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Abstract. The management of uncertain information in logic programs becomes
to be important whenever the real world information to be represented is of imper-
fect nature and the classical crisp true, false approximation is not adequate. A gen-
eral framework, called Parametric Deductive Databases with Uncertainty (PDDU)
framework [10], was proposed as a unifying umbrella for many existing approaches
towards the manipulation of uncertainty in logic programs. We extend PDDU with
(non-monotonic) negation, a well-known and important feature of logic programs.
We show that, dealing with uncertain and incomplete knowledge, atoms should be
assigned only approximations of uncertainty values, unless some assumption is used
to complete the knowledge. We rely on the closed world assumption to infer as much
default “false” knowledge as possible. Our approach leads also to a novel character-
izations, both epistemic and operational, of the well-founded semantics in PDDU,
and preserves the continuity of the immediate consequence operator, a major feature
of the classical PDDU framework.

1 Introduction

The management of uncertainty within deduction systems is an important issue whenever
the real world information to be represented is of imperfect nature. In logic program-
ming, the problem has attracted the attention of many researchers and numerous frame-
works have been proposed. Essentially, they differ in the underlying notion of uncertainty
(e.g. probability theory [9, 13-15], fuzzy set theory [16, 17, 19], multi-valued logic [7, 8,
10], possibilistic logic [2]) and how uncertainty values, associated to rules and facts, are
managed. Lakshmanan and Shiri have recently proposed a general framework [10], called
Parametric Deductive Databases with Uncertainty (PDDU), that captures and generalizes
many of the precedent approaches. In [10], a rule is of the form A & By, ..., B,,. Compu-
tationally, given an assignment I of certainties to the B;s, the certainty of A is computed
by taking the “conjunction” of the certainties I(B;) and then somehow “propagating” it to
the rule head, taking into account the certainty « of the implication. However, despite its
generality, one fundamental issue that remains unaddressed in PDDU is non-monotonic
negation, a well-known and important feature in logic programming.

In this paper, we extend PDDU [10] to normal logic programs, logic programs with
negation. In order to deal with knowledge that is usually not only uncertain, but also in-
complete, we believe that one should rely on approximations of uncertainty values only.
Then we study the problem of assigning a semantics to a hormal logic program in such
a framework. We first consider the least model, show that it extends the Kripke-Kleene
semantics [4] from Datalog programs to normal logic programs, but that it is usually to
weak. We then explain how one should try to determine approximations as much pre-
cise as possible by completing its knowledge by a kind of default reasoning based on the
well-known Closed World Assumption (CWA). Our approach consists in determining how



much knowledge “extracted” from the CWA can “safely” be used to “complete” a logic
program. Our approach leads to novel characterizations, both epistemic and operational, of
the well-founded semantics [3] for logic programs and extends that semantics to PDDU.
Moreover we show that the continuity of the immediate consequence operator, used for
inferring information from the program, is preserved. This is important as this is a major
feature of classical PDDU, opposed to classical frameworks like [8]. Negation has already
been considered in some deductive databases with uncertainty frameworks. In [13,14],
the stable semantics has been considered, but limited to the case where the underlying un-
certainty formalism is probability theory. That semantics has been considered also in [19],
where a semi-possibilistic logic has been proposed, a particular negation operator has been
introduced and a fixed min/max-evaluation of conjunction and disjunction is adopted. To
the best of our knowledge, there is no work dealing with default negation within PDDU,
except than our previous attempt [11]. The semantics defined in [11] is weaker than the
one presented in this paper, as in the latter approach more knowledge can be extracted
from a program, it has no epistemic characterization, and rely on a less natural manage-
ment of negation.

In the remaining, we proceed as follows. In the following section, the syntax of PDDU
with negation, called normal parametric programs, is given, Section 3 contains the defini-
tions of interpretation and model of a program. In Section 4, we present the fundamental
notion of support of a program provided by the CWA with respect to an interpretation.
Then we propose novel characterizations of the well-founded semantics and compare our
approach with usual semantics. Section 5 concludes.

