following theorem shows that the non-linear k-splittable scheduling can be viewed

as completely inapproximable. This negative result holds even when all servers are identical.

Theorem 11. Let F be an efficiently computable family of monotone latency functions. Suppose

there exists s 2Q
>0 such that limλ!s fs(λ) = ∞. Then there does not exist a polynomial time ap-

proximation algorithm with finite approximation ratio for the non-linear k-splittable scheduling

problem under F , provided P 6= NP.

Proof. For the purpose of contraction, let us assume there is an α-approximation for the non-

linear k-splittable scheduling problem for identical servers with latency function fs. (α might

be any finite approximation ratio, e.g., defined by some function on the input length.) We show

that we can decide the NP-hard k-splittable scheduling problem in polynomial time under this

assumption as follows. Suppose we are given jobs with sizes λ1; : : : ;λn and a makespan c,

and have to decide whether there is a k-splittable schedule with makespan at most c. Define

c0 = c+2�Nκ
with N denoting the problem size and κ being the constant specified in Lemma 8.

Observe that this lemma gives a separation bound in the sense that, if the optimum makespan

for λ1; : : : ;λn is in the interval [c;c0℄, then it is c because [c;c0℄\QNκ
= fcg. Now we define

λ0j := sλ j=c0 and run the approximation algorithm with the new weights. If this algorithm returns

a solution with finite maximum latency then the scheduling problem is feasible, otherwise it is

infeasible. Thus we can decide the given k-splittable scheduling problem in polynomial time,

which contradicts P 6= NP.

6 Splittable scheduling under heterogeneous traffic

Until now we implicitly assume homogeneous traffic, i.e., all streams have the same (general)

session length distribution. However, several practical studies show that Internet traffic is far

away from being homogenous [3, 6, 17]. Assuming heterogeneous traffic, one has to take into

account different session lengths distributions.

Let us investigate the consequences of heterogeneous traffic using a particular instance of a

cost function. The Pollaczek-Khinchin (P-K) formula (see, e.g., [11]) describes expected waiting

time in M/G/1 queues. Observe that this is a very general class of queueing systems that allows

arbitrary service time distributions.

Suppose every stream i is characterized by two weights λ j and Vj (corresponding to the

expected load of data stream (job) j and the variance of this load, respectively). Then the P-K

family of cost functions describing the expected time on a server (machine) with speed si can be

defined as (see [4] for more details):

fsi
(xi1; : : : ;xin) =

∑n
j=1Vj xi j

si

�

si�∑n
j=1 λ j xi j

�

:
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The remarkable fact here is that both parameters, the expected load and the variance, can be

aggregated independently in a simple linear fashion. That is, the expected load injected into

server i is λ = ∑n
j=1 λ j xi j and the variance of this load is V = ∑n

j=1Vi xi j.

We now show how to use our algorithm for the splittable scheduling here. Consider the

heterogeneous splittable scheduling problem where the delay on identical machines is given by

the P-K cost function, that is s1 = s2 = : : := sm = 1. Then, the optimum solution in this model

can be characterized by the following program with additional splittability constraints.

min z

s:t:
∑n

j=1 V jxi j

si(si�∑n
j=1 λ jxi j)

� z 8i 2 [m℄

∑m
i=1 xi j = 1 8 j 2 [n℄

xi j � 0 8i; j:

This program can be equivalently rewritten into the following program, called P1.

min z

s:t: ∑n
j=1

�

Vj=z+λ j

�

xi j � 1 8i 2 [m℄

∑m
i=1 xi j = 1 8 j 2 [n℄

xi j � 0 8i; j:

Observe, that if z is fixed, then P1 with additional spittability constraints is equivalent to the

decision version of the splittable scheduling (SAC). Thus, it can be solved by our algorithm from

Section 2. Observe, that the P-K cost function family is an efficiently computable family of

monotone functions – see the discussion in Section 4. Applying arguments analogous to these in

the proof of Theorem 10 we can obtain the following result.

Theorem 12. Let F be the family of P-K cost functions. Consider the SAC problem with iden-

tical unit speed machines, with latency functions from F , and splittability at least two. Suppose

the value of the best possible maximum latency can be represented by a number from Q
`

. Then

an optimal solution can be found in time O

�

poly(`) � (n+mm+m=(k0�1)
)

�

with k0 = minfk j : j =

1;2; : : : ;ng.
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