2 Prdiminaries

Consider an arbitrary first order language that contains infinitely many variable sym-
bols, finitely many constants, and predicate symbols, but no function symbols. The pred-
icate symbol 7(A) of an atomic formula A given by A = p(X,...,X,,) is defined by
w(A) = p. The truth-space is given by a complete lattice: atomic formulae are mapped
into elements of a certainty lattice £ = (7, =<, ®,®) (a complete lattice), where 7 is
the set of certainty values, < is a partial order, ® and & are the meet and join opera-
tors, respectively. With | and T we denote the least and greatest element in 7. With
B(T) we denote the set of finite multisets (denoted { - }) over 7. For instance, a typ-
ical certainty lattice is Lo = (7,=,®,®), where 7 = [0,1], a = B iff a < 3,
a® B = min(e, ), a ® § = max(a,3), L = 0and T = 1. While the language
does not contain function symbols, it contains symbols for families of conjunction (F.),
propagation (F,,) and disjunction functions (F,), called combination functions. Roughly,
as we will see below, the conjunction function (e.g. ®) determines the certainty of the
conjunction of L1, ..., L,, (the body) of a logic program rule like A & L4, ..., L,,, a prop-
agation function (e.g. ®) determines how to “propagate” the certainty, resulting from the
evaluation of the body L, ..., L,,, to the head A, by taking into account the certainty «
of the implication, while the disjunction function (e.g. &) dictates how to combine the
certainties in case an atom appears in the heads of several rules (evaluates a disjunction).
Examples of conjunction, propagationand disjunction over Lo 1j are f.(z,y) = min(x, y),
fp(z,y) = 2y, fa(z,y) = z+y—xy. Formally, a propagation function is a mapping from
7 x T to 7 and a conjunction or disjunction function is a mapping from B(7") to 7. Each
combination function is monotonic and continuous w.r.t. (with respect to) each one of its
arguments. Conjunction and disjunction functions are commutative and associative. Addi-
tionally, each kind of function must verify some of the following properties®: (i) bounded-

3 For simplicity, we formulate the properties treating any function as a binary function on 7.



above: f(a1,a2) = «;, fori = 1,2, Vaq,ae € 7 (i) bounded-below: f(aq, as) = ai,
fori =1,2,Vai, a0 € T; (ii1) f({a}) = a,Va € T; (iv) f(0) = L; (v) f(@) =T; and
(vi) f(a, T) = o, Yoo € T. The following should be satisfied. A conjunction function in
F. should satisfy properties (i), (#), (v) and (vi); a propagation function in F,, should
satisfy properties (i) and (vi), while a disjunction function in F; should satisfy properties
(i), (4i1) and (4v). We also assume that there is a function from 7 to 7, called negation
function, denoted —, that is anti-monotone w.r.t. < and satisfies ~—a = a,Va € 7. E.g.,
in Lo, ~a = 1 — v is quite typical. Finally, a literal is an atomic formula or its negation.

Definition 1 (Normal parametric program [10]). A normal parametric program P (np-
program) is a 5-tuple (£, R, C, P, D), whose components are defined as follows:

1. £ =(7,%,®,®) is a complete lattice, where 7 is a set of certainties partially or-
dered by <, ® is the meet operator and & the join operator;

2. R is a finite set of normal parametric rules (np-rules), each of which is a statement of
the form: r : A €= L4, ..., L,, where A is an atomic formula, L, ..., L,, are literals or
valuesin 7 and o, € T \ {_L} is the certainty of the rule;

3. C maps each np-rule to a conjunction function in F;

4. ‘P maps each np-rule to a propagation function in F,;

5. D maps each predicate symbol in P to a disjunction function in F,.

For ease of presentation, we write r : A €~ Ly, ..., L,,; (fa, f», fe) to representa np-rule in
which f; € Fq is the disjunction function associated with 7(A) and, f. € F. and f, € F,
are respectively the conjunction and propagation functions associated with . Note that, by
Definition 1, rules with same head must have the same disjunction function associated.
The following example illustrates the notion of np-program.

Example 1. Consider an insurance company, which has information about its customers
used to determine the risk coefficient of each customer (in order to fix the price of the
insurance contracts). The company has: (¢) data grouped into a set F of facts; and (i) a
set R of rules. Suppose the company has the following database (which is an np-program
P = F'U R), where a value of the risk coefficient may be already known, but has to be re-
evaluated (the client may be a new client and his risk coefficient is given by his precedent
insurance company). The certainty lattice is Lio,1}, with f,(z,y) = xy.

Experience(John) o7 (D, fp, ®)
F = { Risk(John) L0.5 (@, fp, @)
Sport_car(John) < 0.8 (®, fp, ®)

Good_driver(X) & Experience(X), -Risk(X) (®,®,®)

R ) Risk(®) = Young(X), (&, f, ®)
Risk(X) 2% Sport_car(X) (&, f,, ®)
Risk(X) < Experience(X), “Good_driver(X) (&, fp,®)

Using another disjunction function associated to the rules with head Ri sk, such as
fa(z,y) = = + y — zy, might have been more appropriate in such an example (i.e. we
accumulate the risk factors, rather than take the max only), but we will use @ in order to
facilitate the reader’s comprehension later on when we compute the semantics of P.

We further define the Herbrand base Bp of an np-program P as the set of all instantiated
atoms corresponding to atoms appearing in P and define P* to be the Herbrand instan-
tiation of P, i.e. the set of all ground instantiations of the rules in P (P* is finite). Note



that a Datalog program with negation P is equivalent to the np-program constructed by re-

placing each rule in P of the form A«—L1, ..., L,, by the rule A ha Ly, ... Ly (8, 0,R),
where the classical certainty lattice Ly, f is considered, where L, sy = (7, =, ®, ®),
with 7 = {t, f}, < is defined by f < ¢, @ = max<, ® = min<, ~f =t and -t = f,
L=fand T =t

3 Interpretations of programs

The semantics of a program P is determined by selecting a particular interpretation of P
in the set of models of P, where an interpretation I of an np-program P is a function that
assigns to all atoms of the Herbrand base of P a value in 7. In Datalog programs, as well
as in PDDU, that chosen model is usually the least model of P w.r.t. <. Unfortunately,
the introduction of negation may have the consequence that some logic programs do not
have a unigue minimal model, as shown in the following example.

Example 2. Consider the certainty lattice Lo ;) and the program P = {(A«-DB), (B«-A4),
(A<0.2), (B«<0.3)}. Informally, an interpretation I is a model of the program if it satis-
fies every rule, while I satisfies a rule X « Y if I(X) = I(Y)®. So, this program has an
infinite number of models 7¥, where 0.2 < 2 < 1,03 <y <1,y >1—z,[Y(A) ==z
and I (B) = y (those inthe A area). 5 ‘

1
0.8 A
0.3
002 071 A
There are also an infinite number of minimal models (those on the thin diagonal line). The
minimal models /¥ are suchthaty = 1 — x. O

Concerning the previous example we may note that the certainty of A in the minimal mod-
els is in the interval [0.2,0.7], while for B the interval is [0.3, 0.8]. An obvious question
is: what should be the answer to a query A to the program proposed in Example 2? There
are at least two answers: () the certainty of A is undefined, as there is no unique min-
imal model. This is clearly a conservative approach, which in case of ambiguity prefers
to leave A unspecified; (i¢) the certainty of A is in [0.2,0.7], which means that even if
there is no unique value for A, in all minimal models the certainty of A is in [0.2,0.7].
In this approach we still try to provide some information. Of course, some care should
be used. Indeed from I(A) € [0.2,0.7] and I(B) € [0.3,0.8] we should not conclude
that 7(A) = 0.2 and I(B) = 0.3 is a model of the program. Applying a usual approach,
like the well-founded semantics [18] or the Kripke-Kleene semantics [4], would lead us
to choose the conservative solution 1. This was also the approach in our early attempt to
deal with normal parametric programs [11]. Such a semantics seems to be too weak, in
the sense that it loses some knowledge (e.g. the value of A should be at least 0.2). In this
paper we address solution 2.

To this end, we propose to rely on 7 x 7. Any element of 7 x 7 is denoted by [a; b] and
interpreted as an interval on 7, i.e. [a; b] is interpreted as the set of elements « € 7 such
thata < z < b. For instance, turning back to Example 2 above, in the intended model of P,
the certainty of A is “approximated” with [0.2; 0.7], i.e. the certainty of A lies in between
0.2 and 0.7 (similarly for B). Formally, given a complete lattice £ = (7, <X, ®,®), we

4 < is extended to the set of interpretations as follows: I < .J iff for all atoms A, I(A) < J(A).
5 Roughly, X «— Y dictates that “X should be at least as true as Y.



construct a bilattice over 7 x 7, according to a well-known construction method (see [3,
6]). We recall that a bilattice is a triple (53, <;, <i), where B is a nonempty set and <;, <,
are both partial orderings giving to B the structure of a lattice with a top and a bottom [6].
We consider B =7 x 7 with orderings:

— the truth ordering <, where [a1; b1] = [ag; bo] iff a1 < az and by < bo;
— the knowledge ordering <y, where [a1; b1] <i [a2; be] iff a1 < ag and by =< by.

The intuition of those orders is that truth increases if the interval contains greater values
(e.g. [0.1;0.4] =<; [0.2;0.5]), whereas the knowledge increases when the interval (i.e. in
our case the approximation of a certainty value) becomes more precise (e.g. [0.1;0.4] <
[0.2;0.3], i.e. we have more knowledge). The least and greatest elements of 7 x 7 are
respectively (i) f = [L; L] (false) and t = [T; T] (true), w.r.t. <¢; and (i) L = [L;T]
(unknown — the less precise interval, i.e. the atom’s certainty value is unknown) and T =
[T; L] (inconsistent — the empty interval) w.r.t. <j. The meet, join and negationon 7 x 7
w.r.t. both orderings are defined by extending the meet, join and negation from 7 to 7 x 7
in the natural way: let [a1; b1], [a2; b2] € T x 7T, then

= [a1;b1] ®¢ [ag;b2] = [a1 @ ag;b1 @ ba] and [aq; b1] B [az; ba] = [a1 ® az; by & ba);
= [a1;b1] @" [az; b2] = [a1 ® a2;b1 @ bo] and [a1; b1] BF [az; be] = [a1 & az; b1 @ b;
= —la1; b1] = [=b1; naql.

®! and o (®* and @©*) denote the meet and join operations on 7 x 7 w.r.t. the truth
(knowledge) ordering, respectively. For instance, taking L 17, [0.1;0.4] &" [0.2;0.5] =
[0.2;0.5], [0.1;0.4] @ [0.2;0.5] = [0.1;0.4], [0.1;0.4] @ [0.2;0.5] = [0.2;0.4], [0.1; 0.4]
®%*[0.2;0.5] = [0.1;0.5] and —=[0.1;0.4] = [0.6;0.9]. Finally, we extend in a similar way
the combination functions from 7 to 7 x 7. Let f. (resp. f, and fq) be a conjunction
(resp. propagation and disjunction) function over 7 and [a1; b1], [a2; b2] € T x T :

= fe([ar;01], [a2; b2]) = [fe(ar, a2); fe(b1, ba)];
= fpl[a1;b1], [a2; b2]) = [fp(a1, az); fp(b1,b2)];
= fa(lax; b1], [az; ba]) = [falar, az); fa(b1, b2)].

It is easy to verify that these extended combination functions preserve the original proper-
ties of combination functions.The following theorem holds.

Theorem 1. Consider 7 x 7 with the orderings <; and <. Then

1. ®f, @t ®F, @ and the extensions of combination functions are continuous (and, thus,
monotonic) w.r.t. <; and <x;

2. any extended negation function is monotonic w.r.t. <y;

3. ifthe negation function satisfies the de Morgan laws, i.e. Va, b € T.—=(a®b) = ~a®-b
then the extended negation function is continuous w.r.t. <.

Proof. We proof only the last item, as the others are immediate. Consider a chain of in-
tervals zg <, z1 < ..., where z; = [a;;b;] with a;,b; € T. To show the continu-
ity of the extended negation function w.r.t. <z, we show that = @, z; = @, —a;:
— @50 15 = (@205 ®50b5] = [7 ®;20 bj; ~ Bj>0 a;] = [Bi207bs; @j>07ay]

= Dj>o[bj; —a;] = sgolag; by] = OFso ;. L -

We can now extend interpretations over 7'%o the above specified “interval” bilattice.
Definition 2 (Approximate interpretation). Let P be an np-program. An approximate

interpretation of P is a total function 7 from the Herbrand base Bp to the set 7 x 7. The
set of all the approximate interpretations of P is denoted Cp.



Intuitively, as anticipated, assigning the logical value [a; b] to an atom A means that the
exact certainty value of A lies in between a and b with respect to <. Note that I(A) = [a; b
can also be understood as the specification of a lower bound and upper bound constraint
on the admissible certainty values of A. Our goal will be to determine for each atom of the
Herbrand base of P the most precise interval that can be inferred, i.e. the maximal value
with respect to <, i.e. maximal knowledge.

At first, we extend the two orderings on 7 x 7 to the set of approximate interpretations
Cp in a usual way: let I and I be in Cp, then (i) I =, I iff [;(A) < I2(A), for
all ground atoms A; and (i4) Iy =i I iff [;(A) =< I2(A), for all ground atoms A.
Under these two orderings Cp becomes a complete bilattice. The meet and join operations
over 7 x 7 for both orderings are extended to Cp in the usual way (e.g. for any atom
A, (I ®* J)(A) = I(A) @k J(A)). Negation is extended similarly, for any atom A,
—I(A) = I(—A), and approximate interpretations are extended to 7, for any o € 7,
I(«) = [oy; . At second, we identify the models of a program. The definition extends the
one given in [10] to intervals.

Definition 3 (Models of a logic program). Let P be an np-program and let I be an
approximate interpretation of P.

1. I satisfies a ground np-rule r : A &= Ly, ..., Lp,; {fa, fp, fo) in P, denoted =; 7, iff
fp([aT; 047-], f(:({I(Ll)a s aI(Ln)})) =t I(A);

2. Iisamodel of P, or I satisfies P, denoted =; P, iff for all atoms A € Bp, fq(X) =;
I(A) where f; is the disjunction function associated with 7(A) and

X ={fp(Jar; ], f(JI(L1), .., I(L)})) 2 A ES Ly, oo L {fa, fos fo) € P*}.

At third, among all possible models of an np-program, we have now to specify which one
is the intended model. The characterization of that model will require the definition of an
immediate consequence operator that will be used to infer knowledge from a program.
That operator is a simple extension from 7 to 7 x 7 of the immediate consequence
operator defined in [10] to give semantics to classical PDDU.

Definition 4. Let P be any np-program. The immediate consequence operator T'p is a
mapping from Cp to Cp, defined as follows: for every interpretation I in Cp, for every
ground atom A, Tr(I)(A) = fa(X), where f; is the disjunction function associated with

;(*?) and X = {fy([orson], fe({I(L1), .., I(Ln)})) + A ¥ Lu, o Lns (fa, fyo fe) €

Note that from the property iv of combination functions satisfied by all disjunction func-
tions, it follows that if an atom A does not appear as the head of a rule, then Tp (I)(A) =f .
Note also that any fixpoint of T'» is a model of P. We have

Theorem 2. For any np-program P, Tp is monotonic and, if the de Morgan laws hold,
continuous w.r.t. <.

Proof. The proof of monotonicity is easy. To prove the continuity w.r.t. <, consider a
chain of interpretations Iy < I; < .... We show that for any A € Bp,

Tp(®520l;)(A) = Bfs0Tr(1;)(A) @

As Cp is a complete lattice, the sequence /o < I1 =} ... has a least upper bound,
say I = @h.(I;. Forany B € Bp, we have @%I;(B) = I(B) and, from Theorem 1,



EB]>OI (=B) = @, ~I;(B) = ~ @k [;(B) = —~I(B) and, thus, for any literal or
certainty value L,

®sol;(L) = I(L) )
Now, consider the finite set (P*is finite) of all ground rules 4, . .., 7, having A as head,
wherer; = A & Ly, ., L s (fa, fi, f2)). Letus evaluate the left hand side of Equation 1.

To(@ks01,)(4) = To(T)(4) = fAUWMw%]fdﬂﬁ%uwf@aﬂkoéiékb
On the other hand side, @]>0TP(I )(A) = ]Zofd({f;([ai;ai],fg({lj(Lzl), oLy )
0 <i < k}). But, fq, f, and f! are continuous and, thus, by Equation 2

@5>0Tr(1)(A) = fal{ @520 {F3 (ais i, eI (LY), - -, I (Ll )0 <i <k}})
falfo(low; oa), @m0 { fe QI (1), -, (L, 1)} 0 < i < K))
(
(

=

fa {f;([ai;ai],fci({@?zo [J'(Lzl s "7®j>0[ (L })) 0<:i< k})
fal{fs([eus ], fE(I(LY), - .. I(L3,}): 0 < i < k})

Therefore, Equation 1 holds and, thus, T'p is continuous.

4 Semantics of normal logic programs

Usually, the semantics of a normal logic program is the least model of the program with
respect to the knowledge ordering. That model always exists and coincides with the the
least fixed-point of T'p» with respect to <, (which exists as T'p is monotonic w.r.t. <;). Note
that this least model with respect to <, corresponds to an extension of the classical Kripke-
Kleene semantics [4] of Datalog programs with negation to normal parametric programs:
if we restrict our attention to Datalog with negation, then we have to deal with four values
[f; f], [t t], [f; t] and [¢; f] that correspond to the truth values false, true, unknown and
inconsistent, respectively. Then, our bilattice coincides with Belnap’s Ioglc [1] and for any
Datalog program with negation P, the least fixed-point of T» w.r.t. < is a model of P
that coincides with the Kripke-Kleene semantics of P.
To illustrate the different notions introduced in the paper, we rely on the Example 3.

Example 3 (Running example). The certainty lattice is Ly, ;) and the np-programis P =
{(A < B,0.6;(2,®,®)),(B < B: (,0,)), (A < 0.3; (&,0,8)}. 0

The table below shows how the Kripke-Kleene semantics, K K p, of the running Example 3
is computed (as the iterated fixed-point of T'p, starting from Iy = I, , the <; minimal
interpretation that mapsany A € Bpto [L; T],and I,+1 = Tp(I,,)):

Iy I I,=1=KKp
A[0; 1][[0-3; 0.6]] _[0.3;0.6]
Bl[0; 1 [0;1] 0;1]

)

In that model, which is minimal w.r.t. <, and contains only the knowledge provided by
P, the certainty of B lies between 0 and 1, i.e. is unknown, and the certainty of A then
lies between 0.3 and 0.6. As well known, that semantics is usually considered as too weak.
We propose to consider the Closed World Assumption (CWA) to complete our knowledge
(the CWA assumes that all atoms whose value cannot be inferred from the program are
false by default). This is done by defining the notion of support, introduced in [12], of
a program with respect to an interpretation. Given a program P and an interpretation 7,



the support of P w.r.t. I, denoted C'p(I), determines in a principled way how much false
knowledge, i.e. how much knowledge provided by the CWA, can “safely” be joined to I
with respect to the program P. Roughly speaking, a part of the CWA is an interpretation
Jsuch that J <4 |+, wherel s mapsany A € Bp to [L; L], and we consider that such
an interpretation can be safely added to I if J < Tp(I ok J), i.e. if J does not contradict
the knowledge represented by P and I.

Definition 5. The support of an np-program P w.r.t. an interpretation I, denoted C'p (1),
is the maximal interpretation J w.r.t. <, suchthat J <, 1 ¢ and J < Tp(I ®F J).

It is easy to note that Cp (1) = @"{J | J =i | § and J =4 Tp(I&*.J)}. The following
theorem provides an algorithm for computing the support.

Theorem 3. Cp(I) coincides with the iterated fixpoint of the function Fp ; beginning the
computation with Is , where Fip ;(J) = If @* Tp(I @F J).

From Theorems 1 and 2, it can be shown that F'p ; is monotone and, if the de Morgan laws
hold, continuous w.r.t. <. It follows that the iteration of the function F'p ; starting from
It decreases w.r.t. <. We will refer to C'p as the closed world operator.

Corollary 1. Let P be an np-program. The closed world operator C'p is monotone and, if
the de Morgan laws hold, continuous w.r.t. the knowledge order <.

The table below shows the computation of Cp (K K p), i.e. the additional knowledge that
can be considered using the CWA on the Kripke-Kleene semantics K K p of the running
Example3 (I = KKp, Jo = It and J,41 = Fp1(Jy)):

Jo Ji |Jo=J1 =Cp(KKp)
[0;0.3] [0;0.3]
[0; 0] [0; 0]

A
B

0;0
0;0

The interpretation Cp (K K p) asserts that, according to the CWA and with respect to P
and K Kp, the certainty of A should be at most 0.3 and the certainty of B exactly 0.
We have now two ways to infer information from an np-program P and an approximate
interpretation 7: using Tp and using Cp. To maximize the knowledge derived from P
and the CWA, but without introducing any other extra knowledge, we propose to choose
the least model of P containing its own support, i.e. that cannot be completed anymore
according to the CWA, as the semantics of P. This consideration leads to the following
epistemic definition of semantics of a program P.

Definition 6. The approximate well-founded semantics of an np-program P, denoted Wp,
is the least model I of P w.r.t. < such that Cp(I) < I.

Now we provide a fixpoint characterization and, thus, a way of computation of the approx-
imate well-founded semantics. It is based on an operator, called approximate well-founded
operator, that combines the two operators that have been defined above. Given an interpre-
tation I, we complete it with its support provided by the CWA, and then activate the rules
of the program on the obtained interpretation using the immediate consequence operator.

Definition 7. Let P be an np-program. The approximate well-founded operator, denoted
AWp, takes in input an approximate interpretation I € Cp and returns AWp(I) € Cp
defined by AWp(I) = Tp(I &F Cp(I)).

From [12], the following theorems can be shown.

Theorem 4. Let P be an np-program. Any fixed-point I of AW p is a model of P.



Using the properties of monotonicity and continuity of 7p and Cp w.r.t. the knowledge
order <. over Cp, from the fact that Cp is a complete lattice w.r.t. <, by the well-known
Knaster-Tarski theorem, it follows that

Theorem 5. Let P be an np-program. The approximate well-founded operator AW p is
monotone and, if the de Morgan laws hold, continuous w.r.t. the knowledge order <.
Therefore, AW p has a least fixed-point w.r.t. the knowledge order <. Moreover that least
fixpoint coincides with the approximate well-founded semantics Wp of P.

The table below shows the computation of Wp of Example 3 (I = I, and I,,41 =
AWp(1I,)). The certainty of A is 0.3 and the certainty of B is 0. Note that KKp =
Wp, i.e. the well-founded semantics contains more knowledge than the Kripke-Kleene
semantics that was completed with some default knowledge from the CWA.

Io [Cp(lo)| L |Cp(i)|l2=11=Wp
A|[0;1]][0;0.3]][0.3; 0.3]| [0; 0.3] |  [0.3;0.3]
BI[0;1][ [0;0] [ [0;0] | [0;0] [0; 0]

We conclude with re-considering the example 1 seen at the beginning.

Example 4. Consider the program P = R U F' given in Example 1. The computation of
the approximate well-founded semantics Wp of P is as follows®:

R(J) s(3) [ YQ) G(J) E(J)
Ip=1 [0;1] [0;1] | [0;1] [0;1] [0; 1]

I, = AWr(1o) [0.5; 0.7] |[0.8; 0.8]][0.0; 0.0]| [0.0; 0.7] |[0.7; 0.7
I, = AWps(1h) 0.64; 0.7]([0.8; 0.8][[0.0; 0.0]| [0.3; 0.5] |[0.7; 0.7
Is = AWp (1) 0.64; 0.7][[0.8; 0.8][[0.0; 0.0][]0.3; 0.36][[0.7; 0.7
Wp = Is = AWp(I3)][[0-64; 0.7]{[0.8; 0.8][[0.0; 0.0][[0.3; 0.36][[0.7; 0.7

R | 8Q) | YQ) | 6(I) | E(QJ)
15)[[0.0; 0.7]{[0.0; 0.8]{[0.0; 0.0]|[0.0; 0.7]] [0.0; 0.7
1,)][[0.0; 0.7]{[0.0; 0.8]{[0.0; 0.0]][0.0; 0.7]] [0.0; 0.5
1,)][[0.0; 0.7]{[0.0; 0.8]|[0.0; 0.0]|[0.0; 0.7]{]0.0; 0.36
C'p(13)}[0.0;0.7]|[0.0; 0.8]{[0.0; 0.0]{[0.0; 0.7]][0.0; 0.36

with|Cp

which establishes that John’s degree of Ri sk is in between [0.64,0.7]. |

Finally, our approach captures and extends the usual semantics of logic programs.

Theorem 6. If we restrict our attention to PDDU, then for any program P the approxi-
mate well-founded semantics Wp assigns exact values to all atoms and coincides with the
semantics of P proposed in [10].

Theorem 7. If we restrict our attention to Datalog with negation, then we have to deal
with Belnap’s bilattices [1] and for any Datalog program with negation P,

— any stable model [5] of P is a fixpoint of AW p, and
— the approximate well-founded semantics Wp coincides with the well-founded seman-
tics of P [18].

Note that any stable model is a model containing its own support, i.e. a model that cannot
be completed anymore according to the CWA. Note also that our approach gives a simple
way to verify the well-known result that, for any Datalog programs with negation P, the
Kripke-Kleene semantics of P gives less knowledge than the well-founded semantics of
P, i.e. is smaller w.r.t. the knowledge order.

8 For ease of presentation, we use the first letter of predicates and constants only.



5 Conclusions

We define novel characterizations, both epistemic and operational, of the well-founded
semantics in the general framework of PDDU [10], an unifying umbrella for many exist-
ing approaches towards the manipulation of uncertainty in logic programs, that we extend
with non-monotonic (default) negation. Main features of our extension are (¢) dealing with
uncertain and incomplete knowledge, atoms are assigned approximation of uncertainty
values; (i7) the CWA is used to complete the knowledge in order to infer the most precise
approximations as possible relying on a natural management of negation; (¢i) that the con-
tinuity of the immediate consequence operator is preserved (which is a major feature of the
classical PDDU framework); and (iv) our approach captures and extends to PDDU with
negation not only the semantics proposed in [10] for PDDU, but also the usual semantics
of Datalog with negation: the well-founded semantics and the Kripke-Kleene semantics.
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